* No lecture on Monday 5/26 (Memorial day),

+ Additional lecture: probably Thursday
5/22 (let me know now if you can't)

* Last Homework: Wednesday 5/28.
* Last Lecture: Monday 6/2.

* Final Exam: Monday 6/9 (2 hours in the
evening). You can bring the books, your
notes, and your homework to the exam.

CSEP 521- Applied Algorithms

Coping with NP-hardness -
Approximation Algorithms

Reading:

- Skiena, chapter 6.8

* CLRS, chapter 37 (15t Ed.)
chapter 35 (2" Ed.)

Review: NP-Completeness

- Some problems are intractable:
as they grow large, we are unable to solve
them in reasonable time.

- What constitutes reasonable time?

Standard working definition: polynomial

time

- On an input of size n the worst-case running
time is O(nk) for some constant k

- Polynomial time: O(n?), O(n3), O(1), O(n log n)

- Not in polynomial time: O(2"), O(n"), O(n!)

P and NP

P = problems that can be solved in polynomial time

NP = problems for which a solution can be verified in
polynomial time = problems for which a solution can
be find in polynomial time by a non-deterministic
machine.

Unknown whether P = NP (most suspect not)

+ Example: Hamiltonian-cycle problem is in NP:

- Cannot be solved in polynomial time.
- Easy to verify solution in polynomial time.

NP-Complete Problems NP Problems

+ We will see that NP-Complete problems are

the “hardest" problems in NP:

- If any one NP-Complete problem can be solved
in po’ynomlal Tlme Solvable

- ..then every NP-Complete problem can be
solved in polynomial time...

- ..and in fact every problem in NP can be solved
in polynomial time (which would show P = NP)

- Thus: solve hamiltonian-cycle in O(n!%) time,
you've proved that P = NP. Refire rich &
famous.

Optimization v.s. Decision

Why Prove NP-completeness?

To simplify things, we will worry only about decision
problems with a yes/no answer

- Many problems are optimization problems, but
we can re-cast them as decision problems

Example: Graph coloring.

+ Optimization problem: what is the minimal number
of colors needed to color G?

* Reporting problem: Can G be colored using k
colors? If so, report a legal k-coloring.

+ Decision problem: Can G be colored using k colors?

* Though nobody has proven that P I= NP,
if you prove a problem NP-Complete,
most people accept that it is probably
intractable.

* Therefore it can be important to prove
that a problem is NP-Complete
- Don't need to come up with an efficient
algorithm.

- Can instead work on approximation
algorithms.

Reduction

- A problem P can be reduced to another
problem Q if any instance of P can be
“easily rephrased” as an instance of Q,
the solution to which provides a solution
to the instance of P

- Intuitively: If P reduces to Q, P is "no
harder to solve” than Q.

Reducibility - An example

- P: Given a set of Booleans {x; 0 TRUE,
FALSE}, is at least one TRUE?

- Q: Given a set of integers, is their sum
positive?

- Transformation: given (x,, X,, ..., X,) booleans,
let (yy, Y2, -, Y,) be a set of integers where
y,= 1if x,= TRUE, and y,= O if x,= FALSE.

- P is no harder than Q: if we can solve Q we

can run the transformation to get a solution
to P.

10

Using Reductions

- If P is polynomial-time reducible to Q, we
denote this P <, Q

» Definition of NP-complete:
- P is NP-complete if PONP and P is NP-hard.

* Definition of NP-Hard:
- P is NP-hard if all problems R of NP are

reducible to P. Formally: R <, P, O R 0 NP

* If P <, Qand P is NP-hard, Q is also NP-

hard.

11

Proving NP-Completeness

+ How do we prove a problem P is NP-Complete?

- Pick a known NP-Complete problem Q
- Reduce Q to P:

« Describe a transformation that maps instances
of Q to instances of P, s.t. "True" for P = "True"
for Q

* Prove the transformation works
* Prove it runs in polynomial time
- and yeah, prove P O NP

* We need at least one problem for which NP-

hardness is known. Once we have one, we can start
reducing it to many problem.

12

The SAT Problem

* The first problems to be proved NP-
Complete was satisfiability (SAT):

- Given a Boolean expression on 7 variables, can
we assign values such that the expression is
TRUE?

- Bx: (7 > x2) U= ((0x7 « x5) Oxy)) Dhx;
- Cook's Theorem: The satisfiability problem is
NP-Complete

* Note: Argue from first principles, not
reduction (any computation can be described
using SAT expressions)

* Proof: not here

13

The k-clique Problem

A cligue in a graph & is a subset of vertices fully

connected to each other, i.e. a complete subgraph
of G.

* The cligue problem: how large is the maximum-size

cliqgue in a graph?

* Can we turn this into a decision problem?
+ A: Yes, we call this the k-c/igue problem
+ Is the k-cligue problem within NP?

Yes: Nondeterministic algorithm: guess k vertices
then check that there is an edge between each
pair of them.

4—c|iqua: @ 14

3-CNF - Clique

F=(xCyCz)C(-xCyLz)C(~-xC-ylC-2)
x=1,y=0,z=1

Any clique of size k must include exactly one literal

from each clause. .

The Vertex Cover Problem

« A vertex cover for a graph G is a set of

vertices incident to every edge in G

* The vertex cover problem: what is the

minimum size vertex cover in G?

* Restated as a decision problem: does a

vertex cover of size k exist in G?

+ Theorem: vertex cover is NP-Complete

16

Clique — Vertex Cover

* First, show vertex cover in NP (How?)

* Next, reduce k-cligue to vertex cover:

- The complement 6. of a graph G contains exactly
those edges not in G

- Compute G, in polynomial fime
- Claim: G has a clique of size k iff 6, has a vertex
cover of size |V| - k

The Traveling Salesman Problem:

- Optimization variant: a salesman must travel
to ncities, visiting each city exactly once
and finishing where he begins. How to
minimize travel time?

- Model as complete graph with cost c(i,j) to
go from city i to city j
* How would we turn this into a decision
problem?

- Answer: ask if there exists a path with cost
at most k

18

Hamiltonian Cycle > TSP

* The hamiltonian-cycle problem: given a graph G, is
there a simple cycle that contains every vertex?

+ To transform ham. cycle problem on graph

G = (V,E) to TSP, create graph G' = (VE):

*+ G'is a complete graph

+ Edges in E' also in E have cost O

* All other edges in E' have cost 1

+ TSP: is there a TS cycle on G' with cost 0?

- If G has a ham. cycle, G' has a TS cycle with cost O

- If 6 has TS cycle with cost O, every edge of that
cycle has cost 0 and is thus in 6. Thus, G has a
ham. cycle.

19

Other NP-Complete Problems

* Partition: Given a set of integers, whose total sum is

2S5, can we partition them into two sets, each adds up
to S?

* Subset-sum: Given a set of integers, does there exist

a subset that adds up to some target 7?

* Graph coloring. can a given graph be colored with &

colors such that no adjacent vertices are the same
color?

* Steiner Tree: Input: given a graph 6=(V,E), a subset

T of the vertices V, and a bound B, is there a tree
connecting all the vertices of T of total weight at

most B?
20

Independent Set

* Input: A graph 6=(V,E), k

* Problem: Is there a subset S of V of size at least
k such that no pair of vertices in S is connected
by an edge.

* Maximum independent set problem: find a
maximum size independent set of vertices.

Maximal Maximum

independent set independent set
21

Coping with NP-hardness

- OK, I know that a problem is NP-hard.
What should I do next?

- First, stop looking for an efficient
algorithm.

- Next, you might insist on finding an
optimal solution (knowing that this might
take a lot of time), or you can look for
approximate solutions with guaranteed
performance.

22

Techniques for Dealing with
NP-complete Problems

* Exactly
- backtracking, branch and bound,
dynamic programming.
- Approximately

- approximation algorithms with
performance guarantees.

- heuristics with good average results.
* Change the problem (if possible...)

23

Approximation Algorithms

* The fact that a problem is NP-complete
doesn't mean that we cannot find an
approximate solution efficiently.

+ We would like to have some guarantee
on the performance - how far are we
from the optimal?

* What is the best we can hope for
(assuming P # NP)?

24

Approximation Algorithms with
Additive Error.

* For few NP-hard problems, there are
approximation algorithms that produce an
almost optimal solution - one that is far
only by an additive constant from the
optimal.

* Minimization problems: Alg(I) < opt(I) +c
*+ Maximization problems: Alg(I) = opt(I) -c
 Example: Edge coloring.

25

Edge Coloring

*+ An Edge-coloring of a graph 6=(V E) is an assignment,

c, of integers to the edges such that if e; and e,
share an endpoint then c(e,) # c(e,).

+ Let A be the maximal degree of some vertex in 6.
+ It is known that for any graph the minimal number of

colors required to edge-color G is A or A+1.

*+ It is NP-hard to distinguish between these two cases.
* There exists a polynomial time algorithm that colors

any graph G with at most A+1 colors.

* For this algorithm Alg(T) < opt(I) + 1.

26

r-approximation Algorithms

* Approximations with guaranteed additive
error are rear.

+ All other approximation algs we are going to
see foday are factor-r approximations:

- Vertex cover

- Traveling salesman
- Bin packing

- Knapsack

* Analgorithm A/gis an r-approximation if, for
any input, the solution that A/goutputs is
within factor r from the optimal. (r = 1)

27

Approximation Algorithms
(minimization)

* In minimization problems: Alg is r-approximation if
Alg(I) < ri@pt(T) for any instance I.

Example 1: Traveling Salesman is a minimization
problem (the goal is to find a tour with minimal
cost). If we have an algorithm, A, that finds, for
any graph, a tour whose cost is at most 5 times
the optimal, then A is 5-approximation o TSP.

Example 2: Minimum Spanning Tree is a minimization
problem (the goal is to find an ST with minimal
cost). Each of the optimal algorithms we've learnt
is 1-approximation.

28

Approximation Algorithms
(maximization)

+ In maximization problems: Alg is r-approximation if
Alg(T) = (1/r)0pt(I) for any instance I.

Example: Maximal clique is a maximization problem
(the goal is to find a clique with maximal size). If we
have an algorithm, A, that finds, for any graph, a
cligue whose size is at least (log n)2/n times the
optimal, then A is n/(log n)2-approximation to clique.

(remark: currently, this is the the best known approx ratio
for clique.)

29

Example 1: Vertex Cover

+ Given 6=(V,E), find a minimum sized

subset W of V such that for every (v,u) in
E, at least one of voruisin W.

* Last week we proved that this problem is

NP-Hard.

+ We are therefore ready to end up with a

vertex cover W which is not of minimum
size. But- we don't want it to be too large
and we want to be able fo find it in
polynomial time.

30

Approximating Vertex Cover

VertexCover(6=(V,E)):

while (Ez0)

1. select an arbitrary edge (u,v)

2. add both uand v to the cover

3. delete all edges incident to either uor v

1. This is a legal cover (why?)

2. This is a 2-approximation (its size is at most 2
times the minimal size vertex cover).

Proof: Let c be the number of iterations. The VC has
size 2c. The edges selected in step 1 form a
matching of size c (why?). Even if we only need to
cover these edges we need at least c vertices. 3

Approximating Vertex Cover

A more natural algorithm: select in each
iteration a vertex with maximum degree, add
it to the cover and remove all its adjacent
edges.

Looks promising!

However, we can end up with a vertex cover
which is (In n)-times the optimal.

32

A bad instance for Greedy VC:

(To be drawn in class)

33

Example 2: Approximation
Algorithm for Euclidean Traveling
Salesman Problem

The Problem: Given n points in the plane
(corresponding to locations of n cities) find a
shortest traveling salesman tour - that passes
exactly once in each of the points.

For each pair of cities a,b, we are given the distance
dist(a,b) from a to b.

In other words, the input is given as a weighted
complete graph.

Euclidean Traveling Salesman
Problem

Distances in the plane satisfy the triangle inequality:
dist(a,b) < dist(a,c) + dist(c,b)

It means that direct routes are always shorter than
indirect routes.

For this version, we will see a simple 2-approximation
algorithm: we will find in poly-time a four whose

length is at most twice the optimal.
35

Approximating Euclidean TSP

Note: The weight of a minimum spanning tree is
always less than the weight of the optimal tour.

Why? because by removing any edge from the optimal
tour we get a spanning tree.

We will use this property to obtain an approximate
solution.

Assume that this is
our MST. Consider a
DFS tour on this tree,
let it be (w.l.o.g) a-b-
e-b-f-b-a-c-a-d-a

« The DFS tour defines a TSP

Approximating Euclidean TSP

path that visits all the cities.
The length of this tour is twice 75y
the total weight of the MST. &

However, we might visit some /
cities more than once. ’

+ To get a legal solution we
make shortcuts (move in
the next step to the next
unvisited vertex). This can
only reduce the total
length of the path.

Approximating Euclidean TSP

The resulting algorithm:
1. Find a minimum spanning ftree of points

2. Convert to tour by following DFS and including
edge in opposite direction when DFS backtracks.

3. Construct shortcuts by taking direct routes
instead of backtracking.

The length of the resulting tour is at most 2 times
the optimal - this is a 2-approximation
algorithm.

38

Better version of TSP algorithm

+ Uses basic graph algorithms as subroutines:
Matching and Euler tour.

- a matching in a graph 6=(V,E): a set of edges S
from E such that each vertex in V is incident to
at most one edge of S.

- a maximum matching in G: a matching of
maximum cardinality

- a minimum weight matching in a weighted graph:
a maximum matching of minimum fotal weight.

- Finding a minimum weight matching can be
solved in poly-time.

39

Better version of TSP algorithm

+ Euler tours (Skiena, Section 8.4.6)
- “draw without lifting your pen from the paper”

* An Euler tour in a graph is a four of the graph that
visits each edge exactly once. An Euler cycle begins
and ends at the same vertex.

+ Well known that an undirected graph contains an
Euler cycle iff (1) it is connected and (2) each
vertex has even degree.

« Easy to construct Euler tours efficiently.

40

Better version of TSP algorithm

1. Find an MST.

2. Find minimum weight matching of
odd-degree vertices in the tree.
There's an even number of them (why?).

3. Find Eulerian tour of MST plus
edges in matching.

4. Make shortcuts.

4

Approximating TSP, Example (1)

The weighted
graph G.

a2

Approximating TSP, Example (2)

An MST in G

*- vertices having max-size
odd degree inthe =~ W@F-=====< min-weight

MST matching
of * 43

Approximating TSP, Example (3)

The MST +
minimum weight
matching of the
odd-degree
vertices.

o Euler tour on
these edges

Approximating TSP, Example (4)

Apply shortcuts.
The final tour:

45

This algorithm has provably
performance guarantee

Theorem: The approximation algorithm for
Euclidean TSP finds a tour of length at
most 3/2 optimal.

Proof:
* weight of MST < weight of optimal four

+ weight of matching < (weight of optimal
tour)/2 (why? see next slide)

-+ shortcuts don't cost

46

Dotted vertices:
odd-degree

vertices in MST.
(their # is even)

Any Optimal TSP
tour (dotted line)
visits these vertices
in some order.

In bold: the lighter 'half’ “
of the shortcut-path
through these vertices.

A minimum weight matching is lighter than the
bold shortcuts < optimal TSP.

47

Non-Euclidean TSP

When did we use the assumption that for all
a,b,c dist(a,b) < dist(a,c) + dist(c,b) ?
Is it really needed?

Yes - get ready for our first non-
approximability result!

Theorem: For any constant c, if there is a
polynomial fime c-approximation algorithm
for TSP then P=NP.

48

Non-Euclidean TSP

Proof: Reduction from the Hamiltonian cycle
problem. Assume that TSP is c-
approximable.

There exists an algorithm A that gets a TSP
instance 6’ and returns a TS four whose
cost is at most ¢ times the optimal.

In particular, if G has a TS tour of cost n, A
finds a tour of cost at most cn.

We will use algorithm to solve the
Hamiltonian-cycle decision problem.

49

Non-Euclidean TSP

Given 6=(V,E) and the question "Is there a HC in G"
we construct a TSP instance G', such that there
isa HC in G if there is a TS tour of cost at most
nin G and there is no HC in G if the minimal TS
tour has cost > cn.

G'=(V,E) is a clique.

The weight of edges in E is 1

The weight of any additional edge is c'n.

A HC in G corresponds to a TSP tour of weight n.

Any tour that uses one or more additional edges
has cost > cn.

G G 1 ! n=4,
c=10
40 1
50

S

Example 3: Bin Packing

The input: A sequence of items (numbers),
a,05,...,G,, such that for all i, 0 < q; <1

The goal: 'pack’ the items in bins of size 1.
Use as few bins as possible.

Example: The input: 1/2,1/3,2/5,1/6,1/5, 2/5.
Optimal packing in two bins:

(1/2,1/3,1/6), (2/5, 2/5, 1/5).

Legal packing in three bins:
(1/2,1/3),(2/5,1/6,1/5), (2/5)

51

Approximating Bin Packing

Next-fit Algorithm:
1. Open an active bin.
2.Foralli=1,2,.n:
- If possible, place q; in the current active bin;
- Otherwise, open a new active bin and place g; in it.

Example: The input: {0.3, 0.9, 0.2}.
Next-fit packing (three bins): (0.3), (0.9), (0.2).

Theorem: Next-fit is 2-approximation to BP
Proof: Note: an optimal algorithm must use at least Zq;
bins (why?).

52

Approximating Bin Packing

Analysis of Next Fit: Assume that Next Fit uses h
bins. The sum of items sizes in two consecutive
bins is greater than 1 (otherwise, we can put
them together).

Case 1: h is even: Case 1: h is odd:
c(By) +c(By)>1 c(By) +c(By)>1

c(B3) +c(By)>1 c(B;3) +c(By) > 1
c(By, 1) *+ c(B,) > 1 c(B, o)+ c(B, 1) > 1
Za, >h/2 2a; >(h-1)/2 + c(By)

In both cases, we can obtain h <[2%a,] < 20pt
Remark: it can be shown that h < 2opt-1

53

Approximating Bin Packing

Is the analysis tight? consider an instance
with 4n items {1/2,1/2n,1/2,1/2n, ..}.

Next-fit will put any two consecutive items
in a bin.

Total number of bin used: 2n.

An optimal packing in n+1 bins: n bins, each
with 1/2+1/2, one bin for the tiny items.

The ratio: 2n/(n+1) > 2 as n grows.

Approximating Bin Packing

First fit algorithm: place the next item in the
first open bin that can accommodate it. Open a
new bin only if no open bin has enough room.

Theorem: he, < 1.70pt +2 (proof not here)

First fit Decreasing: sort the items from
largest to smallest. Run FF according to the
resulting order.

Theorem: heey < 1.2220pt + 3 (proof not here)
Note: This is not an online algorithm!

55

Example 4: The Knapsack problem

* You are about to go to a camp.

* There are many items you want to pack.

* You have one knapsack. The total weight
you can carry is some fixed number W.

* Every item in your list has some weight, w;,
and some value (benefit), b;, that measures
how much you really need it.

* You need to pack the knapsack in a way
that maximizes the total value of the
packed items.

56

The Knapsack problem

Item # Weight Value
1 1 8

2 3 6
3 5 5
4 4 6

A possible packing: Items 2 and 3. Value: 11
An optimal packing: Items 1,2,4. Value: 20

The Knapsack problem is NP-hard. 57

Greedy Algorithm for Knapsack

1. Consider the items in order of non-
increasing b;/w; ratio
b,/w;2b,/w, = ... 2 b, /w,

2. Add items to the knapsack as long as there
iS space.

Time Complexity:
O(n log n) (for sorting)
O(n) for packing loop.

- O(n log n)

58

Greedy Algorithm for Knapsack

Claim: The approximation ratio of Greedy is
not bounded.

Proof: To get ratio ¢, consider the following
instance:

There are two items: The knapsack has

b= 2, wi= 1 volume W = 2¢
b,= 2¢, w,= 2¢

Greedy packs only the first item, value = 2.
Optimal: Pack the second item, value=2c
Ratio = c.

59

Improved Algorithm for Knapsack

Take the maximum of Greedy and the largest value
that fits by itself (the most profitable item).

Theorem: The above algorithm is 2-approximation.

Proof: Suppose no weight of a single item exceeds W
(these items can be removed in a preprocessing),
and that b,/w;2b,/w,> .. 2 b,/w,

Let B be the largest value, and let G be the value
computed by the greedy algorithm.

Let j be the first item that the greedy algorithm
rejects

60

Improved Algorithm for Knapsack

ALG = max(B,6) = (B + G)/2

1

6= b, (item j is the first fo be rejected)
i=1
B>b, (B is the most profitable)
j j
G+B> Db opt< 2.b (why?)
i=1 i=1

> ALG > opt/2

61

Finding an Exact Solution

* Ready to run above-poly time.

* Might be useful for small instances, for
problems that need to be solved only once
in a while, and for which finding an optimal
solution is critical.

62

Backtracking
Example: Finding a 3-coloring of a graph

« Explore possibilities; backtrack when
doesn't work.

+ Start by assigning an arbitrary color to one
of the vertices.

+ Continue coloring while maintaining the
constraints imposed by the edges.

- If reach a vertex that can't be colored,
backtrack - go back up the recursion tree
and explore other children.

63

Backtracking
Example: Finding a 3-coloring of a graph

The 18 26 Backtracking

i y kBTr‘ee
‘/ <:4/ \43 4;/ \4@

Recursion
Tree

— N

‘5!2

A

Branch-and-Bound

* Variation for case where the goal is finding
a minimum (or maximum) of some objective
function

- Example: finding the minimum number of
colors needed to color a graph.

* Idea: improve the performance of the
algorithm by pruning search when it is
known that it can't possibly be going down
the optimal path.

65

Example: Minimum number of
colors in graph coloring

« Suppose you build the possible- colorings

tree, and at some point you find a valid
coloring with k colors.

- Suppose later, after backtracking, you

reach a vertex that requires a (k+1)st color
- can backtrack.

» In this example, k serves as a bound for

backtracking.

* Good B&B algorithms use heuristics that

hopefully produce good bounds at early
stages of the search.

66

Branch-and-Bound

. Pruning technique

. Lower bound computation

