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Outline for the Evening

• Course administration
• Algorithm Design Process
• Spanning Tree

– Depth-First Search

– In-class exercise
– Breath-First Search

• Minimum Spanning Tree
• Set  Disjoint Union / Find
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Instructors

• Instructor
– Richard Ladner

– ladner@cs.washington.edu
– 206 543-9347

• TA
– Neva Cherniavsky

– (nchernia@cs.washington.edu) 
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Resources

• CSEP 521 Course Web Page
– http://www.cs.washington.edu/csep521

• Papers and Sections from Books
• Recommended Algorithms Book

– Introduction to Algorithms, 2nd Edition by Cormen, 
Leiserson, Rivest, and Stein

• E-mail list
– For information from instructors
– Check web page to sign up

• Message Board
– For discussion
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Engagement by Students

• Weekly Assignments
– Algorithm design and evaluation
– Algorithm animation

• In-class activities
• Project with a written report

– Evaluate several alternative approaches to 
algorithmically solve a problem

– Must include readings from literature
– May include an implementation study
– May be done in small teams
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Final Exam and Grading

• There will be no Final Exam
• Percentages

– Weekly Assignments 60%
– Project 40%
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Some Topics

• Graph Algorithms
• Maximum Flow
• Linear Programming
• Data Compression
• Computational Geometry
• Computational Biology
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Along the Way

• Analysis of algorithms
• Data structures
• NP-completeness
• Dynamic programming
• Greedy algorithms
• Branch-and-bound algorithms
• Approximation algorithms
• Classics of algorithms
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Reading

• Chapter 21 - Disjoint Union / Find
• Chapter 22 - Graph algorithms
• Chapter 23 - Minimum Spanning Tree
• Chapter 24 - Shortest Paths
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Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem
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Modeling
• What kind of algorithm is needed

– Sorting or Searching

– Graph Problem
– Linear Programming

– Dynamic Programming
– Clustering

– Algebra

• Can I find an algorithm or do I have to 
invent one
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Broadcasting in a Network

• Network of Routers 
– Organize the routers to efficiently 

broadcast messages to each other

Incoming message
• Duplicate and send
to some neighbors.
• Eventually all routers
get the message
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Spanning Tree in a Graph

Vertex = router
Edge = link between routers

Spanning tree
- Connects all the vertices
- No cycles
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Undirected Graph

• G = (V,E)
– V is a set of vertices (or nodes)

– E is a set of unordered pairs of vertices

1
2

3

4

5
6

7

V = {1,2,3,4,5,6,7}
E = {{1,2},{1,6},{1,5},{2,7},{2,3},

{3,4},{4,7},{4,5},{5,6}}

2 and 3 are adjacent
2 is incident to edge {2,3}
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Spanning Tree Problem

• Input: An undirected graph G = (V,E). G 
is connected.

• Output: T contained in E such that
– (V,T) is a connected graph
– (V,T) has no cycles
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Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do 

if j is unmarked then DFS(j)
end{DFS}
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Example of Depth First Search

1
2

3

4

5

6

7

DFS(1)
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Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)
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Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)



Lecture 1 - Intro, Graph Algorithms 20

Example Step 4

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
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Example Step 5

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
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Example Step 6

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)
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Example Step 7

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)
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Example Step 8

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
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Example Step 9

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
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Example Step 10

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
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Example Step 11

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(6)
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Example Step 12

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(6)
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Example Step 13

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)



Lecture 1 - Intro, Graph Algorithms 30

Example Step 14

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
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Example Step 15

1
2

3

4

5

6

7

DFS(1)
DFS(2)
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Example Step 16

1
2

3

4

5

6

7

DFS(1)
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Spanning Tree Algorithm

ST(i: vertex)
mark i;
for each j adjacent to i do 

if j is unmarked then 
Add {i,j} to T;
ST(j);

end{ST}

Main
T := empty set;
ST(1);
end{Main}
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Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem

Evaluate

Wrong problem

Wrong model

Incorrect algorithm
poor performance



Lecture 1 - Intro, Graph Algorithms 35

Evaluation Step Expanded

Algorithm Correct?

Choose Data Structure 

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model
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Correctness of ST Algorithm

• There are no cycles in T
– This is an invariant of the algorithm.
– Each edge added to T goes from a vertex in T to a 

vertex not in T.

• If G is connected then eventually every vertex 
is marked. (Proof by contradiction)

1 unmarked
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Correctness (cont.)

• If G is connected then so is (V,T)

i

j

1
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Data Structure Step

Algorithm Correct?

Choose Data Structure 

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model
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Edge List and Adjacency Lists

• List of edges

• Adjacency lists
1
2
3
4
5
6
7

2 5 6

1
2

5
1

1
6

2
7

2
3

3
4

7
4

5
6

5
7

3 1 7
2 4
3 7 5
6 1 7 4
1 5
4 5 2

5
4 1

2

3

4

5
6

7
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Adjacency Matrix

0
1
0
0
1
1
0

1
2
3
4
5
6
7

1
0
1
0
0
0
1

0
1
0
1
0
0
0

0
0
1
0
1
0
1

1
0
0
1
0
1
1

1
0
0
0
1
0
0

0
1
0
1
1
0
0

1    2    3   4   5    6   7 1
2

3

4

5
6

7
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Data Structure Choice
• Edge list 

– Simple but does not support depth first 
search

• Adjacency lists
– Good for sparse graphs 

– Supports depth first search

• Adjacency matrix
– Good for dense graphs
– Supports depth first search
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Spanning Tree with Adjacency 
Lists

ST(i: vertex)
M[i] := 1;
v := G[i];
while  not(v = null)

j := v.vertex;
if M[j] = 0 then

Add {i,j} to T;
ST(j);

v := v.next;
end{ST}

Main
G is array of adjacency lists;
M[i] := 0 for all i;
T is empty;
Spanning_Tree(1);

end{Main}

nextvertex

M is the marking array
Node of linked list
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Performance Step

Algorithm Correct?

Choose Data Structure 

Performance? 

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model
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Performance of ST Algorithm

• n vertices and m edges
• Connected graph
• Storage complexity O(m)
• Time complexity O(m)  
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Other Uses of Depth First Search

• Popularized by Hopcroft and Tarjan
1973

• Connected components
• Biconnected components
• Strongly connected components in 

directed graphs
• topological sorting of a acyclic directed 

graphs
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Depth-First Search in Directed 
Graphs 

• Discovery and Finish Times
• Initially D[i] = F[i] = 0, time = 1

DFS(i: vertex)
D[i] := time; 
time++;
v := G[i];
for each vertex j adjacent to i do

if D[j] = 0 then DFS(j)
F[i] := time; 
time++;

end{DFS}
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Example

• Compute the discovery and finish times
• Classify the edges

a

e

g
d

f

b
c a

b
c
d
e
f
g

b
c d

f
d
a e
d e

g

d
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Edge Classification

• Forward Edge (i,j)
– D[i] < D[j] < F[j] < F[i]

• Backward Edge
– D[j] < D[i] < F[i] < F[j]

• Cross Edge
– D[j] < F[j] < D[i] < F[i]

• Note – A directed graph is acyclic if and 
only if it has no backward edges in a 
DFS.
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ST using Breadth First Search 1

• Uses a queue to order search

Queue = 1

1
2

3

4

5

6

7
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Breadth First Search 2

1
2

3

4

5

6

7

Queue = 2,6,5
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Breadth First Search 3

1
2

3

4

5

6

7

Queue = 6,5,7,3
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Breadth First Search 4

1
2

3

4

5

6

7

Queue = 5,7,3
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Breadth First Search 5

1
2

3

4

5

6

7

Queue = 7,3,4
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Breadth First Search 6

1
2

3

4

5

6

7

Queue = 3,4
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Breadth First Search 7

1
2

3

4

5

6

7

Queue = 4
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Breadth First Search 8

1
2

3

4

5

6

7

Queue = 
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Spanning Tree using Breadth 
First Search

BFS
Initialize T to be empty;
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while Q is not empty do

i := Dequeue(Q);
for each j adjacent to i do

if j is not marked then
add {i,j} to T;
Enqueue(j,Q) and mark j;

end{BFS}
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Depth First vs Breadth First

• Depth First
– Stack or recursion

– Many applications

• Breadth First
– Queue (recursion no help)
– Can be used to find shortest paths from the 

start vertex



Lecture 1 - Intro, Graph Algorithms 59

Best Spanning Tree

1
2

3

4

5
6

7

• Each edge has the probability that it 
won’t fail

• Find the spanning tree that is least likely 
to fail

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89
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Example of a Spanning Tree

1
2

3

4

5
6

7

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84
=  .5735
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Minimum Spanning Tree Problem

• Input: Undirected Graph G = (V,E) and 
a cost function C from E to the reals. 
C(e) is the cost of edge e.

• Output: A spanning tree T with minimum 
total cost.  That is: T that minimizes

�
∈

=
Te

eCTC )()(
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Reducing Best to Minimum

Let P(e) be the probability that an edge doesn’t fail.
Define:

))((log)( 10 ePeC −=

Minimizing �
∈Te

eC )(

is equivalent to maximizing ∏
∈Te

eP )(

because 
�

= ∈

−

∈
∏ Te

eC

Te

eP
)(

10)(
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Example of Reduction

1
2

3

4

5
6

7

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89

1
2

3

4

5
6

7

.097 .125
.022

.301
.022 .000

.071

.076

.097

.051

Best Spanning Tree Problem Minimum Spanning Tree Problem
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Minimum Spanning Tree

• Boruvka 1926
• Kruskal 1956
• Prim 1957 also by Jarnik 1930
• Karger, Klein, Tarjan 1995

– Randomized linear time algorithm

– Probably not practical, but very interesting
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MST Optimality Principle

• G = (V,E) with costs C.  G connected.
• Let (V,A) be a subgraph of G that is 

contained in a minimum spanning tree.  
Let U be a set such that no edge in A 
has one end in U and one end in V-U.  
Let C({u,v}) minimal and u in U and v in 
V-U.  Let A’ be A with {u,v} added.  
Then (V,A’) is contained in a minimum 
spanning tree.
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Proof of Optimality Principle 

U

V-U
u

v

C({u,v}) is minimal

A 
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Proof of Optimality Principle 

U

V-U
u

v

C({u,v}} is minimal
C({u,v}) < C({x,y})

x

y

T

A 
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Proof of Optimality Principle 

U

V-U
u

vx

y

T’

T’ is also a minimum 
spanning tree

C(T’) = C(T) + C({u,v}) - C({x,y})
C(T’) < C(T)

A’ 
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Kruskal’s Greedy Algorithm

Sort the edges by increasing cost;
Initialize A to be empty;
For each edge e chosen in increasing order do

if adding e does not form a cycle then
add e to A

Invariant: A is always contained in some 
minimum spanning tree 
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Example of Kruskal 1

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3
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Example of Kruskal 2

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3



Lecture 1 - Intro, Graph Algorithms 72

Example of Kruskal 2

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3
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Example of Kruskal 3

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3



Lecture 1 - Intro, Graph Algorithms 74

Example of Kruskal 4

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3
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Example of Kruskal 5

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3
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Example of Kruskal 6

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3
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Example of Kruskal 7

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3
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Example of Kruskal 7

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3



Lecture 1 - Intro, Graph Algorithms 79

Example of Kruskal 8,9

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3
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Data Structures for Kruskal

• Sorted edge list

• Disjoint Union / Find
– Union(a,b) - union the disjoint sets named 

by a and b
– Find(a) returns the name of the set 

containing a

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4
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Example of DU/F 1

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3

7

1

3
Find(5) = 7
Find(4) = 7
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Example of DU/F 2

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3

7

1

3

Find(1) = 1
Find(6) = 7
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Example of DU/F 3

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0      1       1      2      2       3      3      3       3 4

1 3

7

3

Union(1,7)
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Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge {i,j} chosen in increasing order do

u := Find(i);
v := Find(j);
if not(u = v) then 

add {i,j} to A;
Union(u,v);
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Up Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state
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DU/F Operation

• Find(i) - follow pointer to root and return  
the root.

• Union(i,j) - assuming i and j roots, point i 
to j.

1

2

3

45

6

7

Union(1,7)
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Weighted Union

• Weighted Union
– Always point the smaller tree to the root of 

the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41
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Path Compression

• On a Find operation point all the nodes 
on the search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

Find(3)
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Elegant Array Implementation

1

2

3

45

6

7
2 41

0
2

1 0
1

7 7 5 0
4

1   2   3  4  5   6   7  
up

weight
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Up Tree Pseudo-Code

PC-Find(i : index)
r := i;
while not(up[r] = 0) do

r := up[r]
k := up[i];
while not(k = r) do

up[i] := r;
i := k;
k := up[k]

return(r)
end{Find}

W-Union(i,j : index)
// i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then

up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi +wj;

end{W-Union}
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Disjoint Union / Find Notes

• Worst case time complexity for a W-Union 
is O(1) and for a PC-Find is O(log n). 

• Time complexity for m operations on n 
elements is O(m log* n)  where log* n is a 
very slow growing function. Essentially 
constant time per operation!

• Using “ranked union” gives an even better 
bound theoretically.
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Performance of W-Union / PC-
Find

• The time complexity of PC-Find is O(log n).
• An up tree formed by W-Union of height h 

has at least 2h nodes. Inductive Proof.

h+1 h

Weight(T2) > 2h (ind. hyp.)
Weight(T1) > Weight(T2)

> 2h

Weight(T)   > 2h +2h =2h+1

T1
T2

T
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Worst Case for PC-Find

n/2 Weighted Unions

n/4 Weighted Unions



Lecture 1 - Intro, Graph Algorithms 94

Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Weighted Unions

Find
If there are n = 2k nodes then there
are k pointers on the longest path to root.
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Amortized Complexity

• For disjoint union / find with weighted 
union and path compression. 
– average time per operation is essentially a 

constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, 
but over time the average cost per 
operation is not. 


