CSEP 521 - Applied Algorithms

Scheduling Algorithms

Reading:

Scheduling Algorithms (1997)

David Karger, Cliff Stein, Joel Wein
(downloadable from course web-site)

Scheduling Theory

In general:

A set of jobs needs to be processed by
a set o# machines. The jobs need to
be scheduled on the machines in a
way that satisfies some objective
function.

Scheduling Theory

Example 1a:

Given a set of jobs, each job has known processing-
time and deadline. How do we schedule the jobs on
a single machine in a way that minimizes the
number of late jobs (those completed after their
deadline).

Example 1b:
The same on two identical machines.

Example 1c:

The same on m machines each having a different
processing rate.

Scheduling Theory

Example 2a:

Each exam needs o be marked by three teachers
(each checking a different question). The order in
which the questions are marked is not important.

For each exam and question, we know how much time
it takes to mark it. What is the best schedule if we
want to minimize the completion time of the whole
marking process?

Example 2b: The same, but the questions must be
marked in some fixed order.

Example 2c: The same, but now it takes some
(known) time to transfer a set of exams
from one teacher to another.

Scheduling Theory - Notations

A scheduling problem is defined by a triplet a|Bly.

Some possibilities for O:

1 - asingle machine

P - identical parallel machines

Q - parallel machines with different rates.

R - unrelated parallel machines (specific processing
time for each job and machines).

O - Open-shop scheduling
F - Flow-shop scheduling

Scheduling Theory - Notations

B - additional assumptions or constraints.

For example:

prmt- preemptions allowed
prec- precedence constraints
r; - release times

y- objective function. For example:
Cpox — The makespan = last completion time.

2. C; - sum of completion times (same objective as
average).

More notations

J;- The j™ job.

p; - length of J; = how many processing units
it requires.

r; - release time of J; = when does J; is
available for execution.

d; - deadline (or due-date) for J; = when do
we need to complete its execution.

C; - the completion time of J; in a given
schedule.

Algorithms for a Single Machine

We will see that simple greedy algorithms
are optimal for some scheduling problems
on a single machine.

Other problems, some of them look really
simple, are NP-hard.

Shortest Processing Time (SPT) Rule

The problem: 1|| 2; C; (average completion time)

SPT Rule: Sort the jobs such that p; < p, < ... < p,.
Process the jobs according to this order.

LT T I l |
Example: 5 jobs of lengths 9,6, 3 8,1

2,; C;in original order:

SPT order:
ZJ- CJ in SPT order:

Shortest Processing Time (SPT) Rule

The problem: 1]| ZJ- C; (average completion time)
(T T T 1 I I I |

Theorem: SPT is optimal for 1| ZJ- o
Proof:

Cr=p1. Comp+pz i €= 2 <j Pi
Zj C;=np;+ (n-1)p, + (n-2)p3 +..+ p, = zj (n-j+1p;.

This is a product of two vectors. The first one
(n,n-1,..,1) is decreasing. To get a minimal result,
the other vector needs to be non-decreasing.

10

Optimality of SPT for 1|| X; C;

An alternative proof (using exchanging argument):

Assume that S is an optimal schedule which is not
according to SPT.

For some pair J;, J, of adjacent jobs, J, is
scheduled after J; while p;> p,.

Build a new schedule S' in which we swap the
schedules of J;,J, (the other jobs are as in S).

s LT 0 [k |

S:ULL T Tkl i | |

We show that S' is a better schedule:

11

Optimality of SPT for 1|| X; C;

Claim: In S' 3, C(S')<Z; C,(S)

s LT[i [kl |

s: [T Tkl i] I
A B
Proof: A: jobs starting before J; and J,.
B: jobs starting after J;and J,.
2 CJ'(S) =24 G+ 2Zjog €+ G+ Gy =
= Zjoa G+ Zioe €+ (PaPi)*(Pa*Pi+Pi)
2 CJ‘(S') =2 G+ €+ C+ Cy =
= Xjoa G+ Zjoe €+ (Parpid*(Pa*PictPi) -
= 2 C{(S)+pi-pi< Z; C{(S) (sincep;> py).

12

Variants of SPT

L. The problem: 1|r;, pmtn| 2, C;

Shortest Remaining Processing Time (SRPT) Rule:

At each moment, process the job with the shortest
remaining processing time (can preempt a
currently processed job).

Complexity: Should keep a sorted list of all available
jobs. O(log n) for any released job + O(log n) for
any preempted job. The total number of
preemptions is at most n. > O(n log n) in total.

Theorem: SRPT rule is optimal for 1|r;, pmtn| 2, C;
Proof: Exchanging argument.

13

Variants of SPT

2. The problem: 1|| ZJ- wiC;

Weighted Shortest Processing Time (WSPT) Rule:

Sort the jobs such that p;/w; < p,/w, < .. < p,/w,,.

Process the jobs on the machine according to this
order.

Theorem: WSPT is optimal for 1]| ZJ- ijJ-

Proof: Exchanging argument.

14

Single Machine. Set-up times.
The problem: 1|set-up| C, .,

For each pair of jobs, s;; is the set-up time
required between processing i and .

Note: without set-up times, or with
identical set-up times (Ci,j s;; = s), any
order is optimal (Cpox = 2Z;p; + (n-1)s).

For arbitrary set-up times. The problem is as
hard as the traveling salesman problem.

Can you see the reduction??
15

EDD for Minimizing Tardiness.

For an instance with due-dates and a given schedule
L; = C;-d; (Lateness)

T;= max(0, L;) (Tardiness)

Possible objectives: Minimizing Ty, Lo, 2; T, ZiL;

EDD Rule (earliest due-date): Sort the jobs such
that d; < d, < .. < d,. Process the jobs on the
machine according to this order.

Theorem: EDD is optimal for 1|| T, and 1||L,.
Proof: exchanging argument.
Theorem: 1||Z;T; is NP-hard.

16

EDD for Minimizing Tardiness.

The problem: 1|r;, pmtn| T,

EDD rule: Process the job with minimal due-date
among the jobs that are available.

- When a new job with an early due-date is released
we might preempt the currently processed job.

Example: r;=0, p;=4, d;=6.
ry=3, p;=2, d,=b.
The EDD schedule: No late jobs.
0 3 56

Theorem: EDD is optimal for llrJ-, pmin| T, .
Proof: Exchanging argument.

17

Minimizing Tardiness with Release Dates

and No Preemptions.

Theorem: 1|rJ-|Tmax is NP-hard.
Proof: A reduction from Partition.
The partition problem:

Input: a set of n numbers, A ={q, a,,..., a,}, such
ThaT ZJDA Gj = ZB

Output: Is there a subset S' of A such that
Zjna = B?

Example: A={5,5,7,3,1,9,10}; B=20

A possible partition: A'={10,5,5}, A-A'={7,3,1,9}

18

Minimizing Tardiness with Release Dates
and No Preemptions.
Hardness proof for 1|r;| Ty

Given an instance for partition, A ={q,, a,,..., a,}, s.t.
2; a; = 2B, we build an instance for 1|, ITmax such
that Tax =0 if and only if A has a par“rl‘rlon

For each item, a;JA, we have a job j with p; = q;, r;=0,
and d; = 2B+1. In addmon we have the Job J et with
pn+1-1 r...= B, and d,.;=B+1.

» To achieve T,,,=0, J,,; must be scheduled in [B,B+1]

A'DA U A-A |
0 B B+l 2B+1
> The schedule of J,.;induces a partition 19

Moore's Algorithm for 1|| XU

The objective: minimize the number of late jobs.
U, is the lateness indicator (=0 if C;= d;: 1if C;> d)).

The problem: 1]| 2V,

An optimal algorithm (Moore):

1. Order the jobs according to EDD rule (into A”).
The set R" is empty.

If no job in A is late. A"R” is an optimal order.
Else, let k be the first job to be late in A™.

Move to R* the longest job among the first k
jobsin A™.

5. Update the completion times of jobs in A*. Go to
step 2.

Hwn

20

Moore's Algorithm for 1]| 2,V (example)

1. Order the jobs according o EDD rule (into
A”). The set R™ is empty.

J1 I:i d | A={1-2-3-4-5) R"={}.

> 15 3 2. According to this order, J;
is the first to be late (C5=9).

3 3 |8

4 |7 |11 3. The longest job among the

5 |9 |13 first three is J,.

4. We move J, to R".
A= {1-3-4-5}, R" = {2}

21

Moore's Algorithm for 1|| Z;U; (cont)

Jop |4 A’= {1-3-4-5}, R" = {2}
1 1]2 2. According to this order, J5
3 |3 |8 is to first to be late (C5=20).
4 |7 |11 3. The longest job among the first
5 |9 [13 four (J5 is the 4thin A™) is Js.

4. We move J5 to R™.

*= {1-3- * =

i e 4 A*= {1-3-4}, R" ={2, B}
1 1 2 Now, no job in A™ is late.
3 |3 |8 A'R*= 1-3-4-2-5 is optimal
4 |7 |u 5. U2

22

Scheduling with Cost-Functions

Each job,j, is associated with a cost function
f;=f,(C)

Examples: f{(C)= C;2+1; f5(C,)= log C,.

For each j, f(CJ.) is non-negative, and non-decreasing.

The problem: 1||f

max-

Example 1: if 0j, f;(x)=x then the problem 1|[f,, is
to minimize the makespan (1||C,)

Example 2: Oj, f,(C;)=w;T;. Now 1|[f,,, is the
problem of minimizing the weighted tardiness.

23

The Least-Cost-Last (LCL) Algorithm

The LCL algorithm determines the processing order
of the jobs from the last-to-process job to the
first-to-process one.

At each stage, the last-to-process job among the
remaining ones is the job whose schedule as last
causes the smallest cost.

The time complexity of LCL is O(n?): there are n
candidates in the first iteration, n-1 in the second
iteration, and so on (assuming that for each j x,
the value of f(x) can be computed in O(1)).

24

The Least-Cost-Last (LCL) Algorithm

Example: 0Oj, f(C;)=w;T;. (minimizing the maximal
weighted tardiness).

J P; d.| w; C;if last | w;T; if last

1 |3 |4 |1 (|7 13 =3 4 minimal

2 |12 |6 (8 |7 81=8

3 12 (3 (3 ||7 34 =12 = J, is last (third)
i P d.| W, C, if last | w;T; if last

2 |2 |6 (8 ||4 0 < minimal

3 12 13 (3 (|4 301 =3 = J, is second

= The optimal schedule is {JT;, J,, J;}. Max w;T,;=3

25

The Least-Cost-Last (LCL) Algorithm

Theorem: LCL is optimal for 1||f,,.

Proof: Let J be the set of jobs. Let f",.(S) be the
value of an optimal solution for a set S of jobs. Let
by = min; f,(X;p;) and Let b, = max; (T -{j}).

Claim 1: Each of by, b, is a lower bound for f*, ., (J).

Proof: b, is a lower bound since some job must be
last and have C; = Z;p;. b, is a lower bound since f
is non-negative and 0, f*, (T) 2 F*0 (T -(j}). g

Claim 2: LCL achieves f,,, = max{b;,b,}.
Proof: Homework (by induction on n).

26

Scheduling with Cost-Functions

The problem 1|prec|f

In scheduling problems with precedence constraints,
we are given a directed precedence graph. An
edge from i to j implies that we can start process
J; only after J; is completed.

Theorem: LCL is optimal for 1|prec|f,,.

In the implementation of LCL for instances with
precedence constraints, the only candidates for
the last position are jobs that no other jobs
depend on them.

27

Flow-shop Scheduling

In a flow-shop schedule with m machines,

M M,,... M, all the jobs must be processed by all
the machines in the same order (which is, w.l.o.g.,
M M,,...M,). For each job j and machine i, p;i s
the processing time required by J; on M;.

Example: pizza |pie |cake
Two machines, chef |8 10 |4
three jobs. oven |5 50 130

28

Flow-shop Scheduling

+ The problem Fm||C,.,, is NP-hard for any m > 2.

+ We will see a simple optimal algorithm for m=2
(Johnson 1954).

Observations for F2:

* Inany F2-schedule, the machine M, is idle first,
then it processes jobs, then it may be idle again,
process again, and so on, depending on the flow of
jobs from M.

* M, is never idle (or idles can be removed).

+ Since all jobs are available at time =0, our goal is
to reduce the time in which M, is idle, waiting for

the job currently processed by M.

29

Flow-shop Scheduling on Two Machines

Definition: A permutation schedule is a schedule in
which the jobs are processed in the same order
by M; and M,.

Lemma: There exists an optimal schedule which is a
permutation schedule.

Proof idea: if J; precedes J, on M, then J; is
available to l\}\z before J, and so, if J; precedes J,
on M, we can swap their processing on M, without
hurting the makespan.

30

Flow-shop Scheduling on Two Machines

Let A be the set of jobs j for which p;; <p;,.

Let B be the set of jobs j for which p;; > p;,.

Johnson Rule: Sort the jobs in the following way:
first the jobs of A in non-decreasing order of pj;,
then the jobs of B in non-increasing order of p,.
Schedule the jobs on the two machines according
to this order.

Example: pizza | pie |cake
A = {pie, cake} chef |8 10 |4
B = {pizza} oven |5 20 |30

Optimal order = {cake, pie, pizza}

31

Optimality of Johnson Rule for F2||C,,,

* For a given permutation schedule, number the
jobs according to the order they are scheduled.

+ Let J, be the first job on M, after its last idle
section. J, is not waiting between M; and M,.

* G = PratPrat-tP1ktP2 k-

* M, is not idle when the rest of the jobs are
pr‘ocessed, Thus, Cmax= pl,1+---+p1,k+p2,k+P2,(k+1)+---+p2,n-

=> The makespan is determined by n+1 values.

= For any ¢, we can reduce ¢ from all the p;; values,
without changmg the relative performance of
different permutation schedules.

32

Optimality of Johnson Rule for F2||C,,,

Theorem: Johnson rule is optimal for F2||C,.
Proof: By induction on the number of jobs, n.
Base: For n=1, any schedule with no idle is optimal.

Step: Assume that Johnson rule is optimal for n-1 jobs,
and consider an instance with n jobs.
Let ¢ = min{min {p, ;, p,;}}. Reduce c from all the p;;
values. As a result, there exists a job, with pl,J.:O or
p2;=0. If p; ;=0 then jUA and it is first in the
Johnson-order of A. If q,;=0 then jOB and it is last in
the Johnson-order of B.

33

Optimality of Johnson Rule for F2||C,,,

If p;;=0, then there exist an optimal schedule in which
j is first (and can be processed by M, with no
delay), and if p,;=0, then there exists an optimal
schedule in which j is last (and do not cause any
delay to the makespan of M.

By the induction hypothesis, Johnson rule is optimal
for J-{j}. By the above, Johnson rule places j
optimally. m

