
1

CSEP 521
Applied Algorithms

Spring 2005

Computational Geometry

Lecture 8 - Computational Geometry 2

Reading

• Chapter 33

Lecture 8 - Computational Geometry 3

Outline for the Evening

• Convex Hull

• Line Segment Intersection

• Voronoi Diagram

Lecture 8 - Computational Geometry 4

Geometric Algorithms

• Algorithms about points, lines, planes,
polygons, triangles, rectangles and other
geometric objects.

• Applications in many fields
– robotics, graphics, CAD/CAM, geographic

systems

Lecture 8 - Computational Geometry 5

Convex Hull in 2-dimension

• Given n points on the plane find the smallest
enclosing curve.

Lecture 8 - Computational Geometry 6

Convex Hull in 2-dimension

• The convex hull is a polygon whose vertices
are some of the points.

2

Lecture 8 - Computational Geometry 7

Definition of Convex Hull Problem

• Input:
Set of points p1, p2, ... , pn in 2 space. (Each
point is an ordered pair p = (x,y) of reals.)

• Output:
A sequence of points pi1, pi2, ... , pik such that
traversing these points in order gives the
convex hull.

Lecture 8 - Computational Geometry 8

Example

p1

p5p6

p3
p8

p12

p11

p2

p7

p4

p10

p9

Input: p1, p2, p3, p4, p5, p6, p7, p8, p8, p9, p10, p11, p12

Output: p6, p1, p2, p11, p12, p10

Lecture 8 - Computational Geometry 9

Slow Convex Hull Algorithm

• For each pair of points p, q determine if the
line from p to q is on the convex hull.

No Yes

Lecture 8 - Computational Geometry 10

Slow Convex Hull Algorithm

• For each pair of points p, q, form the line that
passes through p and q and determine if all
the other points are on one side of the line.
– If so the line from p to q is on the convex hull
– Otherwise not

• Time Complexity is O(n3)
– Constant time to test if point is on one side of the

line from (p1,p2) to (q1,q2).

21121122 qpqp)yq(p)xp(q0 −+−+−=

Lecture 8 - Computational Geometry 11

Graham’s Scan
Convex Hull Algorithm

• Sort the points from left to right (sort on the
first coordinate in increasing order)

Lecture 8 - Computational Geometry 12

Convex Hull Algorithm

• Process the points in left to right order

3

Lecture 8 - Computational Geometry 13

Convex Hull Algorithm

• Right Turn

Lecture 8 - Computational Geometry 14

Convex Hull Algorithm

• Right Turn

Lecture 8 - Computational Geometry 15

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 16

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 17

Convex Hull Algorithm

Lecture 8 - Computational Geometry 18

Convex Hull Algorithm

• Left Turn – back up

4

Lecture 8 - Computational Geometry 19

Convex Hull Algorithm

Lecture 8 - Computational Geometry 20

Convex Hull Algorithm

• Right Turn

Lecture 8 - Computational Geometry 21

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 22

Convex Hull Algorithm

Lecture 8 - Computational Geometry 23

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 24

Convex Hull Algorithm

5

Lecture 8 - Computational Geometry 25

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 26

Convex Hull Algorithm

Lecture 8 - Computational Geometry 27

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 28

Convex Hull Algorithm

Lecture 8 - Computational Geometry 29

Convex Hull Algorithm

• Upper convex hull is complete

Continue the process in reverse order to get the lower convex hull

Lecture 8 - Computational Geometry 30

Convex Hull Algorithm

• Right Turn

6

Lecture 8 - Computational Geometry 31

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 32

Convex Hull Algorithm

Lecture 8 - Computational Geometry 33

Convex Hull Algorithm

• Right Turn

Lecture 8 - Computational Geometry 34

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 35

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 36

Convex Hull Algorithm

7

Lecture 8 - Computational Geometry 37

Convex Hull Algorithm

• Right Turn

Lecture 8 - Computational Geometry 38

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 39

Convex Hull Algorithm

Lecture 8 - Computational Geometry 40

Convex Hull Algorithm

• Right Turn

Lecture 8 - Computational Geometry 41

Convex Hull Algorithm

• Left Turn – back up

Lecture 8 - Computational Geometry 42

Convex Hull Algorithm

• Left Turn – back up

8

Lecture 8 - Computational Geometry 43

Convex Hull Algorithm

• Done!

Lecture 8 - Computational Geometry 44

Co-linear Points

• Not a left turn
– Middle point is included in the convex hull

Lecture 8 - Computational Geometry 45

Vertical Points

• Sort
– First increasing in x
– Second decreasing in y

Lecture 8 - Computational Geometry 46

Testing For Left Turn

• Slope increases from one segment to next

(p1,p2)

(q1,q2)

(r1,r2)

11

22

11

22

qr
qr

pq
pq

−
−<

−
−

left turn

))(())(11221122 pqqrqrp(q −−<−− to avoid dividing by zero

Lecture 8 - Computational Geometry 47

Time Complexity of Graham’s Scan

• Sorting – O(n log n)

• During the scan each point is “visited” at most
twice
– Initial visit
– back up visit (happens at most once)

• Scan - O(n)
• Total time O(n log n)

• This is best possible because sorting is
reducible to finding convex hull.

Lecture 8 - Computational Geometry 48

Exercise

• Find an algorithm that, given two sets of
points A and B on the plane, determines if
there is a line that separates the two sets.

9

Lecture 8 - Computational Geometry 49

Notes on Convex Hull

• O(n log n)
– Graham (1972)

• O(n h) algorithm where h is the size of hull
– Jarvis’ March, “Gift wrapping” (1973)
– Output sensitive algorithm

• O(n log h) algorithm where h is size of hull
– Kirkpatrick and Seidel (1986)

• d-dimensional Convex Hull
– Ω(nd/2) in the worst case because the output can

be this large.

Lecture 8 - Computational Geometry 50

Line Segment Intersection Problem

Input output

Lecture 8 - Computational Geometry 51

Special cases

Report the segment and all the
lines that meet on it.

report the point and all the lines
that meet there.

Lecture 8 - Computational Geometry 52

Polygon Intersection

• Polygons have no self intersections

Use line segment intersection to solve polygon intersection

Lecture 8 - Computational Geometry 53

Polygon Intersection

• What if no line segment intersections?

Lecture 8 - Computational Geometry 54

Polygon Intersection

• Intersect a ray from each polygon with the other
– Inside, if ray has an odd number of intersections, otherwise

outside. Jordan curve theorem (1887).

10

Lecture 8 - Computational Geometry 55

Issues

• With n line segments there may be O(n2)
intersections.

• Goal: Good output sensitive algorithm
– O(n log n + s) would be ideal where s is the

number of intersections.

Lecture 8 - Computational Geometry 56

Plane Sweep Algorithm

• Sweep a plane vertically from top to bottom
maintaining the set of known future events.

• Events
– Beginning of a segment
– End of a segment
– Intersection to two “adjacent” segments

sweep
direction

Lecture 8 - Computational Geometry 57

Segment List

• We maintain ordered list of segments

a
f

d
c b

y

segment ordering at y = c, d, f, b, e, a

e

Lecture 8 - Computational Geometry 58

Key Idea in the Algorithm

• Just before an intersection event the two line
segments must be adjacent in the segment
order.

• When a new adjacency occurs between two
lines we must check for a possible new
intersection event.

Lecture 8 - Computational Geometry 59

Initialization

• Event Queue
– contains all the beginning points and all the end

points of segments ordered by decreasing y value.

• Segment List
– Empty

Event Queue
ba,bb,bc,bd,ed,be,eb,ee,ea,ec

a
b

c
d

e

Lecture 8 - Computational Geometry 60

Algorithm
• Remove the next event from the event queue

a b

c

begin segment event

1. Insert b into the segment list
between a and c

2. Check for intersections with
adjacent segments (a,b) and
(b,c), and add any to event
queue

a b
c 1. Delete b from the segment list

2. Check for intersections with
adjacent segments (a,c), and
add any to event queue

end segment event

11

Lecture 8 - Computational Geometry 61

Algorithm

intersection event event

a

b

c 1. Reverse the order of b and c
on the segment list

2. Check for intersections with
adjacent segments (a,c) and (b,d)
and add any to event queue

d

Lecture 8 - Computational Geometry 62

Complications

• Several events can coincide.

• Horizontal lines

begin segment event
end segment event
intersection event

begin end

do in left to right order

Lecture 8 - Computational Geometry 63

Example

a
b

c
d

e

Segment List

Event Queue
ba, bb, bc, bd, ed, be, eb, ee, ea, ec

Lecture 8 - Computational Geometry 64

Example

a
b

c
d

e

Segment List
a

Event Queue
bb, bc, bd, ed, be, eb, ee, ea, ec

Lecture 8 - Computational Geometry 65

Example

a
b

c
d

e

Segment List
b, a

Event Queue
bc, bd, ed, be, eb, ee, ea, ec

Lecture 8 - Computational Geometry 66

Example

a
b

c
d

e

Segment List
c, b, a

Event Queue
bd, i(c,b), ed, be, eb, ee, ea, ec

12

Lecture 8 - Computational Geometry 67

Example

a
b

c
d

e

Segment List
c, d, b, a

Event Queue
i(d,b), i(c,b), ed, be, eb, ee, ea, ec

Lecture 8 - Computational Geometry 68

Example

a
b

c
d

e

Segment List
c, b, d, a

Event Queue
i(c,b), ed, be, eb, ee, ea, ec

Lecture 8 - Computational Geometry 69

Example

a
b

c
d

e

Segment List
b, c, d, a

Event Queue
ed, be, eb, ee, ea, ec

Lecture 8 - Computational Geometry 70

Example

a
b

c
d

e

Segment List
b, c, a

Event Queue
be, eb, ee, ea, ec

Lecture 8 - Computational Geometry 71

Example

a
b

c
d

e

Segment List
b, e, c, a

Event Queue
i(e,c), eb, ee, ea, ec

Lecture 8 - Computational Geometry 72

Example

a
b

c
d

e

Segment List
b, c, e, a

Event Queue
eb, i(e,a) ee, ea, ec

13

Lecture 8 - Computational Geometry 73

Example

a
b

c
d

e

Segment List
c, e, a

Event Queue
i(e,a), ee, ea, ec

Lecture 8 - Computational Geometry 74

Example

a
b

c
d

e

Segment List
c, a, e

Event Queue
ee, ea, ec

Lecture 8 - Computational Geometry 75

Example

a
b

c
d

e

Segment List
c, a

Event Queue
ea, ec

Lecture 8 - Computational Geometry 76

Example

a
b

c
d

e

Segment List
c

Event Queue
ec

Lecture 8 - Computational Geometry 77

Example

a
b

c
d

e

Segment List

Event Queue

Lecture 8 - Computational Geometry 78

Data Structures

• Event List
– Priority queue ordered by decreasing y, then by

increasing x
– Delete minimum, Insertion

• Segment List
– Balanced binary tree search tree
– Insertion, Deletion
– Reversal can be done by deletions and insertions

• Time per event is O(log n)

14

Lecture 8 - Computational Geometry 79

Finding Line Segment Intersections

• Given line segments (p1,p2),(q1,q2) and
(r1,r2),(s1,s2) do they intersect, and if so where.

• Where? Solve
– 0 = (q2 – p2)x + (p1 – q1)y + p2q1 – p1q2

– 0 = (s2 – r2)x + (r1 – s1)y + r2s1 – r1s2

• If?
– (p1,p2) and (q1,q2) on opposite sides of line

(r1,r2),(s1,s2) and

– (r1,r2) and (s1,s2) on opposite sides of line
(p1,p2),(q1,q2)

Lecture 8 - Computational Geometry 80

Opposite Sides

(p1,p2)

(s1,s2)

(r1,r2)

(q1,q2)

(p1,p2)

(s1,s2)

(r1,r2)

(q1,q2)

Lecture 8 - Computational Geometry 81

Exercise

• A simple polygon is one that does not
intersect itself. A polygon is given as a
sequence of points (x1,y1), (x2,y2),… (xn,yn),

• Design an algorithm for determining if a
polygon is simple or not.

Simple Non-simple

Lecture 8 - Computational Geometry 82

Notes on Line Segment Intersection

• Total time for plane sweep algorithm is
O(n log n + s log n) where s is the number of
intersections.
– n log n for the initial sorting
– log n per event

• Plane sweep algorithms were pioneered by
Shamos and Hoey (1975).

• Intersection Reporting - Bentley and Ottmann
(1979)

Lecture 8 - Computational Geometry 83

Voronoi Diagram

Each site defines an area of points nearest to it.
Boundaries are perpendicular bisectors.
http://www.cs.cornell.edu/Info/People/chew/Delaunay.

Vertex

Edge

Site

Lecture 8 - Computational Geometry 84

Brute Force

• Each Voronoi area is the intersection of half
spaces defined by perpendicular bisectors.

O(n2 log n) time

15

Lecture 8 - Computational Geometry 85

Linear Size of Voronoi Diagram

• The Voronoi Diagram is a planar embedding
so it obeys Euler’s equation 2FEV =+−

Vertices = 7 (single vertex at infinity)
Edges = 11
Faces = 6

Lecture 8 - Computational Geometry 86

Linear Size of Voronoi Diagram

• F = E - V + 2 (Euler’s equation)

• n = F (one site per face)

• 2E > 3V because each vertex is of degree at
least 3 and each edge has 2 vertices.

• n > 3V/2 – V + 2 = V/2 + 2
• 2n – 2 > V

• n > E – (2n – 2) + 2

• 3n – 4 > E

Lecture 8 - Computational Geometry 87

Properties Voronoi Diagram

1. A vertex is the center of a circle through at
least three sites

Lecture 8 - Computational Geometry 88

Properties Voronoi Diagram

2. A point on a perpendicular bisector of sites p and q
is on an edge if the circle centered at the point
through p and q contains no other sites.

Lecture 8 - Computational Geometry 89

Fortune’s Sweep

• We maintain a “beach line,” a sequence of
parabolic segments that is the set of points
equidistant from a site and the sweep line.

• Events
– Site event – new site is encountered by the sweep

line
– Circle event – new vertex is inserted into the

Voronoi diagram

Lecture 8 - Computational Geometry 90

Example

a

b

c

beach line

event queue
a, b, c

16

Lecture 8 - Computational Geometry 91

Example

site point event
a

b

c

beach line
a

event queue
b, c

Lecture 8 - Computational Geometry 92

Example

points equidistant from point and line

b

c

a

beach line
a

event queue
b, c

Lecture 8 - Computational Geometry 93

Example

site event

b

c

a

beach line
a, b, a

event queue
c

Lecture 8 - Computational Geometry 94

Example

b

c

a

beach line
a, b, a

event queue
c

breakpoint

segment

Lecture 8 - Computational Geometry 95

Example

b

c

a

site event

beach line
a, b, a, c, a

event queue
?

Lecture 8 - Computational Geometry 96

Example

b

c

a

circle event must be
added to the event queue

beach line
a, b, a, c, a

event queue
c(b,a,c)

17

Lecture 8 - Computational Geometry 97

Example

b

c

beach line
a, b, a, c, a

event queue
c(b,a,c)

a

Lecture 8 - Computational Geometry 98

Example

b

c

beach line
a, b, c, a

event queue

a

circle event

Lecture 8 - Computational Geometry 99

Example

b

c

beach line
a, b, c, a

event queue

a
a

Lecture 8 - Computational Geometry 100

Event Queue

b

c

a

• Contains site events and circle events sorted
by y in decreasing order, then by x in
increasing order

• Circle events can be both inserted and
deleted.

Lecture 8 - Computational Geometry 101

Two New Circle Events

b

c

a

Lecture 8 - Computational Geometry 102

Beach Line

b

c

a

• Implemented as a balanced binary search tree.
– sites at leaves
– breakpoints at internal nodes

a b a c

a:b

a

a:c

b:a

c:a

18

Lecture 8 - Computational Geometry 103

Output
• For each site output the vertices in clockwise order.

When a circle event occurs add to the vertex list of
the three (or more) sites.

1

f a

e d

c

b

inf
inf

inf

inf

1. f, a, d, c, e
2. f, a, b, inf

2

Lecture 8 - Computational Geometry 104

Complexity

• Number of segments in the beach line < 2n
– Each site event adds at most 2 segments.

• Number of circle event insertions < 2n
– Each site event creates at most 2 circle events.

• Time per event is O(log n)
– Insert new segments into the segment tree.
– Insert new circle events into the event queue
– Delete circle events from the event queue

• Total time is O(n log n)

Lecture 8 - Computational Geometry 105

Voronoi Diagram Notes

• Voronoi diagram
– Dirichlet (1850), Voronoi (1907)

• O(n log n) algorithm
– Divide and conquer - Shamos and Hoey (1975)
– Plane sweep – Fortune (1987)

Lecture 8 - Computational Geometry 106

Exercise

• Give an O(n log n) algorithm which given a
set of n points on the plane, for each point
finds its nearest neighbor.

Lecture 8 - Computational Geometry 107

Numerics

• Computational geometry algorithms need
exact arithmetic over rational numbers or
algebraic numbers (solutions to polynomial
equations over rationals).
– In most cases there are predicates P(x,y) that

need to be checked.
– Example of predicates are x < y and x = y

• Checking such predicates is very time
consuming.
– There are techniques like interval arithmetic to

avoid these exact computations.

Lecture 8 - Computational Geometry 108

More Computational Geometry Problems

• Nearest neighbor search

• Closest pair

• Union of objects
• Silhouette

