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Statistical Lossless Data Compression

Outline for Tonight

« Basic Concepts in Data Compression
* Entropy

» Prefix codes

¢ Huffman Coding

¢ Arithmetic Coding

¢ Run Length Coding (Golomb Code)
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Reading

* Huffman Coding: CLRS 385-392
» Other sources can be found:

by David Salomon
— Introduction to Data Compression by Khalid
Sayood.
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Basic Data Compression Concepts

original compressed decompressed
X y X
— > Encoder Decoder ——

+ Lossless compression X =X

— Also called entropy coding, reversible coding.
+ Lossy compression X# X

— Also called irreversible coding.
» Compression ratio = |x/|y|

- ‘X is number of bits in x.
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Why Compress

- Conserve storage space

¢ Reduce time for transmission
— Faster to encode, send, then decode than to send
the original
¢ Progressive transmission
— Some compression techniques allow us to send
the most important bits first so we can get a low
resolution version of some data before getting the
high fidelity version
¢ Reduce computation
— Use less data to achieve an approximate answer
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Braille

« System to read text by feeling raised dots on
paper (or on electronic displays). Invented in
1820s by Louis Braille, a French blind man.
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Braille Example
Clear text:
Call me Ishmael. Some years ago -- never mind how
long precisely -- having \\ little or no money in my purse,
and nothing particular to interest me on shore, \\ | thought
I would sail about a little and see the watery part of the
world. (238 characters)

Grade 2 Braille:

i+ (203 characters) 238/203 =1.17
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Lossless Compression

Data is not lost - the original is really needed.

— text compression

— compression of computer binary files

Compression ratio typically no better than 4:1 for
lossless compression on many kinds of files.
Statistical Techniques

— Huffman coding

— Arithmetic coding

— Golomb coding
Dictionary techniques

- LZW, LZ77

— Sequitur

— Burrows-Wheeler Method
» Standards - Morse code, Braille, Unix compress, gzip,

zip, bzip, GIF, JBIG, Lossless JPEG
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Lossy Compression

Data is lost, but not too much.

— audio

— video

— still images, medical images, photographs

e Compression ratios of 10:1 often yield quite
high fidelity results.

e Major techniques include

— Vector Quantization

— Wavelets

— Block transforms

— Standards - JPEG, JEPG2000, MPEG, H.264

Lecture 5 - Statistical Lossless Data Compression 9

Why is Data Compression Possible

¢ Most data from nature has redundancy

— There is more data than the actual information
contained in the data.

— Squeezing out the excess data amounts to
compression.

— However, unsqueezing is necessary to be able to
figure out what the data means.

 Information theory is needed to understand
the limits of compression and give clues on
how to compress well.
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What is Information

* Analog data
— Also called continuous data

— Represented by real numbers (or complex
numbers)

« Digital data
— Finite set of symbols {a,, a,, ..., a,}

— All data represented as sequences (strings) in the
symbol set.

— Example: {a,b,c,d,r} abracadabra

— Digital data can be an approximation to analog
data

Lecture 5 - Statistical Lossless Data Compression 1

Symbols

* Roman alphabet plus punctuation
¢ ASCII - 256 symbols
e Binary - {0,1}

— 0 and 1 are called bits

— All digital information can be represented
efficiently in binary

— {a,b,c,d} fixed length representation

| symbol ‘ a ‘ b ‘ c ‘ d |
[ binay | 00 | oo | 10 | u |
— 2 bits per symbol
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Information Theory

« Developed by Shannon in the 1940’s and 50's
« Attempts to explain the limits of communication
using probability theory.
« Example: Suppose English text is being sent
— Itis much more likely to receive an “e” than a “z".
— In some sense “z” has more information than “e”.
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First-order Information

* Suppose we are given symbols {a,, a,, ..., a}.

* P(a;) = probability of symbol a; occurring in the
absence of any other information.
- P(a) +P(ay +...+P(a,) =1

* inf(a;) = l0g,(1/P(a;)) bits is the information of &
in bits.
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Example

* {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
—inf(a) =log,(8) =3
— inf(b) = log,(4) = 2
— inf(c) = log,(8/5) = .678

¢ Receiving an “a” has more information than
receiving a “b” or “c”.
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First Order Entropy

« The first order entropy is defined for a probability
distribution over symbols {a,, a,, ... , a,}.
& 1
H =) P(a)log,(5—)
Z;‘ “P(a)
« His the average number of bits required to code up a
symbol, given all we know is the probability distribution
of the symbols.
¢ His the Shannon lower bound on the average number of
bits to code a symbol in this “source model”.
« Stronger models of entropy include context.
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Entropy Examples
e {a, b, c} with a 1/8, b 1/4, c 5/8.
— H=1/8*3+ 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

e {a, b, c} with a 1/3, b 1/3, ¢ 1/3. (worst case)
— H =3*(1/3)*l0g,(3) = 1.6 bits/symbol

» Note that a standard code takes 2 bits per
symbol

|symb0| ‘ a ‘ b ‘c |
| binary code ‘ 00 ‘ 01 ‘ 10 |
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An Extreme Case

e {a,b,c}withal,b0,c0
—H="
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Entropy Curve

» Suppose we have two symbols with probabilities
x and 1-x, respectively.

maximum entropy at .5
12

1 ——-(x log x + (1-x)log(1-x))
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A Simple Prefix Code

* {a, b, c}witha1/8, b 1/4, c 5/8.
« A prefix code is defined by a binary tree
« Prefix code property

— no output is a prefix of another

input output

binary tree 0 @1 2 100
0D, b |o1 | code
[a] [b] c 1
ccabccbece
1100011101111
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Decoding a Prefix Code

repeat
start at root of tree
oOL repeal
0 ‘ G if read bit = 1 then go right
else go left
[a] [b] until node is a leaf
report leaf

until end of the code

11000111100
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Decoding a Prefix Code

11000111100
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Decoding a Prefix Code

11000111100

C
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Decoding a Prefix Code

11000111100

c
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Decoding a Prefix Code

11000111100

cc
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Decoding a Prefix Code

11000111100

cc
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Decoding a Prefix Code

11000111100

cc
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Decoding a Prefix Code

11000111100

cca
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Decoding a Prefix Code

11000111100

Cca
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Decoding a Prefix Code
0 Ou
0 1
la] [b]
11000111100

cca
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Decoding a Prefix Code

11000111100

ccab
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Decoding a Prefix Code

11000111100

ccabccca
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How Good is the Code

0 Ou
0 @
5/8
a] [b]
1/8 1/4

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2 bps

(bps = bits per symbol)
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Design a Prefix Code 1

* abracadabra

« Design a prefix code for the 5 symbols
{a,b,r,c,d} which compresses this string the
most.
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Design a Prefix Code 2

» Suppose we have n symbols each with
probability 1/n. Design a prefix code with
minimum average bit rate.

e Consider n = 2,3,4,5,6 first.
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Huffman Coding

¢ Huffman (1951)
« Uses frequencies of symbols in a string to build a
variable rate prefix code.
— Each symbol is mapped to a binary string.
— More frequent symbols have shorter codes.
— No code is a prefix of another.

« Example: 0 O%
ao0
b 100 { 0 1
c 101 5 E
d 11 0 1
¥
Lecture 5 - Statistical Lossless Data Compression 36




Variable Rate Code Example

e Example: a 0,b 100,c 101,d 11

» Coding:
— aabddcaa = 16 bits
- 0010011 11 101 0 0= 14 bits

 Prefix code ensures unique decodability.
- 00100111110100

—aabddcaa
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Cost of a Huffman Tree
e Letpy, Py, ..., Py be the probabilities for the
symbols a;, a,, ... ,a,, respectively.
« Define the cost of the Huffman tree T to be

m
C(M=2pr
where r; is the length 'of the path from the root
to a;.

« C(T) is the expected length of the code of a
symbol coded by the tree T. C(T) is the
average bit rate (ABR) of the code.
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Example of Cost

e Example: a 1/2,b 1/8,c 1/8,d 1/4
T
0 1
Y
S

C(M)=1x1/2+3x1/8+3x1/8+2x1/4=1.75
a b c d
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Huffman Tree

* Input: Probabilities p,, p,, ..., p,, for symbols
a,, ay, ... ,a,, respectively.

¢ Output: A tree that minimizes the average
number of bits (bit rate) to code a symbol.
That is, minimizes

HC(T) = Zp,r, bit rate
i=1

where r; is the length of the path from the root
to a;. This is the Huffman tree or Huffman
code
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Optimality Principle 1
¢ In a Huffman tree a lowest probability symbol
has maximum distance from the root.

— If not exchanging a lowest probability symbol with
one at maximum distance will lower the cost.

T T p smallest T
k T p<q
e h k<h
p l q
a p

C(T") = C(T) + hp - hg + kq - kp = C(T) - (h-k)(g-p) < C(T)
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Optimality Principle 2

* The second lowest probability is a sibling of
the the smallest in some Huffman tree.
— If not, we can move it there not raising the cost.

T T p smallest T
K T g 2nd smallest
e q<r

q h k<h r
| =
rp q p

C(T") = C(T) + hq - hr + kr - kg = C(T) - (h-k)(r-q) < C(T)
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Optimality Principle 3

* Assuming we have a Huffman tree T whose two
lowest probability symbols are siblings at
maximum depth, they can be replaced by a new
symbol whose probability is the sum of their
probabilities.

— The resulting tree is optimal for the new symbol set.

T —‘7 T
p smallest
%E p  d2ndsmallest
-
i q+p
q p

C(T) = C(T) + (h-1)(p+q) - hp -hg = C(T) - (p+q)

Lecture 5 - Statistical Lossless Data Compression 43

Optimality Principle 3 (cont’)
¢ If T" were not optimal then we could find a
lower cost tree T”. This will lead to a lower
cost tree T for the original alphabet.

T ™ ™

q+p

C(T")=C(T")+p+q<C(T)+p+q=C(T) whichis a contradiction
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Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal. Otherwise
2. Find the two lowest probability symbols with
probabilities p and g respectively.
3. Replace these with a new symbol with
probability p + q.
4. Solve the problem recursively for new symbols.
Replace the leaf with the new symbol with an
internal node with two children with the old symbols.

o1
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Iterative Huffman Tree Algorithm

form a node for each symbol a; with weight p;;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

minl := delete-min;

min2 := delete-min;

create a new node n;

n.weight := minl.weight + min2.weight;

n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.
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Example of Huffman Tree Algorithm (1)

« P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

4 1 .3 1 1
& o @ [e]
4 P 3 1
[al O [d]
[b] [e]
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Example of Huffman Tree Algorithm (2)

.3 1
B .I
[b] [e]
'}

3

4 3
[a] O
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Example of Huffman Tree Algorithm (3)

Blw
Qw
Elew
Bl
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Example of Huffman Tree Algorithm (4)
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Huffman Code

average number of bits per symbol is
Ax1+.1x4+.3x2+.1x3+.1x4=21

1110
10
110
1111

D Q0T
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Optimal Huffman Code vs. Entropy
+ P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
Entropy

H =-(.4 xlog,(.4) + .1 x log,(.1) + .3 x 10g,(.3)
+.1 xlog,(.1) +.1 x log,(.1))
= 2.05 bits per symbol

Huffman Code

HC=4x1+.1x4+3x2+.1x3+.1x4
= 2.1 bits per symbol
pretty good!
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In Class Exercise

* P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16,
P(e) = 1/16

Compute the Huffman tree and its bit rate.
Compute the Entropy

e Compare

< Hint: For the tree change probabilities to be
integers: a:8, b:4, c:2, d:1, e:1. Normalize at
the end.
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Quality of the Huffman Code

« The Huffman code is within one bit of the entropy
lower bound.
H<HC<H+1
« Huffman code does not work well with a two symbol
alphabet.
— Example: P(0) = 1/100, P(1) = 99/100
— HC =1 bits/symbol
0 o 1
— H =-((1/100)*l0g,(1/100) + (99/100)log,(99/100))
=.08 bits/symbol
« If probabilities are powers of two then HC = H.

Lecture 5 - Statistical Lossless Data Compression 54




Extending the Alphabet
« Assuming independence P(ab) = P(a)P(b), so
we can lump symbols together.
« Example: P(0) = 1/100, P(1) = 99/100

— P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

HC = 1.03 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit
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Quality of Extended Alphabet

* Suppose we extend the alphabet to symbols
of length k then

H<HC<H+1/k

« Pros and Cons of Extending the alphabet
+ Better compression
- 2k symbols
- padding needed to make the length of the input
divisible by k
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Context Modeling

» Data does not usually come from a 1st order
statistical source.
— English text: “u” almost always follows “q”
— Images: a pixel next to a blue pixel is likely to be

blue

 Practical coding: Divide the data by contexts
and code the data in each context as its own
1st order source.
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Huffman Codes with Context

« Suppose we add a one symbol context. Thatis in
compressing a string x;X,...x, we want to take into
account x,_, when encoding x,.

— New model, so entropy based on just independent
probabilities of the symbols doesn’t hold. The new entropy
model (2nd order entropy) has for each symbol a probability
for each other symbol following it.

— Example: {a,b,c}
next
b

a
prev | p

Pilrbap
®orp

2
.9
1
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Multiple Codes

next
b Code for first symbol

a 00

b 01

c 10

°
@
<
oo
Bienp

° ®orp
Ovo
Bl

2
.9
1

[b]
9

[

abbacc
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Complexity of Huffman Code Design

« Time to design Huffman Code is O(n log n)
where n is the number of symbols.

— Each step consists of a constant number of priority
queue operations (2 deletemin’s and 1 insert)

Lecture 5 - Statistical Lossless Data Compression 60
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Approaches to Huffman Codes

1. Frequencies computed for each input

— Must transmit the Huffman code or
frequencies as well as the compressed input

— Requires two passes
2. Fixed Huffman tree designed from training data

— Do not have to transmit the Huffman tree
because it is known to the decoder.

— H.263 video coder
3. Adaptive Huffman code
— One pass
— Huffman tree changes as frequencies change
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Arithmetic Coding

« Basic idea in arithmetic coding:
— represent each string x of length n by a unique
interval [L,R) in [0,1).
— The width R-L of the interval [L,R) represents the
probability of x occurring.

— The interval [L,R) can itself be represented by any
number, called a tag, within the half open interval.

— The k significant bits of the tag .t,t,t5... is the code
of x. Thatis, . .t;t,t;...t,000... is in the interval
[L.R).

« It turns out that k = log,(1/(R-L)).
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Example of Arithmetic Coding (1)

0 1. tag must be in the half open interval.
2. tag can be chosen to be (L+R)/2.
13 |a 3. code is the significant bits of the tag.
2/3 b bba 15/27 .100011100...
""""" 19/27 .101101000...
bb
1 tag = 17/27 = .101000010...
code = 101
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Some Tags are Better than Others

0
13 |a
————————— 11/27 .011010000...
ba
bab /27 .100011100.
2/3 b 15 ’
Using tag = (L+R)/2
tag = 13/27 = .011110110...
code = 0111
1
Alternative tag = 14/37 = .100001001...
code =1
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Example of Codes

« P(a) = 1/3, P(b) = 2/3.

0 _____0/27 .000000000...
aa $24a 1/27 .000010010... -000001001... 0 aaa
aab__ 327 '000111000.. -000100110... 8881 aab

tag = (L+R)/2 code

a | saba__ 527 001011110... -001001100... aba
a0 1 abb o7 1010101, 010000101 01 abb
b ibaa_ 11/27 ‘011010000, -010111110.. 01011 baa
2 | bab 011110111... 0111 bab
0 15/27 .100011100...
a
b o 19/27 101101000, -101000010.. 101  bba
bbb .110110100... 11 bbb
1 27/27 .111111111... .95 bits/symbol
.92 entropy lower bound
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Code Generation from Tag
e If binary tag is .t;t,ts... = (L+R)/2 in [L,R) then
we want to choose k to form the code t,t,...t,.
* Short code:

— choose k to be as small as possible so that
L <.tt,...4,000... <R.

¢ Guaranteed code:

— choose k =[log, (1/(R-L))]+1
— L < .4ty b, bybs... <R for any bits b,b,bs...
— for fixed length strings provides a good prefix code.

— example: [.000000000..., .000010010...), tag = .000001001...

Short code: 0
Guaranteed code: 000001

Lecture 5 - Statistical Lossless Data Compression 66
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Guaranteed Code Example

: P(a) =13, P(b) =213, short  Prefix
tag = (L+R)/2 code  code

0 A /57 .000001001.. O 0000 aaa
3/57 .000100110.. 0001 0001 aab
a [ laa”gzr 0010011000 001 001  aba
a0 T apb oy 010000101 01 0100 abb
oo }BA& T 11/27 010111110 01011 01011 baa
2 | bab 011110111... 0111 0111 bab

S 15027

a

b = 1gjp7 -101000010... 101 101  bba
bbb .110110100... 11 11 bbb

1 27127
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Arithmetic Coding Algorithm

¢ P(ay), P(@y), ..., P(ay)
* C(a) =P(ay) + P(ay) + ... + P(a;4)
* Encode x;X,...X,

Initialize L := 0 and R:= 1;

fori=1tondo
W=R-L;
L:=L+W*C(x);
R:=L+W*P(x);

t:= (L+R)/2;

choose code for the tag

Lecture 5 - Statistical Lossless Data Compression
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Arithmetic Coding Example

« P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
. C(a)=0, C(b) = 1/4, C(c) = 3/4

» abca
symbol W L R
0 1
-~ . a 1 0 14
XV, .:_LR+-VIV cog: P U4 116  3/16
R=L+wpy °© 1/8 5/32 6/32
- a 1/32  5/32 21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010...
L =.001010000...

R =.001010100...

code = 00101

prefix code = 00101001
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Arithmetic Coding Exercise

« P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
« C(a)=0, C(b) = 1/4, C(c) = 3/4

« bbbb
symbol W L R
0 1
W:=R-L; E 1
L:=L+W C(x); b
R:=L+WP(x) b
tag =
L=
code =
prefix code =

Lecture 5 - Statistical Lossless Data Compression
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Decoding (1)

¢ Assume the length is known to be 3.
* 0001 which converts to the tag .0001000...

0
.0001000... -----mmeefrmmemeees output a
a
b
Lecture 5 - Statistical Lossless Data Compression 7

Decoding (2)

« Assume the length is known to be 3.
« 0001 which converts to the tag .0001000...

0
.0001000... aa output a

ab

Lecture 5 - Statistical Lossless Data Compression

72

12



Decoding (3)

¢ Assume the length is known to be 3.
* 0001 which converts to the tag .0001000...

0
.0001000... aa [ faab output b
a
ab
b
by
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Arithmetic Decoding Algorithm

* P@@y), P(ay), -, P(an)
* C&) =P(a) +P(ay) + ... + P(a)
» Decode b,b,...b,, number of symbols is n.

Initialize L :=0and R := 1,
t:=.b,b,...n,000...
fori=1tondo
W=R-L;
find j such that L + W * C(ay) < t <L + W * (C(a)+P(&))
output &;;
L:==L+W*C(a);
R:i=L+W*P(@);
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Decoding Example and Exercise

e P(a)=1/4,P(b)=1/2,P(c) =1/4
e C(a)=0,C(b)=1/4,C(c)=3/4
e 00101andn=4

tag = .00101000... = 5/32

w L R output
0 1
1 0 1/4 a
1/4  1/16 3/16 b
1/8 5/32 6/32 c
1/32 5/32 21/128 a
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Decoding Issues

e There are at least two ways for the decoder
to know when to stop decoding.
1. Transmit the length of the string
2. Transmit a unique end of string symbol
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Practical Arithmetic Coding

Scaling:

— By scaling we can keep L and R in a reasonable
range of values so that W = R - L does not
underflow.

» Context:
— Different contexts can be handled easily
« Adaptivity:

— Coding can be done adaptively, learning the
distribution of symbols dynamically

 Integer arithmetic coding avoids floating point
altogether.
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Scaling

 Scaling:

— By scaling we can keep L and R in a reasonable
range of values so that W = R — L does not
underflow.

— The code can be produced progressively, not at
the end.

— Complicates decoding some.

Lecture 5 - Statistical Lossless Data Compression 78
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Scaling Principle

Lower half

If [L,R) is contained in [0,.5) then
L:=2L;R:=2R
output 0, followed by C 1's
C:=0.

Upper half

If [L,R) is contained in [.5,1) then
L:=2L-1,R:=2R-1
output 1, followed by C 0’s
C:=0

Middle Half

If [L,R) is contained in [.25,.75) then
L:=2L-5R:=2R-5
C:=C+1.

Lecture 5 - Statistical Lossless Data Compression

Example

Example
* baa
0
C=0 a3 |, )
Scale middle half
L=1/3 R=3/3
L=3/9 R=5/9 )
213 |b
1
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Example
* baa
0
C=1 a3 |,
Scale lower half
baa
L=3/18 R=11/18 ba
L=9/54R = 17/54 )
23 (b |
1
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e baa
0
C=0 3 |,
[ ]
L=13 R=3/3
23 |b
1 [ ]
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Example
e baa
0
C=1 13 |,
L=3/9 R=5/9 ba
L=23/18 R=11/18 ®
23 |b |
1
Lecture 5 - Statistical Lossless Data Compression 82
Example
* baa 01
0
C=0 13 |,
b\éia\
L=9/54 R =17/54 ba
L =18/54 R = 34/54 ®
23 |b |
1
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Example

e baa 011
In end L <% <R, choose tag to be 1/2
0
c=0
13 |4 3
P33 0101...
L=9/54 R=17/54 ba
L =18/54 R =34/54 ) .1000... = tag
23 (b | .
.1010...
1
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Decoding with Scaling

« Use the same scaling algorithm as the
encoder

— There is no need to keep track of C because we
know the complete tag.
— Each scaling step will consume a symbol of the
tag
e Lower half: 0x - x (10 x .0x = .x in binary)
« Upper half: 1x - x (10 x.1x - 1= .x)
« Middle half: 10x - 1x or 01x — 0x
(10 x .10x - .1=.1x or 10 x .01x - .1=.0x)

Lecture 5 - Statistical Lossless Data Compression 86

Integer Implementation

e m bit integers
— Represent 0 with 000...0 (m times)
— Represent 1 with 111...1 (m times)
* Probabilities represented by frequencies
— n;is the number of times that symbol a;occurs
- C=ng+n+ .. +n;
= N=n +n,+...+n,
W:=R-L+1
w EQJ

|_';:|_+L7 Coding the i-th symbol using
integer calculations.

ing!
R:=L+LW%I.1J_1 Must use scaling!

L=L'
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Context

¢ Consider 1 symbol context.
« Example: 3 contexts.

next
a b c

o o
=

prev 8 1

.25 .25 5

o
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Example with Context and Scaling

next
e acc 0 10 1 a b c
Og O al4 2 4
previpli 8 .1
4
2/15/ c|.25 .25 5
3 |@
3/10 yé
136 -
vee, 2 25| Code = 0101
215 251/
3 N aC | 7m0 ¢
N
26 | s |ECC 8,
13 amodel 5/ e
¢ model
first half middle half second half
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Arithmetic Coding with Context

« Maintain the probabilities for each context.

« For the first symbol use the equal probability
model

« For each successive symbol use the model
for the previous symbol.
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Adaptation

Simple solution — Equally Probable Model.

— Initially all symbols have frequency 1.

— After symbol x is coded, increment its frequency
by 1

— Use the new model for coding the next symbol

Example in alphabet a,b,c,d

1 g g 2 i g g After aabaac is encoded
S The probability model is
ciiifff; as5/10  b2/10
41111111 c2/10 d1/10

@
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Zero Frequency Problem

« How do we weight symbols that have not occurred yet.
— Equal weights? Not so good with many symbols
— Escape symbol, but what should its weight be?

— When a new symbol is encountered send the <esc>, followed
by the symbol in the equally probable model. (Both encoded
arithmetically.)

aabaac .
a 0 122344 After aabaac is encoded
b 0 001111 The probability model is
c 0 000001 adl7  bl/i7
d 0000000 Y7 dO
<esc>1 111111  <ese>1/7
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Arithmetic vs. Huffman

Both compress very well. For m symbol grouping.

— Huffman is within 1/m of entropy.

— Arithmetic is within 2/m of entropy.

Symbols

— Huffman needs a reasonably large set of symbols
— Arithmetic works fine on binary symbols

Context

— Huffman needs a tree for every context.

— Arithmetic needs a small table of frequencies for every
context.

« Adaptation

— Huffman has an elaborate adaptive algorithm
— Arithmetic has a simple adaptive mechanism.
Bottom Line — Arithmetic is more flexible than Huffman.
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Run-Length Coding

e Lots of 0's and not too many 1's.
— Fax of letters
— Graphics
¢ Simple run-length code
— Input
00000010000000002000000000010001001......

— Symbols
691032 ..

— Code the bits as a sequence of integers
— Problem: How long should the integers be?

Lecture 5 - Statistical Lossless Data Compression 94

Golomb Code of Order m
Variable Length Code for Integers

Letn=gm+rwhere0<r<m.

— Divide minto n to get the quotient q and
remainder r.

Code for n has two parts:

1. qis coded in unary

2. ris coded as a fixed prefix code
Example: m =5 001

o/\) code forr
TS
CTETYN,

3 4
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Example

e n=gm +r isrepresented by:

q
—

11.--10r
— where T s the fixed prefix code for r
« Example (m = 5):
2 6 9 10 27
0101001 10111 11000 11111010
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Alternative Explanation
Golomb Code of order 5

input  output

0 % 00000 |1
0 o{ 00001 |0111
g/og ?\10 00000 0001|0110
001 010

0,1
1 o1 0010/
\o

0001 00001 o1 oo1

1 000

Variable length to variable length code.
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Run Length Example: m =5

00000010000000001000000000010001001......
1
00004010000000001000000000010001001......
001
00000010000000001000000000010001001......
1

00000010000000001000000000010001001......
0111

In this example we coded 17 bit in only 9 bits.
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Choosing m

» Suppose that 0 has the probability p and 1
has probability 1-p.

e The probability of 0"1 is p"(1-p). The Golomb
code of order

™| Hoa, |
is optimal. %gz P
e Example: p =127/128.

m= {%gz (127/128)—‘ =89
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Golomb Coding Exercise

¢ Construct the Golomb Code of order 9. Show
it as a prefix code (a binary tree).
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PPM

 Prediction with Partial Matching
— Cleary and Witten (1984)
 State of the art arithmetic coder
— Arbitrary order context
— The context chosen is one that does a good
prediction given the past
— Adaptive
* Example

— Context “the” does not predict the next symbol “a”
well. Move to the context “he” which does.
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Summary

 Statistical codes are very common as parts of
image, video, music, and speech coder.

¢ Arithmetic and Huffman are most popular.

« Special statistical codes like Golomb codes
are used in some situations.
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