CSEP 521 - Applied Algorithms Graph Algorithms -reading

Graph AIgoriThms Minimum Spanning Tree:
CLR: chapter 24 (1st ed.) or 23 (2" ed.)

Skiena: section 4.7

Minimum Spanning Tree

Graph Coloring Graph Coloring:
Skiena: section 4.5.3 (very brief)

Minimum Spanning Tree Example of a Spanhing Tree

* Each edge has a cost.

* Find a minimal-cost subset of edges that
will keep the graph connected. (must be a
ST).

Price of this tree = 18+19+4+10+17+64

Minimum Spanning Tree Problem

* Input: Undirected connected graph G =
(V,E) and a cost function C from E to the
reals. C(e) is the cost of edge e.

* Output: A spanning tree T with minimum
total cost. That is: T that minimizes

C(M) =) Cle)

edT

« Another formulation: Remove from G

edges with maximal total cost, but keep
G connected.

Minimum Spanning Tree

* Boruvka 1926

» Kruskal 1956

* Prim 1957 also by Jarnik 1930
- Karger, Klein, Tarjan 1995

- Randomized linear time algorithm

- Probably not practical, but very
interesting

Minimum Spanning Tree Problem

- Definition: For a given partition of V into
U and V-U, the cut defined by U is the
set of edges with one end in U and one
end in V-U.

U \&T”’— V-U

N

i

The cut defined by U

An Algorithm for MST

* The algorithm colors the edges of the

graph. Initially, all edges are black.

* A blue edge - belongs to T.
* A red edge - does not belong to T.
+ We continue to color edges until we have

n-1 blue edges.

+ How do we select which edge to color

next? How do we select its color?

The Blue/Red Edge-coloring Rules

« The blue rule: Find a cut with no blue
edge. Color blue the cheapest black edge
in the cut.

* The red rule: Find a cycle with no red
edge. Color red the most expensive black
edge in the cycle.

> These rules can be applied in any order.
> We will see two specific algorithms.

Example of Blue/Red rules (1)

Consider the cut defined by {2,3}
- color (1,2) blue

10

Example of Blue/Red rules (2)

Consider the cycle (7-5-4)
- color (4,5) red

11

Example of Blue/Red rules (3)

Consider the cut defined by {3,5,6}
- color (5,7) blue

12

Example of Blue/Red rules (4)

Consider the cycle (1-2-7-5)
- color (1,5) red

13

Example of Blue/Red rules (5)

Consider the cycle (1-2-7-5-6)
- color (2,7) red.

14

Example of Blue/Red rules (6)

Consider the cut defined by {4}
- color (4,7) blue

15

Example of Blue/Red rules (7)

Consider the cut defined by {6}
- color (5,6) blue

16

Example of Blue/Red rules (8)

Consider the cut defined by {3}
- color (2,3) blue

17

Example of Blue/Red rules (9)

Consider the cut defined by {1,2,3}
- color (1,6) blue

18

Example of Blue/Red rules (10)

Final MST

19

Proof of Blue/Red Rules

* Claim: for any k = 0, after we color k

edges there exists an MST that includes
all the blue edges and none of the red
edges.

* Proof: By induction on k.
* Base: k=0 trivially holds.
- Step: Assume this is true after we color

k-1 edges e, e,,...e,;. Consider the
coloring of e,.

20

Case 1. Applying the Blue Rule

C(u,v) is minimal

21

Case 1. Applying the Blue Rule

T C(u,v) is minimal
C(u.v) < C(xy)

If (uv)OT, then T must includes some other edge
(x,y) in the cut defined by U (T is connected, so
there is a path u—v). 2

Case 1. Applying the Blue Rule

Consider T' = T O (u,v) -(x.y)

T is also a minimum

C(T)=C(T) + C(uy) - C(x.y) spanning tree, and it
C(T) < €(T) includes e,

23

Case 2: Applying the Red Rule

C(u,v) is maximal
in some cycle

Assume (u,v)OT.

By removing (u-v) from T we get two components.

24

Case 2: Applying the Red Rule

C(u,v) is maximal
in some cycle

The cycle that causes us to color (u-v) red includes an
edge connecting the two component (whose cost is af
most c(u,v).

=>» There is an alternative MST, that does not include &y

One more point: We can always proceed

Select an edge e.

*If e connects two blue *Otherwise, e closes
sub-trees, then there isa acycle in which e is
cut without any blue edge the most expensive
and we can run the blue edge (why?) so we
rule on this cut. can color e red.

26

Kruskal's Greedy Algorithm

Sort the edges by increasing cost;
TInitialize T o be empty:
For each edge e chosen in increasing order do
if adding e does not form a cycle then
addeto T

Proof: The algorithm follows the blue/red rules:
*If e closes a cycle - apply the red rule (by the
sorting, e is the most expensive in this cycle).
*Otherwise - apply the blue rule (e connects two
components, consider the cut defined by any of
them. e is the cheapest edge in this cut)

27

Example of Kruskal 1

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

28

Example of Kruskal 2

4}{2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
1 1 2 2 3 3 3 3 4

29

Example of Kruskal 2

4} {21} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
1 1 2 2 3 3 3 3 4

30

Example of Kruskal 3

*((i} ﬁi}{%i{%} {5,4} {1,6}{2,7} {23} {3.4} {1,5}
1 1 2 2 3 3 3 3 4

31

Example of Kruskal 4

X((,i} &Q{%Q{BQ{SA} {1,6}{2,7}{2,3} {3.4} {1.5}
1 1 2 2 3 3 3 3 4

32

Example of Kruskal 5 Example of Kruskal 6

ﬁ(i} &Q{%Q{EQ 4}{1,6} {2,7}{2,3} {3.4} {15} ﬁ(i} ixi}{%g{%i} A}Tﬂi} {2,7}{2,3}{3.4} {15}
1 1 2 2 3 3 3 3 4 1 1 2 2 3 3 3 4

33 34

Example of Kruskal 7 Example of Kruskal 8

X((i} ixi}{%i{‘fﬁ} A}Tig &Q{z,s} {3,4} {1,5} ﬁé} ixi}{%i{%i} ,4}Ti§6\} EXQ&Q {3,4} {1,5}
1 1 2 2 3 3 3 4 1 1 2 2 3 3 3 4

35 36

Example of Kruskal 9

ﬁ(i}ixi}{%i{%ﬁ} 4}?@}&{%{} {54\}{\§
1 1 2 2 3 3 3 4

Data Structures for Kruskal

- Sorted edge list

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

- Disjoint Union / Find
- Union(a,b) - union the disjoint sets
named by aand b

- Find(a) returns the name of the set
containing a

Remark: The set name is one of its members
38

Example of DU/F (1)

*((i} ixi}{%g{%i}{azt} {1,6}{2,7}{2,3} {3.4} {1.5}
1 1 2 2 3 3 3 3 4

u,v in the same set > (u,v) is not added to T w0

Find(5) = 7
Find(4) = 7

Example of DU/F (2)

X((,i} &Q{W{kﬁ}w{m {2,7}{2,3} {3.4} {1.5}
1 1 2 2 3 3 3 3 4

uv in different sets - add (u,v) to T, union the sets.

Find(1) = 1
Find(6) = 7

Example of DU/F (3)

Union(1,7)

X((i} &Q{W{kﬁ}w{\gm} {2,3} {34} {15}
1 1 2 2 3 3 3 3 4

4

Kruskal's Algorithm with DU / F

Sort the edges by increasing cost;
Initialize T to be empty:
for each edge {i,j} chosen in increasing order do
u := Find(i);
v := Find(j):;
if (u#v)then
add {i,j}to T;
Union(u,v);

a2

Amortized Complexity

- Disjoint union/find can be implemented
such that the average time per operation is
essentially a constant.

* An individual operation can be costly, but
over time the average cost per operation is

not.

On average, each U/F operation takes

| O(m time.

<l

Ekerman function.
Practically, this is

a constant.

Evaluation of Kruskal

* G has n vertices and m edges.
» Sort the edges - O(m log m).
* Traverse the sorted edge list using

efficient UF - O(m a(m,n)).

* Total time is O(m log m).

Prim's Algorithm

+ We maintain a single tree.
* Initially, the tree consists of one vertex.

« For each vertex not in the tree maintain the

cheapest edge to a vertex in the tree (if

exists).

Prim's Algorithm 2

46

47

Prim's Algorithm 4

48

Prim's Algorithm 5

49

Prim's Algorithm 6

50

Prim's Algorithm 7

51

Correctness Proof for Prim

- Repeatedly executes the blue rule (n-1

times).

* In each step we consider the cut defined

by the vertices that are already in T.

52

Data Structures for Prim

- Adjacency Lists - we need to look at all the
edges from a newly added vertex.

* Array for the best edges to the tree.

12 345 67
to 2 1112
COSt 3 413|3

Data Structures for Prim

* Priority queue for all edges to the tree (orange
edges).
- Insert, delete-min, delete (e.g. binary heap).

12 345 67 12 345 6
to 2 1112 to 2|7\7]1
cost 3 4133 cost 3/0]1]3
Evaluation of Prim Kruskal vs Prim
* nvertices and m edges. * Kruskal
» Priority queue O(log n) per operation. - Simple

*+ O(m) priority queue operations.

- An edge is visited when a vertex incident
o it joins the tree.

+ Time complexity is O(m log n).
- Storage complexity is O(m).

55

- Good with sparse graphs - O(m log m)
* Prim
- More complicated

- Perhaps better with dense graphs -
O(m log n)

Note: O(log n)= O(log m) (since m<n?)

56

Graph Coloring

A problem that has lots of applications:
- Resource Allocation
- VLST design

- Parallel computing

Definition: A coloring of a graph G(V,E) isa
function c:V-> N such that for any edge
(uv) OE, c(v) #zc(u)

57

Graph Coloring

Example: coloring with 4 colors.

Problem: Given a graph G, color
G using the minimal number of
colors.

Example: same graph, 3 colors.

Definition: The chromatic number
of a graph (denoted x(6)) is the
minimal number of colors needed

to color G.
58

The Map Coloring Problem

How many colors are
needed in order to
color a geographic
map in such a way
that neighboring
countries get
different colors?

The Map Coloring Problem

The map coloring problem can be reduced to finding
the maximal chromatic number of a planar graph (a
graph that can be drawn such that no fwo edges
cross each other).

Vertices: the countries.

Edges: between neighboring
countries.

For long, this was an open problem.

1852 - five colors are always enough, three is not
enough (some maps require at least four colors).

1922 - four colors are enough for maps with at
most 25 regions.

60

1976 - four colors are always enough.

Graph Coloring and Resource
Allocation

Example: 9 groups of PMP students are learning 5
courses in a quarter.

The course CSEP501 is taken by groups 1,2,3

The course CSEP502 is taken by groups 6,7

The course CSEP503 is taken by groups 1,2,7,9
The course CSEP504 is taken by groups 4,6,8
The course CSEP505 is taken by groups 2,3,4,5

David Rispoli wants to schedule the exams such
that no group will have more than one exam in one
day, and the length of the exam period will be as

short as possible. o

Graph Coloring and Resource
Allocation

Reduction to a coloring problem:
Vertices: courses.

Edges: there is an edge between CSEP; and CSEP; if
there is a group of students that needs to
participate in both exams.

Possible solution:

Day 1: 501,502

Day 2: 505

Day 3: 503,504

62

Graph Coloring and Resource
Allocation

Generally, given a resource allocation problem:
Vertices: processes that need resources.

Edges: between conflicting processes (that require
a shared resource). This ensures that the two
processes will not be scheduled simultaneously.

A coloring that uses k colors induces a partition
of the processes into k phases.

Processes with the same color can be executed
together - in the same phase.

63

2-colorable Graphs

Definition: A graph is k-colorable if it has a coloring
with k colors.

Theorem: A graph is 2-colorable < it does not
include a cycle of odd length.

Proof:

1. (=) Let G be colored with the colors 1,2. Assume
that G includes a cycle of length 2j+1. W.l.o.g v, is
colored with 1. It must be that for any even i v; is
colored 2, and for any odd i v; is colored 1.
Therefore, the two endpoints of (v;-v,;,1) are
colored 1. A contradiction.

2. (0) Homework...

The Chromatic Number

Let A(G) be the maximal degree of a vertex in G.
Theorem: For any graph G, X(6) < A(6)+1

Proof: Lets color the graph using at mast A(G)+1 colors:
Consider a list of the vertices in an arbitrary order.
For each vertex in the list, determine c(v) to be the
minimal integer which is not a color of any of the
already-colored neighbors of v.

-This is a legal coloring: by definition, the color of v is
different than the color of each of its neighbors.

- At most A(G)+1 colors are used: when v is colored, at
most A(G) neighbors of v are already colored.

65

The Chromatic Number

Remark: For some order of the vertices, this
algorithm uses x(6) colors.

Does it help us to find x(6)? practically, no!

We can check all the orderings, but this will take
O(n'n!) which is a lot (next week we will define more
formally why this is considered 'a lot").

Brook's Theorem: If G is not a complete graph nor a
cycle of odd length, then x(6) < A(G).

66

