CSEP 521 - Applied Algorithms

On-line Algorithms

Introduction

Online Algorithms are algorithms that need
to make decisions without full knowledge
of the input. They have full knowledge of
the past but no (or partial) knowledge of
the future.

For this type of problem we will attempt to
design algorithms that are competitive
with the optimum offline algorithm, the
algorithm that has perfect knowledge of
the future.

The Ski-Rental Problem

+ Assume that you are taking ski lessons.
After each lesson you decide (depending
on how much you enjoy it, and what is your
bones status) whether to continue to ski
or to stop totally.

* You have the choice of either renting skis
for 1$ a time or buying skis for y$.

Will you buy or rent?

The Ski-Rental Problem

« If you knew in advance how many times t
you would ski in your life then the choice of
whether to rent or buy is simple. If you will
ski more than y times then buy before you
start, otherwise always rent.

* The cost of this algorithm is min(t, y).

* This type of strategy, with
perfect knowledge of the
future, is known as an offline
strategy.

The Ski-Rental Problem

* Inpractice, you don't know how many
times you will ski. What should you do?

* An online strategy will be a number k such
that after renting k-1 fimes you will buy
skis (just before your k' visit).

* Claim: Setting k = y guarantees that you
never pay more than twice the cost of the
offline strategy.

- Example: Assume y=7$ Thus, after 6

rents, you buy. Your total payment:
6+7=13%.

The Ski-Rental Problem

Theorem: Setting k = y guarantees that you never
pay more than twice the cost of the offline
strategy.

Proof: when you buy skis in your k' visit, even if
you quit right after this time, t>vy.

* Your total payment is k-1+y =2y-1.

* The offline cost is min(t,y) = y.

* The ratio is (2y-1)/y = 2-1/y.]

We say that this strategy is (2-1/y)-competitive.

6

The Ski-Rental Problem

Is there a better strategy?
+ Let k be any strategy (buy after k-1 rents).

* Suppose you buy the skis at the k" time and then
break your leg and never ski again.

* Your total ski cost is k-1+y and the optimum offline
cost is min(k,y).

* For every k, the ratio (k-1+y)/min(k,y) is at least (2-

1/y)

*+ Therefore, every strategy is at least (2-1/y)-
-competitive. []

The Ski-Rental Problem

The general rule:

When balancing small incremental
costs against a big one-time cost, you
want to delay spending the big cost
until you have accumulated roughly
the same amount in small costs.

The Lost Cow Problem

Old McDonald lost his favorite cow. It
was last seen marching tfowards a
junction leading to two infinite roads.
None of the witnesses can say if the
cow picked the left or the right

The Lost Cow Problem

Old McDonald's algorithm:
1. d=1; current side = right
2. repeat:
i. Walk distance d on current side
ii. if find cow then exit
iii. else return to starting point
iv. d=2d
v. Flip current side

10

The Lost Cow Problem

Theorem: Old McDonald's algorithm is 9-
competitive.

In other words: The distance that Old
McDonald might pass before finding the
cow is at most 9 times the distance of an
optimal offline algorithm (who knows
where the cow is).

The Lost Cow Problem

Theorem: Old McDonald's algorithm is 9-
competitive.

Proof:The worst case is that he finds the cow a
little bit beyond the distance he last searched on
this side (why?).
Thus, OPT = 2§ + € where j = # of iterations and € is
some small distance. Then,
Cost OPT =2i+¢ > 2i
CostON=2(1+2+4+ . +2"1)+2i+¢

=22+ 2i+£=9Ri+£<9 Lost OPT m

12

Edge Coloring

*+ An Edge-coloring of a graph 6=(V,E) is an assignment,
¢, of integers fo the edges such that if e; and e,
share an endpoint then c(e,) # c(e,).

* Let A be the maximal degree of some vertex in G.

* In the offline case, it is possible to edge-color 6
using A or A+1 colors (which is almost optimal).

* Online edge coloring: The graph is not known in
advance. In each step a hew edge is added and we
need to color it before the next edge is known.

13

Optimal Online Algorithm for Edge
Coloring

- We color the edges with numbers 1,2,3...

- Let e=(u,v) be a new edge.

Color e with the smallest color which is not used by
any edge adjacent to uor v.

Claim: The algorithm uses at most 2A-1 colors.

Proof outline (was hwé q.1): assume we need the color
2A. It must be that all the colors 1,2,...,2A-1 are
used by edges adjacent to u or v. Therefore, either

uor v has A adjacent edges, excluding e,
contradicting the definition of A.

o—@

14

Online Edge Coloring

Claim: Any deterministic algorithm needs at least 2A-1
colors.

Proof: Assume Oan algorithm that uses only 2A-2
colors. Given A we add to the graph many (A-1)-stars.

o ok
STLPIR IR

There is a finite number of ways to edge-color a (A-1)-
star with colors from {1,2,..,2A-2}, so at some point we
must have A stars, all colored with the the same set

ofA-1 colors.
15

Online Edge Coloring

A stars, all

colored with

the the same

set of A-1

colors. @% @%

Let v,v,,.. v, be the centers of these stars.

We are ready to shock the algorithm!

We add a new vertex, a, and A edges (a-v), ...,(a,v,).
Each new edge must have a unique color (why?),
that is not one of the (A-1) colors used to color the
stars (why?) > 2A-1 colors must be used.

Note: the maximal degree is A 1

Online Scheduling and Load Balancing

Problem Statement:

+ A set of m identical machines,

* A sequence of jobs with processing times py, p,,....
+ Each job must be assigned to one of the machines.

* When job j is scheduled, we don't know how many
additional jobs we are going to have and what are
their processing times.

Goal: schedule the jobs on machines in a way that
minimizes the makespan = max ;% oo mi P; -

(the maximal load on one machine)

17

Online Scheduling and Load Balancing

List Scheduling [Graham 1966]:

A greedy algorithm: always schedule a job on
the least loaded machine.

Example: m=3 6=7 3 4 5 6 10

M, 7 10

Makespan = 17

18

Online Scheduling and Load Balancing

Theorem: List- Scheduling is (2-1/m)- competitive.

Proof: Let H; denote the last completion time on the
j™ machine. Let k be the job that finishes last and
determines C ..

All the machines are busy when j starts its
processing, thus, 0j, H; = € - py.

For at least one machine (that processes k) H; = C 5 .

>2.p= ZJ- HJ- 2 (m-1) (C.s - p)* Cis.

> 2 pi +#(m-1)p, = mC g, MW
O NN\
M B

px (M-1)/m. i
“ Cis - P« Cis

Online Scheduling and Load Balancing

> Cs<1/m 2 pi + pi (M-1)/m.

Consider an optimal offline schedule.

Copt = Max; p; 2 py (some machine must process the
longest job).

Copt 2 1/m 2., p; (if the load is perfectly balanced).

Therefore,

Cis < Copt + Copt (M-1)/m = (2-1/m) Cyy.

20

Online Scheduling

Are there any better algorithms?
Not significantly. Randomization do help.

deterministic randomized
m lower |upper |LS lower |upper
bound |bound bound |bound

15 15 1.5 1.334 [1.334
1.666 1667 [1.667 |142 |155
1.731 |1733 [1.75 |146 |1.66
1.852 (1923 |2 1.58 ---

lhlwN

21

A lower Bound for Online Scheduling

Theorem: For m=2, no algorithm has r< 1.5
Proof: Consider the sequence 0 = 1,12,

If the first two jobs are scheduled on different
machines, the third job completes at time 3.

m[1] ‘ m, T, Ca=3, Cpy=2
m,| 2 3 m, 1|2 _
alg opt r=3/2

If the first two jobs are scheduled on the same
machine, the adversary stops.

my m; Ca=2, Copr™1
me [1]2] m. 2] =2 i}
alg opt

Paging- Cache Replacement Policies

Problem Statement:
*There are two levels of memory:

- fast memory M, consisting of k pages (cache)
- slow memory M, consisting of n pages (k < n).
* Pages in M, are a strict subset of the pages in M.

* Pages are accessible only through M, .
* Accessing a page contained in M; has cost O.

* When accessing a page not in My, it must first be
brought in from M, at a cost of 1 before it can be
accessed. This event is called a page fault.

23

Paging- Cache Replacement Policies

Problem Statement (cont.):
If M, is full when a page fault occurs, some

page in M; must be evicted in order to make room in
M;.

How to choose a page to evict each time a

page fault occurs in a way that minimizes the
total number of page faults over time?

24

Paging- An Optimal Offline Algorithm

Algorithm LFD (Longest-Forward-Distance)
An optimal of f-line page replacement strategy.
On each page fault, evict the page in M1

that will be requested farthest in the future.

Example: M,={a,b,c,d,e} n=5, k=3

o=a,b,c,d,a,b,e,d,e,b,c,c,a,d
daaaeeeeccocec

M;={ bb b b bbbbbbaa
cddddddddddd

4 cache misses in LFD 5

Paging- An Optimal Offline Algorithm

A classic result from 1966:
LFD is an optimal page replacement policy.

Proof idea: For any other algorithm A, the cost of
A is not increased if in the 1s* time that A differs
from LFD we evict in A the page that is requested

farthest in the future.

However, LFD is not practical.
It is not an online algorithm!

26

Online Paging Algorithms

FIFO: first in first out: evict the page that was
entered first to the cache.

Example: M,={a,b,c,d e} n=5, k=3
o=a,b,c,d,a,b,e,d,e,b,c,c,a,d
adddeeeeee aa 7 cache
M, = bbaaaddddddd misses
cccbbbbbccecec in FIFO

Theorem: FIFO is k-competitive: for any
sequence, #misses(FIFO) < k #misses (LFD)

27

Online Paging Algorithms

LIFO: last in first out: evict the page that was
entered last to the cache.

Example: M,={a,b,c,d e} n=5, k=3
o=a,b,c,d,a,b,e,d,e,b,c,c,a,d
aaaaaaaaaaada 6 cache
M, = bbb bbbbbbbbb misses
cdddedeeccocd inLIFO

Theorem: For all nk, LIFO is not competitive:
For any c, there exists a sequence of requests
such that #misses(FIFO) = ¢ #misses (LFD)

Proof idea: Consider 0= 1, 2,..., k, k+1, k, k+1, k, k+1, .

Online Paging Algorithms

LRU: least recently used: evict the page with the
earliest last reference.

Example: M,={a,b,c,d,e} n=5, k=3

o=a,b,c,d,a,b,d,e,d,e,b,c
addddddddc
bbaaaeeweee
ccc bbb bbbb

Theorem: LRU is k-competitive
Proof: Not here

29

Paging- a bound for any deterministic
online algorithm

Theorem: For any k and any deterministic on-line
algorithm A, the competitive ratio of A = k.

Proof: Assume n= k+1 (there are k+1 distinct pages).
What will the adversary do?

Always request the page that is not currently in M,

This causes a page fault in every access. The total
cost of Ais |O].

30

Paging- a bound for any deterministic
online algorithm

What is the price of LFD in this sequence?

At most a single page fault in any k accesses

(LFD evicts the page that will be needed in the k+1th
request or later)

The total cost of LFD is at most |0|/k.

Therefore: Worst-case analysis is not so important
in analyzing paging algorithm

*Can randomization help? Yes!l There is a randomized
2H,-competitive algorithm. (H,= 1+1/2+1/3+.+1/K)

31

Online Bin Packing

The input: A sequence of items (numbers), q,0,,...,a,,
such that for all i, 0 < q; <1

The goal: 'pack’ the items in bins of size 1. Use as few
bins as possible.

Example: The input: 1/2,1/3, 2/5,1/6,1/5, 2/5.

Optimal packing in two bins:

(1/2,1/3,1/6), (2/5, 2/5, 1/5).

Legal packing in three bins:

(1/2,1/3), (2/5,1/6,1/5), (2/5)

Online BP: a; must be packed before we know q;,5,..,0,

32

Online Bin Packing

Next-fit Algorithm:
1. Open an active bin.
2.Foralli=1,2,.n:
- If possible, place q; in the current active bin;
- Otherwise, open a new active bin and place g; in it.

Example: The input: {0.3, 0.9, 0.2}.
Next-fit packing (three bins): (0.3), (0.9), (0.2).

Theorem: Next-fit is 2-competitive.
Proof: Identical to 2-approximation (see lecture 6)

33

Online Bin Packing

First fit algorithm: place the next item in the
first open bin that can accommodate it. Open a
new bin only if no open bin has enough room.

Theorem: he, < 1.70pt +2 (proof not here)

largest to sm
resulting order.

Online Bin Packing

Current lower bound:There is no online bin-packing
algorithm with r < 1.54

Current upper bound: r = 1.5889

A very important problem, with many applications
and variants:

- Multidimensional items and bins

- Online with look-ahead (know the next m items,
or the total length, or other information)

- Limited active bins (you can ‘'load' into k trucks)

- Temporary items (with known or unknown
duration).

- Many other ad-hoc variants. 35

Online Class-constrained Packing

We need to pack items into bins.

*All items have the

same (unit) size. Each ‘ % ‘E
item has a color (type).

All the bins have

the same capacity.
*Each bin can
accommodate items
from a bounded

number of colors.

36

Notations Optimization Goal:

n - number of items in the instance.
M - number of distinct colors in the instance.

Class-constrained bin-packing (CCBP):

Pack all the items in a minimal number of bins.

v - bin's capacity.

c- number of compartments in a bin. Claim: max([n/v],[M/c])is a lower bound
(The bin can accommodate v items of ¢ distinct colors) for the number of required bins.

Example of class-constrained packmg Performance measure: For an instance I, let N,

] denote the number of bins used by an ophmal
% ‘ algorithm to pack all the items of I. An
algorithm is r-competitive if it packs all the
items of I in at most r:N,; bins.
n=15, M=5

Applications

Multimedia on Demand Systems: The system receives
requests for broadcasts of M movies. The requested movie
should be ftransmitted by a shared disk. Each disk has
limited load capacity, v, and limited storage capacity, c.

Online Class-constrained Packing :

*The items arrive one at a fime. In each step we
get one unit size item of some color.

*We need to pack this item without any knowledge
of the subsequent items.

‘Formally, the instance is given as a sequence,
0=0,,0,,.. of length n, such that Ok, q,[0{1,.. M}.

 Online CCBP: use a minimal number of bins to
Production Planning: Each device possesses some amount, pack all the items in o.

v, of a shared resource and can be set to ¢ distinct
configurations. There are M distinct products.

39

Online Class-constrained Packing,
An Example of CCBP.

First-fit Algorithm: Put an arriving item in the
leftmost bin that can accommodate it.

o= I 07 I 0 O

RN

First-fit packing Possible optimal packing:

0o <
"
nN Ol

Upper Bound for First-fit

Theorem: r¢ < 2.

Proof: Let S; be the set of full bins (v items); S, is the
set of occupied bins (c distinct colors).

Claim 1: Each bin (except maybe for the last one) is
either full or occupied.

Claim 2: Each bin in S, (except maybe for the last one)
contains the last item of each of its c colors.
(any additional appearance of a color can fit into this bin).

From Clalm 1, fo = |51|+|52|
From Claim 2, |S,|<[M/c]. Also, |S;|<[n/v].

Since N, =max([n/v],[M/c1) we get a 2-approximation.
42

Next-fit Algorithm

Next-fit algorithm: Put an arriving item in the
currently active bin. Open a new bin if the active bin
cannot accommodate this item.

For traditional online bin-packing, it is known that
Next-fit uses as most 2:Ngpt bins.

This is not the case for class-constrained packing:

o: HNEOEHEBENTEETEETENE™

e N

Next-fit packing ([15/21bins) Optimal packing (3 bins)

The Color-sets Algorithm

The algorithm: Partition (online) the M colors in o
into [M/c] color-sets. Pack the items of each color-
set greedily.

Theorem: r. <2

o= NI B0 7 I 0

Color

| LI

color-sets packing Possible optimal packing«

The Color-sets Algorithm

Theorem: r. <2

Proof:Assume that when A5 terminates there are
d active bins, containing x;,..., X4 items. Since we
open a new active bin for some color-set only when
the current active bin of that color set is full, we
have

Ncs(0) = (n-(X+x,*..+x))/v+d < (n/v) +d
Since d <[M/c], we have
Nes(0) < [n/vl+[M/cl< 2N, (o)

Lower Bound for Deterministic Algorithms

Theorem: for any deterministic algorithm A, r, = 2.

Proof: The adversary constructs the sequence, g, online
such that some bins include v items from few colors and
some bins include c items from c distinct colors.

BEEEE..

bad bins

The idea: repeat in o items of the same color. Switch to the
next color whenever an item is packed in one of the '‘bad
bins'. This color will not be repeated anymore in o . 46

The packing of
the algorithm

An optimal packing:
The rear colors
spread among the
bins

A closer analysis of the adversary's strategy yields a lower
bound that depends on the ratios n/v and M/c.

47

