CSEP521 - Applied Algorithms

Maximum Flow

Reading:
- Skiena, Section 8.4.9

+ CLRS, chapter 27 (15t Ed.)
chapter 26 (2" Ed.)

Maximum Flow

* Input: a directed graph (network) 6
- each edge (v,w) has associated capacity c(v,w)
- a specified source node s and target node t

* Problem: What is the maximum flow you can route
from s to t while respecting the capacity constraint
of each edge?

‘i:‘\
./ Core

C—>C .

Max-flow Outline:

- properties of flow
* Augmenting paths

« max-flow min-cut theorem
« Ford-Fulkerson method

* Edmonds-Karp method

- Applications, bipartite matching and more.
* Variants: min cost max flow

Properties of Flow:
f(v,w) - flow on edge (v,w)

+ Edge condition: O < f(v,w) < c(v,w) : the flow through
an edge cannot exceed the capacity of an edge

+ Vertex condition: for all v except s,t:
%, fluv) =%, f(v,w): the total flow entering a
vertex is equal to total flow exiting this vertex.

+ total flow leaving s = total flow entering t.

® >® Notation on edges
\ f(v w)/ c(v,w)
3/7k 2/4 2
Not a Y 3/4
maximum 4

flowl ‘ > ‘

Cut

Cut - a set of edges that separates s from t.

A cut is defined by a set of vertices, S. This set
includes s and maybe additional vertices reachable
from s. The sink t is not in S.

*+ The cut is the set of edges (u,v) such that u 0S
and vOS.

S V-S

out(S) - edges in the cut directed from S to V-S
in(S) - edges in the cut directed from V-S to S

Value of a Flow:

A flow function f is an assignment of a real number f(e)
to each edge e such that the edge and vertex
conditions hold for all the vertices/edges.

Definition: The value of the flowis F= > f(e)- > f(e).

elout (s) efin(s)

Claim: for any cut St F= > fle)- > f(e)
) (s)

efout(s elin

Proof: By summing the vertex rule for all the

vertices in S. [
*In particular, for S=V-{t}: F= Zf(e)— Zf(e).
elin(t) elout(t)

Capacity of a cut

For a cut S, the capacity of S is c(S) = Zc(e),
ellout(S)

Lemma: For every flow function f, with total flow F,
and every cut S, F < ¢(S).

Proof: We know that F= > fle)- > fle).

eCout(s) elin(s)
By the edge condition, O < f(e) < c(e), UelE. Thus,

F< Y cle)-0=¢(s)

elout (S)

Max-flow Min-Cut Theorem

The value of a maximum flow in a
network is equal o the minimum
capacity of a cut.

Proof: follows from the previous lemma.

An augmenting path with respect to a
given flow f:

A directed path from s to t which consists of edges
from G, but not necessarily in the original
direction. Each edge on the path is either:

+ forward edge: (w,u) in same direction as 6 and
f(w,u) < c(w,u). (c(w,u)-f(w,u) called slack) = has
room for more flow.

backward edge: (u,v) in opposite direction in 6
(i.e., (v,u) in E) and f(v,u) > O > can 'take back' flow

from such anedge. @ 34, .&

augmenting path

s-w-u-v-t ‘

Using an augmenting path to
increase flow

* Push flow forward on forward edges, deduct
flow from backward edges.

p = s-a-c-b-d-t

*The amount of flow we can push:

minimum{ slacks along the forward edges on the path
flow along the backward edges on the path

10

The Ford-Fulkerson Method

+ Initialize flow on all edges to O.

While there is an augmenting path, improve the
flow along this path.

To implement F&F, we need a way o detect
augmenting paths.

We build a residual graph with respect to the
current flow.

11

Residual Graph w.r.t. flow f

* Given f, we build the residual graph: a network
flow R=(V,E")
An edge (v,w)OE' if either

- (v,w) is a forward edge, and then its capacity
in R is c(v,w)-f(v,w)

- or (v,w) is a backward edge (that is, (w,v) is
an edge with positive flow in G) , and then its
capacity in R is f(w,v).

An augmenting path is a reqular directed path
from s to t in R.

12

Ford-Fulkerson Method (G,s,t)

TInitialize flow on all edges to O.

While there is a path p from s to t in residual
network R

d = minimum capacity along p in R
augment d units of flow along p and update R.

13

Ford-Fulkerson Method. Example (1)

Example taken from the book Graph Algorithms
by Shimon Even

The given network,
with initial all-0
flow.

First augmenting path: s(1% -c[1% -d1% —a[1% b1 -t

o=4 Remark: in the first iteration R=6.

14

Ford-Fulkerson Method. Example (2)

The network after
applying the first
augmenting path:

15,0

The residual @ @
network: @ @
(complete in class) @ @

15

Ford-Fulkerson Method. Example (3)

Second augmenting path: s -all -b »cl ~d -+

6=3

16

Ford-Fulkerson Method. Example (4)

The flow after

applying 2nd
augmenting path:

The residual

network: @

(complete in class) @

17

Ford-Fulkerson Method. Example (5)

Third augmenting path: s -al -bl -t

6=3

18

Ford-Fulkerson Method. Example (6)

The flow after

applying 3rd
augmenting path:

The residual
network: @

(complete in class) @

19

Ford-Fulkerson Method. Example (7)

Forth augmenting path: s_.a&0 dIl -t

0=4

20

Ford-Fulkerson Method. Example (8)

Final flow:

{s,ab}isa
saturated
min-cut

There are no paths e () (b)
connecting s and t in

the residual network e

21

Proof of Ford-Fulkerson Method.

Claim: The flow after each iteration is legal

Proof: The initial assignment (of f(e)=0 for all e) is
clearly legal.

Let p be an augmenting path. Let 6 be the minimum
capacity along p in R.

Vertex condition: For each vOp, the flow that passes v
does not change. For each vOp (v # s,t), exactly one
edge of p enters v and exactly one edge of p goes
out of v. In each of these edges the flow increase
by 6. The value of in.(v)-outs(v) remains O.

Egde condition: preserved by the selection of &

Note: this is an induction on the number of iteration. »

Proof of Ford-Fulkerson Method.

Theorem: A flow f is maximum iff it admits no
augmenting path

Already saw that if an augmenting path exists,
then the flow is not maximum (can be
improved).

Suppose f admits no augmenting path. We need
to show that f is maximum.

We use the min-cut max-flow theorem: we will
see that when no augmenting path exists, some
cut is saturated.
)7
s (]
(s) ‘ ()

1 23

Proof of Ford-Fulkerson Method.

Let A be the vertices such that for each vOJA, there
is an augmenting path from s to v.

The set A defines a cut.
Claim: for all edges in cut, f(v,w)=c(v,w).
Proof: if f(v,w) c(v,w) then w should join A.

Therefore: The value of the flow is the capacity of
the cut defined by A > (min cut theorem) f is
maximum.

24

Running time of Ford-Fulkerson

Each iteration (building R and detecting an
augmenting path) takes O(|E|) (how?).

How many iterations are there?

M M
Could be f* when f*
is the value of the

S ' 1 ‘ t
maximum flow. > /
@ M

The time complexity of F&F is O(|E|f*), when f* is

the value of the maximum flow.
25

Edmonds-Karp Algorithm:

Use F&F method. Search for augmenting path
using breadth-first search, i.e., the augmenting
path is always a shortest path from s to t in the
residual network.

Theorem: This way, the number of augmentations is
O(|VIIEI).

The resulting complexity: O(|V||E|?)
(each iteration takes O(|E|))

26

Drawback of Augmenting-path
Algorithms

Any algorithm based on augmenting paths seems
to be inefficient here. There are O(n) very
similar iterations.

27

Fastest max-flow algorithms:
preflow-push

+ Flood the network so that some nodes have
excess or buildup of flow

« algorithms incrementally relieve flow from
nodes with excess by sending flow fowards
sink or back towards source.

28

Some applications of max-flow
and max-flow min-cut theorem

- Bipartite matching

* Network connectivity
* Video on demand

29

Matching

+ Definition: a matching in a graph G is a
subset M of E such that the degree of
each vertex in G'=(V',M) is O or 1.

+ Example: M={(a,d),(b.e)} is a matching.
S={(a,d), (c,d)} is not a matching.

30

Bipartite Matching

‘Example 1: In a party there are n; boys and n, girls.
Each boy tells the DJ the girls with whom he is
ready to dance with. Each girl tells the DJ the boys
with whom she is ready to dance with.

- DJ's goal: As many dancing pairs as possible.

- Note: This has nothing to do with the stable pairing problem.
No preferences. Some participants can remain lonely (even if
n=n,).

‘Example 2 (production planning) : n, identical
servers need to serve n, clients. Each client
specifies the subset of servers that can serve him.

- Goal: Serve as many clients as possible.

31

Bipartite Matching
Graph representation: G=(V E).
V=V, 0V,
|Vi|=n, (boys, clients), |V,|=n, (girls, servers).

In 1st problem (u,v) CE, if u is ready to dance with v and
vice versa.

In 2nd problem (u,v) OE, if u can be served by v.
This is a bipartitel

We are looking for the largest possible matching.

32

Bipartite Matching

+ Input: a bipartite graph 6=(V; O V,, E)
* Goal: A matching of maximal size.

@® ® O ® O @
@® ® O ® e @®
@® ® O ®@ e @®
A matching A maximal A maximum
matching - matching -
can not be

largest maximal.

extended.

Our goal !

33

Bipartite Matching

Vi Vs
® @ Srecial cases:
*A perfect matching: [M[=]|V,|=|V

® ® P ing: |M|=|Vy|=[V,]

(An ideal instance and solution for
® ® problem 1)
® ® *A full matching for Vi: [M|=|V;[<|V,]

® (what we need in problem 2)

Maximum matching in a bipartite can be found using
flow algorithms.

Using Flow for Bipartite Matching

Input: A bipartite 6=(V,; O V,, E)
Output : Maximum matching MOE.
Algorithm:
1. Build a network flow N=(V' E")
V=V,0V,0{s,1}
E=EO{(s-u)| OulVy} O{(v-1)| OvOV,}
All e O E' have the capacity c(e)-=1.
2. Find a maximum flow in N.
3. M = saturated edges in the cut defined by {s,V}.

35

Using Flow for Bipartite Matching

(Example)
6=(V, O V,, E) N=(V' E")
Vi V2 Vi V2

V=V, 0V,0{s,t}

E=EO{(s-u)| DuOVy}
O0{(v-1)| OvOV,}

For all e O E', c(e)=1.

36

Using Flow for Bipartite Matching
(proof)

Theorem: G includes a matching of size k = N
has flow with value k.

Proof:

1. (=) Given a matching of size k, define the flow
f(uv)=1forall (u,v)in M, all all (s,u) and (v,1)
such that u or v are matched. For all the other
edges f=0.

*F is legal (why?)

*The value of f is k (consider the cut {s} O V,).

2.(0) Similar. Based on the capacities of the
edges (s,u), (v,1), and the fact that f is legal.

37

Network Connectivity

+ What is the minimum number of links in the

network such that if that many links go down,
it is possible for nodes s and t to become
disconnected?

+ What is the minimum number of nodes in the

network such that if that many nodes go down,
it is possible for nodes s and t to become
disconnected?

38

Video on Demand

+ m storage devices (e.g., disks), The ith disk is
capable of supporting b; simultaneous streams.

+ k movies, one copy of each on some of the disks
(this assignment is given as input).

* Given set of R movie requests, (r; requests to
movie j) how would you assign the requests to
disks so that no disk is assigned more than b;
requests and the maximum number of requests is
served?

39

Video on Demand

movies disks

s /‘ '\

c(e)=r; 1 c(e)= b,

A copy of movie j

on disk i. c(e)= » N

Other network flow problems:

1. With lower bounds on flow.
For each (vw): 0<lIb(vw) < f(vw) < c(vw)
Not always possible:

S (5,10)

v
® - @

2. Minimum flow

- Want to send minimum amount of flow from source
to sink, while satisfying certain lower and upper
bounds on flow on each edge.

(24)

t
> @

4

Other network flow problems:

3. Min-cost max-flow

Input: a graph (network) G where each
edge (v,w) has associated capacity c(v,w),
and a cost cost(v,w).

Goal: Find a maximum flow of minimum cost.
+ The cost of a flow :
2 fvwpo €ost(vw)f(v.w)

Out of all the maximum flows, which has minimal
cost?

a2

Min-cost max-flow -
Disk head scheduling

* Have disk with 2 heads, and sequence of
requests to read data on disk at locations
ly,.... 1, (in this order).

« How to schedule movement of disk heads
so as to minimize total head movement?

1 1

Disk head scheduling

q.r are the starting points
M is a very large integer.
Additional edges:

@ —®

0i; c=1, cost=dist(q,l;)
0i; c=1, cost=dist(r,l))

0j>i; ¢=1, cost=dist(l;];)

44

Weighted Assignment

Production planning : n, servers need to serve n,
clients. Each client specifies for each server how
much he is ready to pay in order to be served by this
server (this is given by revenue(client, server)).

* Goal: Maximize the profit.

. . o

cost(e)=0 c(e)= 1, cost(e)=0
cost(e)= -revenue(u,v) e

Classical application:
Transportation Problem

+ Firm has p plants with known supplies, q

warehouses with known demands.

+ Want to identify flow that satisfies the demands

at warehouses from available supplies at plants and
minimizes shipping costs.

* Min cost flow yields an optimal production and

shipping schedule.

46

Example: Two plants, Two retailers,
n car models.

P1/Model 1 r]JModeIl

PIant 1 P2/Mode| 1 r2/ MOdN ri

/'
\

P2/Mod
r2/ Model n

Plant 2 PUModél n ry Mo}<é/

o

cost 0 production cost shipping cost 0 0

capacity iImposed

cap max production by dist’n channel | model demand | Retailer d#émand

