CSEP 521- Applied Algorithms

NP-hardness

Reading:
- Skiena, chapter 6

* CLRS, chapter 36 (15t Ed.)
chapter 34 (2" Ed.)

NP-Completeness Theory

No one knowsto do
it. It is NP-hard!

NP-Completeness Theory

+ Explains why some problems are hard and
probably not solvable in polynomial time.

* Invented by Cook in 1971,

* Talks about the problems, independent of
the implementation the machine, or the
algorithm.

Polynomial-Time Algorithms

- Some problems are intractable:

as they grow large, we are unable to solve
them in reasonable time.

- What constitutes reasonable time?

Standard working definition: polynomial

time

- On an input of size n the worst-case running
time is O(nk) for some constant k

- Polynomial time: O(n?), O(n3), O(1), O(n log n)

- Not in polynomial time: O(2"), O(n"), O(n!)

Polynomial-Time Algorithms

* Are some problems solvable in polynomial
time?
- Of course: most of the algorithms we've studied

so far provide polynomial-time solution o some
problems.

- We define P to be the class of problems
solvable in polynomial time.
» Are all problems solvable in polynomial
time?
- No: Turing's "Halting Problem” is not solvable by
any computer, no matter how much time is given

- Such problems are clearly intractable, not in P
5

The Unsolvable Halting Problem

« For a given program P and input x, does P
halt on x?

+ Suggested solution: Let's run P on x and
check.

* But what if P doesn't halt after 2 minutes?
10 days? A year?

Turing: The halting problem cannot be solved!

Proof: In bonus slides.

So some problems cannot be solved
at all

All problems Solvable

problems

We will explore the 'solvable area’, and will
distinguish between problems that can be
solved efficiently and those that cannot be
solved efficiently.

NP-Complete Problems

« The NP-Complete problems are an

interesting class of solvable problems
whose status is unknown

- No polynomial-time algorithm has been
discovered for an NP-Complete problem.

- No above-polynomial lower bound has been
proved for any NP-Complete problem, either.

« We call this the P = NP guestion

- The biggest open problem in CS.

An NP-Complete Problem:
Hamiltonian Cycles

+ An example of an NP-Complete problem:

- A hamiltonian cycle of an undirected graph is a
simple cycle that contains every vertex.

- The hamiltonian-cycle problem: given a graph 6,
does it have a hamiltonian cycle?

- A naive algorithm for solving the hamiltonian-
cycle problem: check all paths.

- Running time? Exponential in size of G.

oy —
v
Not a
aHC HC

P and NP

* As mentioned, P is the set of problems that

can be solved in polynomial time

* NP (nondeterministic polynomial time) is the

set of problems that can be solved in
polynomial fime by a nondeterministic
computer

10

Non-determinism

* Think of a non-deterministic computer as a
computer that magically "guesses” a solution, then
has to verify that it is correct.

- If a solution exists, the computer always guesses it

- One way fo imagine it: a parallel computer that can
freely spawn an infinite number of processes.

* Have one processor work on each possible solution.

« All processors attempt to verify that their
solution works.

* a processor that finds it has a working solution
announce it.

- So: NP = problems verifiable in polynomial time.
11

P and NP

+ Summary so far:

- P = problems that can be solved in polynomial time

- NP = problems for which a solution can be verified
in polynomial time

- Unknown whether P = NP (most suspect not)

* Hamiltonian-cycle problem is in NP:

- Cannot solve in polynomial fime.
- Easy to verify solution in polynomial time.

12

NP-Complete Problems

+ We will see that NP-Complete problems are

the “hardest" problems in NP:

- If any one NP-Complete problem can be solved
in polynomial time...

- ..then every NP-Complete problem can be
solved in polynomial time...

- ..and in fact every problem in NP can be solved
in polynomial time (which would show P = NP)

- Thus: solve hamiltonian-cycle in O(n!%) time,
you've proved that P = NP. Refire rich &
famous.

13

NP Problems

For sure P OONP

But maybe P=NP ?? N 2 N

Complete

14

Why Prove NP-completeness?

» Though nobody has proven that P != NP,
if you prove a problem is NP-Complete,
most people accept that it is probably
intractable.

+ Therefore it can be important to prove
that a problem is NP-Complete

- Don't need to come up with an efficient
algorithm.

- Can instead work on approximation
algorithms.

15

Reduction

* The crux of NP-Completeness is reducibility

- Informally, a problem P can be reduced to another
problem Q if any instance of P can be “easily
rephrased” as an instance of Q, the solution to
which provides a solution to the instance of P

« What do you suppose "easily” means?
* This rephrasing is called transformation

- Intuitively: If P reduces to Q, P is "no harder to
solve” than Q.

16

Reducibility - An example

- P: Given a set of Booleans {x; 0 TRUE,
FALSE]}, is at least one TRUE?

- Q: Given a set of integers, is their sum
positive?

- Transformation: given (x,, X,, ..., X,) booleans,
let (yy, Y2, -, Y,) be a set of integers where
y,= 1if x,= TRUE, and y,= O if x,= FALSE.

- P is no harder than Q: if we can solve Q we

can run the transformation to get a solution
to P.

17

Using Reductions

- If P is polynomial-time reducible to Q, we
denote this P <, Q
- Definition of NP-complete:
- P is NP-complete if PONP and P is NP-hard.
- Definition of NP-Hard:

- P is NP-hard if all problems R of NP are
reducible to P. Formally: R < P,ORONP

* If P <, Qand P is NP-hard, Q is also NP-
hard.

18

Using Reductions

* Given one NP-Complete problem, we can
prove that many interesting problems NP-
Complete. This includes:

- Graph coloring

Hamiltonian path/cycle

Knapsack problem

Traveling salesman

Job scheduling

- Many, many, many more (see the compendium)

19

Optimization v.s. Decision

To simplify things, we will worry only about decision
problems with a yes/no answer

- Many problems are optimization problems, but
we can often re-cast them as decision problems

Example: Graph coloring.

+ Optimization problem: what is the minimal number
of colors needed to color G?

* Reporting problem: Can G be colored using k
colors? If so, report a legal k-coloring.

+ Decision problem: Can G be colored using k colors?

20

Subset Sum

- Input: Integers aq,,q,,...qa,,b
* Output: Determine if there is subset

X0{1.2,.., n}
with the property Y a =b

i0X
* Non-deterministic algorithm: Guess the
subset X'and check the sum adds up to b.

21

Decision Problems are Polynomial

Time Equivalent to their Reporting

Problems

 Example: Subset sum

- Decision Problem: Determine if a subset sum
exists.

- Reporting Problem: Determine if a subset sum
exists and report one if it does.

» Using decision to report

- Let subset-sum(A,b) returns true if some subset
of A adds up to b. Otherwise it returns false.

22

Reporting Reduces to Decision

Assume that subset-sum ({q;,...,a,},b) is true
X := the empty set;
fori=1tondo
if subset-sum({a..;,....a.}.b - @) then
add i to X;
b:i=b-a;

Example: {3,5,2,7,4,2};,b=11
{(6,2,7,4,2};b=11-32 True, X={3},b=8
{(2,7,4,2},b=8-5? False
{(7,4,2},b=8-2? True, X={3,2},b=6
{4,2},b=6-7? False

{2},b=6-4? True, X={3,24},b=2
b=4-2? True, X ={3,2,4,2}

23

Optimization Reduces to Decision

Example: Graph coloring
k=1, repeat:
Is G k-colorable?

-If yes, k is the answer to the optimization
problem.

*If no, k := k+1.
*Can do even better with binary search.

-In both cases, the number of iterations is
polynomial (G is clearly n-colorable)

24

Proving NP-Completeness

+ How do we prove a problem P is NP-Complete?
- Pick a known NP-Complete problem Q
- Reduce Q to P (show Q <, P, use P to solve Q)

* Describe a transformation that maps instances
of Q to instances of P, s.t. "yes" for P = “yes"
for Q

* Prove the transformation works
* Prove it runs in polynomial time
- and yeah, prove P 0 NP
* We need at least one problem for which NP-

hardness is known. Once we have one, we can start
reducing it to many problem.

25

The SAT Problem

* The first problems to be proved NP-
Complete was satisfiability (SAT):

- Given a Boolean expression on 7 variables, can
we assign values such that the expression is
TRUE?

- Ex: (27 - x2) O=((=x; « x5) Oxp) [hx;

- Cook's Theorem: The satisfiability problem is
NP-Complete

* Note: Argue from first principles, not
reduction (any computation can be described
using SAT expressions)

* Proof: not here

26

Conjunctive Normal Form

- Even if the form of the Boolean expression is
simplified, the problem may be NP-Complete
- Literal an occurrence of a Boolean or its negation

- A Boolean formula is in conjunctive normal form, or
CNF, if it is an AND of clauses, each of which is an
OR of literals

* Ex: (%, O=%,) O(=x; Ox3 0x,) O(2X5)
3-CNF: each clause has exactly 3 distinct literals
- Ex: (% O=-x, 0=x3) O(=x; Ox3 Ox4) O(=x5 0 x5 0x,)
- Note: true if at least one literal in each clause is true

27

The 3-CNF Problem

* Theorem: Satisfiability of Boolean
formulas in 3-CNF form (the 3-CNF
Problem) is NP-Complete

- Proof: not here

+ The reason we care about the 3-CNF
problem is that it is relatively easy to
reduce to others.

- Thus, knowing that 3-CNF is NP-Complete we

can prove many seemingly unrelated problems
are NP-Complete.

28

The k-clique Problem

A cligue in a graph & is a subset of vertices fully
connected to each other, i.e. a complete subgraph
of G.

* The cligue problem: how large is the maximum-size
cliqgue in a graph?

* Can we turn this into a decision problem?

+ A: Yes, we call this the k-c/igue problem

+ Is the k-cligue problem within NP?

Yes: Nondeterministic algorithm: guess k vertices
then check that there is an edge between each
pair of them.

4-c|iqua: @ 29

3-CNF - Clique

+ How can we prove that k-clique is NP-hard?
+ We need to show that if we can solve k-

clique then we can solve a problem which is
known to be NP-hard.

- We will do it for 3-CNF:
+ Given a 3-CNF formula, we will transform it

to an instance of k-clique (a graph and a
number k), for which a k-clique exists iff
the 3-CNF formula is satisfiable.

30

3-CNF - Clique

« The reduction:

-LetF=C,0C,0..0C, bea3-CNF
formula with k clauses, each of which
has 3 distinct literals.

- For each clause, put three vertices in
the graph, one for each literal.

- Put an edge between two vertices if they
are in different triples and their literals
are consistent, meaning not each other's
negation.

31

Construction by Example
F=(xCyCz)C(-xCyLCz)C(-xC-yLC=2)

/ \

literal clause

An edge means ‘these two literals do not
contradict each other'. 32

Construction by Example

F=(xCyCz)C(-xCyLz)C(~-xC-yLC-2)
x=1,y=0,z=1

Any clique of size k must include exactly one literal

from each clause. s

General Construction

k 3
F:ﬂUG.-J- where a; O{x;,~ ..., X,, 7 X,}
i=1 j=1 X

G = (V,E) where literals

V={aq;:1<i<k 1< j<3}
E = {{a;, a;j} i#i' and q;; # -q;

i

k is the number of clauses

The Reduction Argument

- We need to show

- F satisfiable implies G has a clique of
size k.

+ Given a satisfying assignment for F, for each
clause pick a literal that is satisfied. Those
literals in the graph G form a k-clique.

- G has a clique of size k implies F is
satisfiable.

* Given a k-clique in G, assign TRUE to each

literal in the clique. This yields a satisfying
assignment to F (why?).

35

Clique to Assighment
F=(XCyC2z)C(-xCyLz)C(~-xC-yL-2)

36

Assignment to Clique (2-CNF)
F=(XCY)L(-XCy)C(=-xCay)C(xCAy)

G has no 4-cligue > no assignment exists.
What is the max-clique size?
How does this value related to the formula?

The Vertex Cover Problem

* A vertex cover for a graph G is a set of
vertices incident to every edge in G

* The vertex cover problem: what is the
minimum size vertex cover in G?

* Restated as a decision problem: does a
vertex cover of size k exist in G?

* Theorem: vertex cover is NP-Complete

38

Vertex Cover (Example)

A vertex cover of size 5

A vertex cover of size 4

39

Clique - Vertex Cover

* First, show vertex cover in NP (How?)

* Next, reduce k-clique to vertex cover:

- The complement &, of a graph G contains exactly
those edges not in G

- Compute G, in polynomial fime
- Claim: G has a clique of size k iff G, has a vertex
cover of size |V| - k

G G p

Clique - Vertex Cover

Claim: If G has a clique of size k, then G, has a
vertex cover of size |V| - k

+ Let V' be the k-clique
* Then V-V'is a vertex cover in G,
- Let (u,v) be any edge in G,
- Then u and v cannot both be in V' (why?)

- Thus at least one of uor visin V-V' (why?), so
the edge (u,v) is covered by V-V’
- Since frue for anyedge in 6., V-V'is a VC.

G G

4

Clique - Vertex Cover

Claim: If G, has a vertex cover V' OV, with |V'|=|V] - k,
then G has a clique of size k

- ForalluvOV,if (uv) 06, thenuOV or
v O V' or both (Why?)

- Inother words: if ud V'and v O V', then (uv) O E

- Therefore, all vertices in V-V' are connected by an
edge, thus V-V' is a clique
- Since |V| - |V'| = k, the size of the clique is k

G G 9

The Traveling Salesman Problem:

- A well-known optimization problem:

- Optimization variant: a salesman must travel fo n
cities, visiting each city exactly once and finishing
where he begins. How fo minimize travel time?

- Model as complete graph with cost c(i,j) o go from
city i to city j
+ How would we turn this into a decision
problem?
- Answer: ask if there exists a path with cost < k

The Traveling Salesman

Problem:
- Asides:
- TSPs (and variants) have enormous
practical importance
+ E.g., for shipping and freighting companies
* Lots of research into good approximation
algorithms
- Recently made famous as a DNA
computing problem

Hamiltonian Cycle = TSP

* The hamiltonian-cycle problem: given a graph G, is
there a simple cycle that contains every vertex?

* To transform ham. cycle problem on graph
G = (V,E) to TSP, create graph G' = (VE):

+ G'is a complete graph

+ Edges in E' also in E have cost 0

* All other edges in E' have cost 1

* TSP: is there a TS cycle on G' with cost 0?
- If 6 has a ham. cycle, G' has a TS cycle with cost O

- If 6' has TS cycle with cost O, every edge of that
cycle has cost 0 and is thus in 6. Thus, G has a
ham. cycle.

Other NP-Complete Problems

* Partition: Given a set of integers, whose

total sum is 2S, can we partition them into
two sets, each adds up to S?

+ Subset-sum: Given a set of integers, does

there exist a subset that adds up to some
target T?

* Graph coloring. can a given graph be

colored with & colors such that no adjacent
vertices are the same color?

46

Independent Set

* Input: A graph 6=(V,E), k
+ Problem: Is there a subset S of V of size at least

k such that no pair of vertices in S has an edge
between them.

* Maximum independent set problem: find a
maximum size independent set of vertices.

Maximal Maximum

independent set independent set
47

Steiner Tree

* Input: A graph 6=(V,E), a subset T of the

vertices V, and a bound B

* Problem: Is there a tree connecting all the

vertices of T of total weight at most B?

- Application: Network design and wiring

layout.

* The case T=V is polynomially solvable (this

is the MST problem).

48

Exact Cover

* Input: A set U= {uju,,..u,} and subsets
S.,S,,...,5. 0U
» Output: Determine if there is a set of

disjoint sets that union fo U, that is, a set
X such that:

Example of Exact Cover
U={a,b,c,d,e,f,gh,i}

{a,c,e}.{a,f,q},{b,d},{b,f.h} {e,h,i},{f.h,i}.{d,g,i}

Exact Cover:

{a,c,e},{b,f,h},{d,qg,i}

X0O{,2,...m}
i,jO0Xand i# j impliesS n S;=®
s =U
iOX
3-Partition

» Input: A set of numbers A={q,.q,,...,0;5,}
and a number B such that B/4 < q; < B/2 and

3m
> a,=mB.
i=1

* Output: Determine if A can be partitioned
into Sy, S,,..., Sy, such that for all i

>.a,=B.
S
Note: each S, must contains exactly 3 elements.

51

Example of 3-Partition

- A={26, 29, 33, 33, 33, 34, 35, 36, 41}
- B=100,m=3
+ 3-Partition:

- 26, 33,41

- 29, 36, 35

- 33,33, 34

52

Bin Packing

+ Input: A set of numbers A={q,,q,,....a,}
and numbers B (capacity) and K (number of
bins).

* Output: Determine if A can be partitioned
into Sy, S,,..., S¢ such that for all i

>.a,<B.

ios,

53

Bin Packing Example

- A={2,2,3,3,3,4,4,4,5,5,5}
- B=10,K=4
* Bin Packing:

-3,3,4

-2,3,5

-5,5

-2,4.4 Perfect fit!

Comments on NP-completeness
proofs

- hardest part -- choosing a good problem from
which to do reduction

- must do reduction from arbitrary instance

- common error -- backwards reduction.
Remember that you are using your problem as a
black box for solving known NPC problem

- freedom in reduction: if problem includes
parameter, can set it in a convenient way

- size of problem can change as long as it doesn't
increase by more than polynomial

55

Comments cont.

- When a problem is generalization of known NP-
complete problem, a reduction is usually easy.

+ Example: Set Cover

- given U, set of elements, and collection S, Ss,.., S, of
subsets of U, and an integer k

- determine if there is a subset W of U of size at most
k that intersects every set S,

+ Reduction from Vertex Cover

- U set of vertices
- S, is the ith edge

56

The Unsolvable Halting Problem

« For a given program P and input x, does P
halt on x?

Turing: The halting problem cannot be solved!

Proof: Assume that there is an algorithm
Halt(a, /) that decides if the algorithm
encoded by the string a will halt when given
as input the string /,

57

The Halting Problem

Consider the following program
Funny (s) // s is a string decoding a program.

if (Halt(s, s) = "no") return ("yes")
else {some infinite loop}

Note: Funny(s) halts < Halt(s, s)=no.

Let T be the string decoding the program Funny.
What is the output of Halt(T, T)?

If the output is 'No' then Halt (T,T)= Yes

If the output is 'Yes' then Halt (T,T)= No

58

