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Traveling Salesman Problem

 Input: Undirected Graph G = (V,E) and
a cost function C from E to the reals.
C(e) Is the cost of edge e.

o Output: A cycle that visits each vertex
exactly once and is minimum total cost.
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Example

Cost =1+5+1+3+2+2=14
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Variations

 Hamiltonian Cycle
— |Is there a cycle that visits each vertex exactly once
— Ignores costs

e Triangle inequality constraint
— C(u,v) < C(u,x) + C(x,v)
* Euclidean Traveling Salesman

— Vertices are points on the plane and the cost is
the Euclidian distance between them

— Implies triangle inequality
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Applications

e Telescope planning

* Route planning
— coin pickup
— mall delivery

— book order pickup in the Amazon
warehouse

e Circuit board drilling
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Why Traveling Salesman?

e Old well-studied problem

 Example of an NP-hard problem
— These problems are very hard to solve exactly
— No polynomial time algorithms known to exist
* Interesting and effective approximation
algorithms
— Good practical algorithms

— Simple algorithms with provable approximation
bounds
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Approximation Alg. vs. Heuristic

o Approximation Algorithm

— There Is a provable guarantee of how close
the algorithm’s result is to the optimal
solution.

e Heuristic

— The algorithm finds a solutions but there Is
no guarantee how good the solution is.

— Heuristics often outperform provable
approximation algorithms.
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A Simple Approximation Algorithm

Euclidean distance

‘ ‘ n(n-1)/2 edges
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1. Find a Minimum Spanning Tree

.
.
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2. Depth-First Search of Tree

o "
.

Marking Order =a, b, c, d, e, f, h, g
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3. Connect Vertices In Marking
Order

7

V

Marking Order =a, b, c, d, e, f, h, g
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Evaluation

 Time and Storage
— Time O(n? log n) with Kruskal’s Algorithm
— Storage O(n?)

e Quality of Solution H
— C(H) < 2 C(H*) where H* Is an optimal tour
— This Is a “2-approximation algorithm”

e Same approximation bound applies to
case of triangle inequality
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Proof of Approximation Bound

e Setup
— T minimum spanning tree
— W the depth-first walk of T
— H the tour computed by the algorithms
— H* an optimal tour
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Depth-First Walk

C(W) =2 C(T)
C(H) < C(W)
triangle inequality

7
)

W

Depth-first walk = a,b,c,b,a,d,e,f,h,f,e g,e,d,a
Mar ki ng order = a, b, c, d, e, f,h g
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Proof of Approximation Bound

C(W) =2 C(T)

C(H) < C(W), triangle inquality

C(H) <2 C(T), last two lines

C(T) < C(H*), minus an edge H* Is a
spanning tree

C(H) <2 C(H*), last two lines
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Solving TSP Exactly

e Branch-and-Bound
e N < 257

e Linear Programming
e N <100
e Cutting Plane Methods for Euclidian

case
e n < 15,000 with “concord”
e see http://www.math.princeton.edu/tsp/
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Solving TSP Approximately

o 3/2 — approximation algorithm of
Christofedes

* Polynomial approximation scheme for
Euclidian TSP by Aurora (1998),
Mitchell (1999)

— To get within (1+€) of optimal can be done
In time polynomial in 1/ and n.
— These are not practical
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Solving TSP Approximately,
Practically

Local Search
— Lin-Kernighan method

Simulated Annealing
Genetic Algorithms
Neural Networks
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Local Search Algorithms

o Start with an initial solution that is
usually easy to find, but is not
necessarily good.

 Repeatedly modify the current solution
to a better nearby one. Until no nearby
one IS better.
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X

2-Opt Neighborhood

u u

> 2-0pt(x,y,u,v) ’ /.\0\‘
y /

./V

Lecture 2 - Traveling Salesman,
NP-Completeness

./V

y

23



2-opt Algorithm

Lin-Kernighan (1973)

Find an initial tour T
1. For every pair of distinct edges (x,y), (u,v) in T
If C(x,u) + C(y,v) < C(x,y) + C(u,v) then
T:=T—{(xy),(u,v)} union {(x,u),(y,v)}
exit for loop and goto 1
Return T
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Example of LK

V
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Example of LK

.

Lecture 2 - Traveling Salesman,
NP-Completeness

Euclidian case

27



Example of LK
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Example of LK

.

e
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Example of LK
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e
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Example of LK
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Lin-Kernighan

e Empirical O(n%?) time

e Finds optimal in most examples < 100
poInts

« Excellent Implementations

— Can easily handle hundreds of thousands
of points

Lecture 2 - Traveling Salesman,
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Local Minimum Problem

e Local search can lead to a local minimum In
the solution space, not necessarily a global
minimum.

Solution Surface
W
Local minimum \

Global minimum

Lecture 2 - Traveling Salesman, 33
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NP-Completeness Theory

Explains why some problems are hard and
orobably not solvable in polynomial time.

nvented by Cook in 1971.
Popularized in an important paper by Karp in
1972.

Standardized by Garey and Johnson in 1979
In “Computers and Intractability: A Guide to
the Theory of NP-Completeness”.
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P

 Complexity theory is the study of the time and
storage needed to solve problems.
— Sorting requires ©(n log n) time
— Minimum spanning tree can be solved in O(m log
m) time
— Connected components can be solved in O(m)
time.
P Is the class of problems that can be solved
In polynomial time.
— O(n), O(n?), O(n3), ... time
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Order Notation

e f(n) = O(g(n)) means f(n) < c g(n) for some c.
— 1,000,000 n2 + 2n = O(n?)

— nlog n = 0O(nd)
e f(n) = Q(g(n)) means f(n) > ¢ g(n) for some c
> 0.

— .0000001 n? + 2n = Q(n?)
— 1,000 n? = Q(n)

* f(n) = ©(g(n)) means f(n) = O(g(n)) and f(n) =
Q(g(n))

— ank+a nkt+ ... =0(nK ifa,>0
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Graph of Order of Magnitude

n2
O(n?)
n
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Graph of Order of Magnitude

Q(n?)

N2
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Graph of Order of Magnitude

O(n?)
n2
n
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Worst Case Asymptotic Analysis

e Given problem find the best t(n) such that
there is an algorithm solving the problem that
runs in time O(t(n)) on all inputs of size n.

— t(n) Is an asymptotic upper bound

e Given a problem find the best t'(n) such that
every algorithm solving the problem runs in
time Q(t'(n)) on some input of length n.

— t'(n) Is an asymptotic lower bound

Lecture 2 - Traveling Salesman, 40
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Bane of Worst Case Asymptotic
Analysis

 \Worst case

— A bad asymptotic algorithm in the worst case

might do well on the co
o Asymptotic

mmon case.

— A good asymptotic algorithm might perform poorly
on inputs of reasonable size.

-

/-

crossover is large

Lecture 2 - Traveling Salesman, 41
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NP

NP stands for nondeterministic polynomial time.

We consider the class of decision problems
(yes/no problems).

A nondeterministic algorithm is one that can
make “guesses”.

A decision problem is in NP if it can be solved
by a nondeterministic algorithm that runs in
polynomial time.

Some problems in NP seem very hard to solve.

Lecture 2 - Traveling Salesman, 42
NP-Completeness



Examples of Decision Problems in NP

e Decision TSP

— Input: Graph G = (V,E) with costs on the edges
and a budget B

— Output: Determine if there is a tour visiting each
vertex exactly once of total cost < B.

— Algorithm: Guess a tour and check its cost is
under budget.
 Graph Coloring
— Input: Graph G = (V,E) and a number k.

— output: Determine if all vertices can be colored
with k colors such that no two adjacent vertices
have the same color.

— Algorithm: Guess a coloring and then check it.

Lecture 2 - Traveling Salesman, 43
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CNF-SAT

* |Input: A Boolean formula F in conjunctive
normal form.

(XLYLZ)L(-xLyLZ)L(-xLayL=2)

e Output: Determine If F Is satisfiable, that is,
there iIs some assignment to the variables
that makes the formula F true.

x=1,y=0z=1
ACOC)YHLC(-1COLDYH L (-1C-0C -]
» Algorithm: Guess an assignment and check it.
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Subset Sum

e Input: Integers &, a,,-..,a,,b

o Output: Determine if there Is subset
X O{132,..,n}

with the property 2.8 =b

X

 Algorithm: Guess the subset X and
check the sum adds up to b.

Lecture 2 - Traveling Salesman,
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Decision Problems
Reporting Problems
Optimization Problems

 Example 1: Subset sum

— Decision Problem: Determine If a subset
sum exists.

— Reporting Problem: If a subset sum exists,
then report one.

— Optimization Problem: Find a subset whose
sum is as close as possible to b, without
going over b.

Lecture 2 - Traveling Salesman, 46
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Decision Problems
Reporting Problems
Optimization Problems

 Example 2. Traveling Salesman

— Optimization problem — Find a tour that
minimizes cost.

— Decision problem — Determine if a tour
exists that comes under a specified
budget.

— Reporting problem - If a tour exist that
comes under a specified budget, find it.

Lecture 2 - Traveling Salesman, 47
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Polynomial Time Equivalence of
Decision, Reporting, Optimization

 If any one of Decision, Reporting, or
Optimization can be solved in
polynomial time then so can the others.

* Decision Is easlly reducible to
Optimization
— Subset sum
— Traveling salesman

Lecture 2 - Traveling Salesman, 48
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Reporting Reduces to Decision

e Subset sum:

— Let subset-sum(A,b) return true if some subset of
A adds up to b. Otherwise it returns false.

Precondition: subset-sum ({a,,...,a,},b) Is true
Report ({a,,...,a,},b)
X = the empty set;
fori=1tondo
If subset-sum({a,,...,a,},b - &) then
add i to X;
b:=b-a;

Lecture 2 - Traveling Salesman,
NP-Completeness
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Example
3,5,2,7,4,2,b=11

5,2,7,4,2,b=11-3-->yes, X ={3},b =8
2,7,4,2,b=8-5-->no
7,4,2,b=8-2-->yes, X={3,2},b=6
4,2,b=6-7-->n0

2,b=6-4-->yes, X={3,2,4},b=2

b=2-2-->yes, X={3,2,4,2}

Lecture 2 - Traveling Salesman,
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Optimization Reduces to Decision

 Traveling Salesman

TS(G,B) which returns true if and only if G has a
tour of length < B. Assume costs are positive
Integers.

. Find the minimum cost of a tour by binary search
. Find the tour itself (reporting).

Find minimum cost of a tour

L :=0;

U := sum of all costs of edges;
while L +1 < U do

If TB(G,B) then U :=B else L :=B;
return U
Lecture 2 - Traveling Salesman, 51
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The Relationship

Decision

Reporting

.o

Optimization

Lecture 2 - Traveling Salesman,
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Exercise

1. Assume the decision algorithm subset-
sum(A,b) is provided. Solve the
optimization problem for subset sum.

2. Assume the decision problem TS(G,B)
IS given. Solve the reporting problem
for traveling salesman.

Lecture 2 - Traveling Salesman, 53
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Polynomial Time Reducibllity

nformal idea: A decision problem Als
nolynomial time reducible to a decision
oroblem B if a polynomial time algorithm for B
can be used to construct a polynomial time
algorithm for A.

Formally: A is polynomial time reducible to B if
there is a function f computable in polynomial
time such that for all x:

— x has Aif and only if f(X) has B

If A polynomial time reducible to B and B
solvable in polynomial time then so is A.

Lecture 2 - Traveling Salesman, 54
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Block Diagram to Decide A from
B

Algorithm to decide A

X Algorithm f(x) | Algorithm | f(x) has B?| x has A?
*—* to compute f * to decide B
Lecture 2 - Traveling Salesman, 55
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Transitivity of Polynomial Time

Reduction

« Define: A<, Bto mean that Ais polynomial
time reducible to B.
e Transitivity: A<, B and B<: C implies A<, C

e Example:

— Every problem in NP is known to be polynomial
time reducible to CNF-SAT.

— SAT Is polynomial time reducible to Decision TSP

— Therefore, every problem in NP is polynomial time
reducible to Decision TSP.

Lecture 2 - Traveling Salesman, 56
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NP-Completeness Definition

e Definition: A decision problem A is NP-
complete if
—Aisin NP
— Every problem in NP is reducible to A In
polynomial time.

 NP-complete problems seem to require
exponential time, but there I1s no proof to
date.

Lecture 2 - Traveling Salesman,
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Cook’s Theorem

 CNF-satisfiability is NP-complete
— Cook 1971, Levin 1973

Proof formalizes the notion of a nondeterministic algorithm
as a nondeterministic Turing machine. It can be shown
that a CNF-formula F can be produced in polynomial time
that describes the operation of the nondeterministic
Turning machine. The Turing machine halts in a “yes”
state if and only if the formula F is satisfiable.

Lecture 2 - Traveling Salesman, 58
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NP-Hardness

e Definition: A problem A is NP-hard if an
NP-complete problem can be solved
using A as an “oracle”.

— Decision TSP is NP-complete
— TSP is NP-hard

e Oracle Is like a constant time function
call.

Lecture 2 - Traveling Salesman,
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P vs NP

 Every problem in P is also in NP

PO NP

 Famous UnsolvedOpen Question:

P=NP?

Lecture 2 - Traveling Salesman,
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Probable Picture

NP-Complete

O,

Lecture 2 - Traveling Salesman,
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Cligue Decision Problem

 Input: Undirected Graph G = (V,E) and
a number k.

e Output: Determine If G has a k-clique,
that Is, there Is a set of vertices U of

size k such that for each pair of vertices
In U there Is and edge In E between

them.

Lecture 2 - Traveling Salesman,
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Cligue Example

4-clique

Lecture 2 - Traveling Salesman,
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Cligue i1s NP-Complete

 Cligueisin NP
— Nondeterministic algorithm: guess k vertices then

check that there is an edge between each pair of
them.

e Cligue is NP-hard

— We reduce CNF-satisfiability to Cligue in polynomial
time

— Given a CNF formula F we need to construct a
graph G and a number k with the property that F is
satisfiable if and only if G has a k-cligue. The
contstruction must be efficient, polynomial time.

Lecture 2 - Traveling Salesman, 64
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Construction by Example
F=(XLYyLZ)L(-xLyL2z)L(~-xLayL=2)

/ T~

clause

literal

Lecture 2 - Traveling Salesman, 65
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Construction by Example

F=(XLYyLZ)L(-xLyL2z)L(~-xLayL=2)
x=1y=0z=1

Lecture 2 - Traveling Salesman,
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General Construction

K m
m :ﬂUa'ij where aij D{Xl,—lxl,...,‘)in,—lxn}
=1 j=1

G=(V,E) where literals

V={g 1<i<k, 1< | <m}

E={{a;,a}:1#I'and,
a; and a;. are not complementary}

k iIsthe number of clauses

Lecture 2 - Traveling Salesman, 67
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The Reduction Argument

e \We must show

— F satisfiable implies G has a clique of size
K.

e Given a satisfying assignment for F, for each
clause pick a literal that is satisfied. Those
literals in the graph G form a k-clique.

— G has a clique of size kimplies F is
satisfiable.
e Given a k-cligue in G, assign each literal in the

cligue to be 1. This yields a satisfying
assignment to F.

Lecture 2 - Traveling Salesman,
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Cligue to Assignment
F=(XLYyLZ)L(-xLyL2z)L(~-xLayL=2)

y=0,z=1

Lecture 2 - Traveling Salesman,
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Assignment to Clique
F=(XLY)L(=XLy)L(=xLay)L(XxL~y)

G has no 4-cligue

Lecture 2 - Traveling Salesman,
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3-CNF-Satifiability

 Input: A Boolean formula F with at most
3 literals per clause.

o Output: Determine If F Is satisfiable.

o 3-CNF-Satisfiability is NP-complete
— This is probably the most used NP-
complete problem in reduction proofs

showing other decision problems are NP-
hard.

Lecture 2 - Traveling Salesman,
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Reduction by Example
Given F=(XLCaXCxCax,)CF

Construct H=(xLz)L(-x,L-z[LZz)
(X, U=z, Uz,) U(=x%x, U=2z,) OF'

F is satisfiable if and only if H is satisfiable.

X, = 0 satisfies the first clause of F.

z, =12z =0, z, =0 satisfy clauses 1,3, and 4 of H and

X, =0 satisfies the clause 2 of H.

Lecture 2 - Traveling Salesman, 72
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3-Colorabillity

e |Input: Graph G = (V,E).
e Output: Determine If all vertices can be

colored with 3 colors such that no two
adjacent vertices have the same color.

/

L

Not 3-colorable

Lecture 2 - Traveling Salesman, 73
NP-Completeness
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3-CNF-Sat <, 3-Color

e Given a 3-CNF formula F we have to
show how to construct in polynomial
time a graph G such that:

— F Is satisfiable implies G is 3-colorable
— G Is 3-colorable implies F is satisfiable

Lecture 2 - Traveling Salesman,
NP-Completeness
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The Gadget

 This Is a classic reduction that uses a “gadget”.

e Assume the outer vertices are colored at most two
colors. The gadget is 3-colorable if and only if the
outer vertices are not all the same color.

Lecture 2 - Traveling Salesman, 75
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Properties of the Gadget

 Three colorable if and only if outer
vertices not all the same color.

"

Not 3 colorable Is 3 colorable

Lecture 2 - Traveling Salesman,
NP-Completeness
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Reduction by Example
F=(XLyL2)L(-xLyL2Z2)L(~-xLayL=2)

. |
X -X y -y Z -Z

Lecture 2 - Traveling Salesman,
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Satisfaction Example
F=(XLyL2)L(-xLyL2)L(~-xLayL=2)

=

N < X

I
o L B

Lecture 2 - Traveling Salesman,
NP-Completeness

78



Satisfaction Example
F=(XLyL2)L(-xLyL2)L(~-xLayL=2)

N < X

it
%

T
o L B

v

Lecture 2 - Traveling Salesman,
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Non-Satisfaction Example x=o
F=(XCYL2)C(-xCyLC2)C(-xCayL-2) y=0

;

Lecture 2 - Traveling Salesman, 80
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Naming the Gadget

Lecture 2 - Traveling Salesman,
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General Construction

k
F:ﬂ(ailmaizmam) where a; X, X X, X )
=1

G=(V,E) where

V ={r,g,b} U{x,~X,....X,,7x} U{O,U,,T.,I,,N,,R :1<i <k}
E={{r.g}.{9.b},{b,r}}

IS T FER PR

O{0% B (=%, B} X0, B = X, 0} )

OUHOL EFAUL NG AT REA NG AN, REAR, L1 <k
Oi{a,0 1 1a,,Ui b as, T lsi <k}

0{{G,a}.{U;, g}.{Ti.g} 1= <k}
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NP-Completeness



3-CNF-Sat

!

3-C_o|or

l

Exact_ Cover

'

Subset Sum

Reductions

CNF-Sat

v T

Clique

3-Par_tition

|

Bin Packing

Lecture 2 - Traveling Salesman,
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Exact Cover

e Input: Aset U={u,u,,...,u} and subsets
S,S,,...,S OU

e Output: Determine If there Is set of pairwise
disjoint sets that union to U, that is, a set X
such that:

X 0{12,...,m

I, jOXandi# jimpliesS n S =¢
s =u

i0X

Lecture 2 - Traveling Salesman,
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Example of Exact Cover

U ={a,b,c,d,e f,qg,h,i}

{a,c,e,{a, f,g},{b,d},{b, f, "} {ehi},{f,0i},{d, 0,i}

Exact Cover
{a,c,e ,{b, f,h},{d,qg,i}

Lecture 2 - Traveling Salesman, 85
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3-Partition

e Input; A set of numbers A={a,,a,,...,&,,} and
number B with the properties that B/4< a < B/2

and % a =mB.
i=1

* Output: Determine if A can be partitioned into S,
S,,..., §,such that for all |

2.3 =B
jos
Note: each § must contain exactly 3 elements.

Lecture 2 - Traveling Salesman, 86
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Example of 3-Partition

« A={26, 29, 33, 33, 33, 34, 35, 36, 41}
e B=100,m=3
o 3-Partition

— 206, 33, 41

— 29, 36, 35

— 33, 33, 34

Lecture 2 - Traveling Salesman,
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Bin Packing

e Input: A set of numbers A={a,a,,....a,}
and numbers B (capacity) and K (number
of bins).

e Qutput: Determine if A can be partitioned
Into S, S,,..., S¢ such that for all |

» a <B.

Jos

Lecture 2 - Traveling Salesman, 88
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Bin Packing Example

e A={2,2,3,3,3,4,4,4,5,5,5}
e B=10,K=4
* Bin Packing

-3,3,4

-2,3,5 Perfect fit!

—5,5

—2,4,4

Lecture 2 - Traveling Salesman,
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Exercise — Argue NP-Completeness

1. Independent Set

— Input: Undirected graph G = (V,E) and a number
K.

— OQOutput: Determine if there is an independent set
of size k. X, contained in V, is independent if for
all i,j in X there is no edge in G from i to |.

2. Equal Subset-Sum
— Input: {a,, a,, ..., a,} positive integers
— Output: Determine if there is a set | such that
2.8 =8
il jol

Lecture 2 - Traveling Salesman, 90
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Coping with NP-completeness

You have encountered a Hard Problem

Maybe it is NP-hard

— Books
* Garey and Johnson

— Websites

— Research papers
— Maybe you’ll have to do your own reduction

Can’t determine NP-hardness, then it is
probably hard in some waly.

Modify the problem to be more tractable

Lecture 2 - Traveling Salesman,
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Boundary Between P and NP

o Satisfiability
—2-CNF-SATIsInP
— 3-CNF-SAT is NP-complete
e Coloring
—2-COLORiISINP
— 3-COLOR is NP-complete
e Planar Colorability

— Planar graphs are always 4-colorable
— 3-PLANAR-COLOR is NP-complete
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Boundary Continued

* |Independent Set
— Maximum independent set is NP-hard
— Maximal independent setis in P

e Cutting a graph
— Maximum cut in a graph is NP-hard

— Minimum cut in a graph is in P (equivalent to Max
Flow)

e Spanning Tree
— Minimum spanning tree is in P
— Degree constrained spanning tree is NP-hard
— Bounded diameter spanning tree is NP-hard
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Load Balanced Spanning Tree

 Input: An undirected graph G = (V,E).

o Output: A number k and a spanning tree
(V,T) of degree k. Furthermore, there Is
no spanning tree of degree < k.
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Spanning Tree of Degree 3
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Spanning Tree of Degree 2
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LBST Decision Problem

 Input: An undirected graph G = (V,E)
and number k.

e Output: Determine If G has a spanning
tree of degree k.
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Hamiltonian Path Decision
Problem
 Input: Undirected Graph G =(V,E).

e Output: Determine If there is a path in G
that visits each node exactly once.

e Hamiltonian Path is known to be NP-
complete
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Hamiltonian Path is Polynomial
time Reducible to Spanning Tree
of Degree 2

o If there an algorithm to quickly determine

If a graph has a spanning tree of degree

2 then there Is an algorithm to quickly

solve the Hamiltonian path problem.

— A spanning tree of degree 2 is a Hamiltonian
path!

— These problems are essentially the same
problem.
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Lessons When Coping

e Lesson 1. Any problem that is in NP
may be NP-complete.

e Lesson 2. Any problem in NP may be In
P.

e Lesson 3. You may not be able to
determine either
— factoring Is open
— graph iIsomorphism is open
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