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CSEP 521
Applied Algorithms

Spring 2005

Computational Geometry
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Reading

• Chapter 33
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Outline for the Evening

• Convex Hull

• Line Segment Intersection

• Voronoi Diagram
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Geometric Algorithms

• Algorithms about points, lines, planes, 
polygons, triangles, rectangles and other 
geometric objects.

• Applications in many fields
– robotics, graphics, CAD/CAM, geographic 

systems
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Convex Hull in 2-dimension

• Given n points on the plane find the smallest 
enclosing curve.
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Convex Hull in 2-dimension

• The convex hull is a polygon whose vertices 
are some of the points.
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Definition of Convex Hull Problem

• Input: 
Set of points p1, p2, ... , pn in 2 space. (Each 
point is an ordered pair p = (x,y) of reals.)

• Output: 
A sequence of points pi1, pi2, ... , pik such that 
traversing these points in order gives the 
convex hull.
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Example

p1

p5p6

p3
p8

p12

p11

p2

p7

p4

p10

p9

Input: p1, p2, p3, p4, p5, p6, p7, p8, p8, p9, p10, p11, p12

Output: p6, p1, p2, p11, p12, p10
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Slow Convex Hull Algorithm

• For each pair of points p, q determine if the 
line from p to q is on the convex hull.

No Yes
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Slow Convex Hull Algorithm

• For each pair of points p, q, form the line that 
passes through p and q and determine if all 
the other points are on one side of the line.
– If so the line from p to q is on the convex hull
– Otherwise not

• Time Complexity is O(n3)
– Constant time to test if point is on one side of the 

line from (p1,p2) to (q1,q2).

21121122 qpqp)yq(p)xp(q0 −+−+−=
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Graham’s Scan 
Convex Hull Algorithm

• Sort the points from left to right (sort on the 
first coordinate in increasing order)
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Convex Hull Algorithm

• Process the points in left to right order
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Convex Hull Algorithm

• Right Turn
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Convex Hull Algorithm

• Right Turn
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm

Lecture 8 - Computational Geometry 20

Convex Hull Algorithm

• Right Turn
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm
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Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 24

Convex Hull Algorithm
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm
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Convex Hull Algorithm

• Upper convex hull is complete

Continue the process in reverse order to get the lower convex hull
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Convex Hull Algorithm

• Right Turn
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm
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Convex Hull Algorithm

• Right Turn
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm
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Convex Hull Algorithm

• Right Turn
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm
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Convex Hull Algorithm

• Right Turn
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm

• Left Turn – back up
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Convex Hull Algorithm

• Done!
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Co-linear Points

• Not a left turn
– Middle point is included in the convex hull
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Vertical Points

• Sort
– First increasing in x
– Second decreasing in y
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Testing For Left Turn

• Slope increases from one segment to next

(p1,p2)

(q1,q2)

(r1,r2)

11

22

11

22

qr
qr

pq
pq

−
−<

−
−

left turn

))(())( 11221122 pqqrqrp(q −−<−− to avoid dividing by zero
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Time Complexity of Graham’s Scan

• Sorting – O(n log n)

• During the scan each point is “visited” at most 
twice
– Initial visit
– back up visit (happens at most once)

• Scan  - O(n)
• Total time O(n log n)

• This is best possible because sorting is 
reducible to finding convex hull.
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Exercise

• Find an algorithm that, given two sets of 
points A and B on the plane, determines if 
there is a line that separates the two sets. 
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Notes on Convex Hull

• O(n log n) 
– Graham (1972)

• O(n h) algorithm where h is the size of hull
– Jarvis’ March, “Gift wrapping” (1973)
– Output sensitive algorithm

• O(n log h) algorithm where h is size of hull
– Kirkpatrick and Seidel (1986)

• d-dimensional Convex Hull
– Ω(nd/2) in the worst case because the output can 

be this large.
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Line Segment Intersection Problem

Input output
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Special cases

Report the segment and all the
lines that meet on it.

report the point and all the lines
that meet there. 
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Polygon Intersection

• Polygons have no self intersections

Use line segment intersection to solve polygon intersection
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Polygon Intersection

• What if no line segment intersections?
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Polygon Intersection

• Intersect a ray from each polygon with the other
– Inside, if ray has an odd number of intersections, otherwise 

outside. Jordan curve theorem (1887).
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Issues

• With n line segments there may be O(n2) 
intersections.

• Goal: Good output sensitive algorithm
– O(n log n + s) would be ideal where s is the 

number of intersections.
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Plane Sweep Algorithm

• Sweep a plane vertically from top to bottom 
maintaining the set of known future events.

• Events
– Beginning of a segment
– End of a segment
– Intersection to two “adjacent” segments

sweep
direction
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Segment List

• We maintain ordered list of segments

a
f

d
c b

y

segment ordering at y = c, d, f, b, e, a

e
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Key Idea in the Algorithm

• Just before an intersection event the two line 
segments must be adjacent in the segment 
order.

• When a new adjacency occurs between two 
lines we must check for a possible new 
intersection event.
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Initialization

• Event Queue 
– contains all the beginning points and all the end 

points of segments ordered by decreasing y value.

• Segment List
– Empty

Event Queue
ba,bb,bc,bd,ed,be,eb,ee,ea,ec

a
b

c
d

e
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Algorithm
• Remove the next event from the event queue

a b

c

begin segment event

1. Insert b into the segment list
between a and c

2. Check for intersections with
adjacent segments (a,b) and
(b,c), and add any to event 
queue

a b
c 1. Delete b from the segment list

2. Check for intersections with
adjacent segments (a,c), and 
add any to event queue

end segment event
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Algorithm

intersection event event

a

b

c 1. Reverse the order of b and c
on the segment list

2. Check for intersections with
adjacent segments (a,c) and (b,d)
and add any to event queue

d
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Complications

• Several events can coincide.

• Horizontal lines

begin segment event
end segment event
intersection event

begin end

do in left to right order
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Example

a
b

c
d

e

Segment List

Event Queue
ba, bb, bc, bd, ed, be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
a

Event Queue
bb, bc, bd, ed, be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
b, a

Event Queue
bc, bd, ed, be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
c, b, a

Event Queue
bd, i(c,b), ed, be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
c, d, b, a

Event Queue
i(d,b), i(c,b), ed, be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
c, b, d, a

Event Queue
i(c,b), ed, be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
b, c, d, a

Event Queue
ed, be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
b, c, a

Event Queue
be, eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
b, e, c, a

Event Queue
i(e,c), eb, ee, ea, ec
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Example

a
b

c
d

e

Segment List
b, c, e, a

Event Queue
eb, i(e,a) ee, ea, ec
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Example

a
b

c
d

e

Segment List
c, e, a

Event Queue
i(e,a), ee, ea, ec
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Example

a
b

c
d

e

Segment List
c, a, e

Event Queue
ee, ea, ec
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Example

a
b

c
d

e

Segment List
c, a

Event Queue
ea, ec
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Example

a
b

c
d

e

Segment List
c

Event Queue
ec

Lecture 8 - Computational Geometry 77

Example

a
b

c
d

e

Segment List

Event Queue
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Data Structures

• Event List 
– Priority queue ordered by decreasing y, then by 

increasing x
– Delete minimum, Insertion

• Segment List
– Balanced binary tree search tree
– Insertion, Deletion
– Reversal can be done by deletions and insertions

• Time per event is O(log n)
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Finding Line Segment Intersections

• Given line segments (p1,p2),(q1,q2) and 
(r1,r2),(s1,s2) do they intersect, and if so where.

• Where?  Solve
– 0 = (q2 – p2)x + (p1 – q1)y + p2q1 – p1q2

– 0 = (s2 – r2)x + (r1 – s1)y + r2s1 – r1s2

• If?
– (p1,p2) and (q1,q2) on opposite sides of line 

(r1,r2),(s1,s2) and 

– (r1,r2) and (s1,s2) on opposite sides of line 
(p1,p2),(q1,q2) 
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Opposite Sides

(p1,p2)

(s1,s2)

(r1,r2)

(q1,q2)

(p1,p2)

(s1,s2)

(r1,r2)

(q1,q2)
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Exercise

• A simple polygon is one that does not 
intersect itself.  A polygon is given as a 
sequence of points (x1,y1), (x2,y2),… (xn,yn),

• Design an algorithm for determining if a 
polygon is simple or not.

Simple Non-simple
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Notes on Line Segment Intersection

• Total time for plane sweep algorithm is 
O(n log n + s log n) where s is the number of 
intersections.
– n log n for the initial sorting
– log n per event

• Plane sweep algorithms were pioneered by 
Shamos and Hoey (1975).

• Intersection Reporting - Bentley and Ottmann
(1979)
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Voronoi Diagram

Each site defines an area of points nearest to it.
Boundaries are perpendicular bisectors.
http://www.cs.cornell.edu/Info/People/chew/Delaunay.

Vertex

Edge

Site
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Brute Force

• Each Voronoi area is the intersection of half 
spaces defined by perpendicular bisectors.

O(n2 log n) time
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Linear Size of Voronoi Diagram

• The Voronoi Diagram is a planar embedding 
so it obeys Euler’s equation 2FEV =+−

Vertices = 7 (single vertex at infinity)
Edges = 11
Faces = 6
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Linear Size of Voronoi Diagram

• F = E - V  + 2 (Euler’s equation)

• n = F (one site per face)

• 2E > 3V because each vertex is of degree at 
least 3 and each edge has 2 vertices.

• n > 3V/2 – V + 2 = V/2 + 2
• 2n – 2 > V

• n > E – (2n – 2) + 2

• 3n – 4 > E
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Properties Voronoi Diagram

1. A vertex is the center of a circle through at 
least three sites
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Properties Voronoi Diagram

2.  A point on a perpendicular bisector of sites p and q 
is on an edge if the circle centered at the point 
through p and q contains no other sites.
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Fortune’s Sweep

• We maintain a “beach line,” a sequence of 
parabolic segments that is the set of points 
equidistant from a site and the sweep line.

• Events
– Site event – new site is encountered by the sweep 

line
– Circle event – new vertex is inserted into the 

Voronoi diagram
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Example

a

b

c

beach line

event queue
a, b, c
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Example

site point event
a

b

c

beach line
a

event queue
b, c

Lecture 8 - Computational Geometry 92

Example

points equidistant from point and line

b

c

a

beach line
a

event queue
b, c
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Example

site event

b

c

a

beach line
a, b, a

event queue
c
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Example

b

c

a

beach line
a, b, a

event queue
c

breakpoint

segment
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Example

b

c

a

site event

beach line
a, b, a, c, a

event queue
?
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Example

b

c

a

circle event must be 
added to the event queue

beach line
a, b, a, c, a

event queue
c(b,a,c)
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Example

b

c

beach line
a, b, a, c, a

event queue
c(b,a,c)

a
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Example

b

c

beach line
a, b, c, a

event queue

a

circle event
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Example

b

c

beach line
a, b, c, a

event queue

a
a
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Event Queue

b

c

a

• Contains site events and circle events sorted 
by y in decreasing order, then by x in 
increasing order

• Circle events can be both inserted and 
deleted.
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Two New Circle Events

b

c

a
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Beach Line

b

c

a

• Implemented as a balanced binary search tree.
– sites at leaves
– breakpoints at internal nodes

a b a c

a:b

a

a:c

b:a

c:a
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Output
• For each site output the vertices in clockwise order.  

When a circle event occurs add to the vertex list of 
the three (or more) sites.

1

f a

e d

c

b

inf
inf

inf

inf

1. f, a, d, c, e
2. f, a, b, inf

2
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Complexity

• Number of segments in the beach line < 2n
– Each site event adds at most 2 segments.

• Number of circle event insertions < 2n
– Each site event creates at most 2 circle events.

• Time per event is O(log n)
– Insert new segments into the segment tree.
– Insert new circle events into the event queue
– Delete circle events from the event queue

• Total time is O(n log n)
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Voronoi Diagram Notes

• Voronoi diagram
– Dirichlet (1850), Voronoi (1907)

• O(n log n) algorithm
– Divide and conquer - Shamos and Hoey (1975)
– Plane sweep – Fortune (1987)
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Exercise

• Give an O(n log n) algorithm which given a 
set of n points on the plane, for each point 
finds its nearest neighbor.
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Numerics

• Computational  geometry algorithms need 
exact arithmetic over rational numbers or 
algebraic numbers (solutions to polynomial 
equations over rationals).
– In most cases there are predicates P(x,y) that 

need to be checked. 
– Example of predicates are x < y and x = y 

• Checking such predicates is very time 
consuming.
– There are techniques like interval arithmetic to 

avoid these exact computations. 
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More Computational Geometry Problems

• Nearest neighbor search

• Closest pair

• Union of objects
• Silhouette


