CSEP521 - Applied Algorithms

Maximum Flow

Reading:

- Skiena, Section 8.4.9
- CLRS, chapter 27 (1st Ed.) chapter 26 (2nd Ed.)

Max-flow Outline:

- · properties of flow
- Augmenting paths
- · max-flow min-cut theorem
- Ford-Fulkerson method
- · Edmonds-Karp method
- Applications, bipartite matching and more.
- Variants: min cost max flow

Maximum Flow

- Input: a directed graph (network) G
 - each edge (v,w) has associated capacity c(v,w)
 - a specified source node s and target node t
- Problem: What is the maximum flow you can route from s to t while respecting the capacity constraint of each edge?

2

Properties of Flow: f(v,w) - flow on edge (v,w)

- Edge condition: $0 \le f(v,w) \le c(v,w)$: the flow through an edge cannot exceed the capacity of an edge
- Vertex condition: for all v except s,t: Σ_u f(u,v) = Σ_w f(v,w): the total flow entering a vertex is equal to total flow exiting this vertex.
- total flow leaving s = total flow entering t.

Cut

Cut - a set of edges that separates s from t.

- A cut is defined by a set of vertices, S. This set includes s and maybe additional vertices reachable from s. The sink t is not in S.
- The cut is the set of edges (u,v) such that $u \in S$ and $v \notin S$.

out(S) - edges in the cut directed from S to V-S in(S) - edges in the cut directed from V-S to S

Value of a Flow:

A flow function f is an assignment of a real number f(e) to each edge e such that the edge and vertex conditions hold for all the vertices/edges.

Definition: The value of the flow is $F = \sum_{e \in \text{out}(s)} f(e) - \sum_{e \in \text{in}(s)} f(e)$.

Claim: for any cut S:
$$F = \sum_{e \in out(S)} f(e) - \sum_{e \in in(S)} f(e)$$
.

Proof: By summing the vertex rule for all the vertices in S.

•In particular, for S=V-{t}:
$$F = \sum_{e \in in(t)} f(e) - \sum_{e \in out(t)} f(e)$$
.

6

Capacity of a cut

For a cut S, the capacity of S is $c(S) = \sum_{e \in out(S)} c(e)$.

Lemma: For every flow function f, with total flow F, and every cut S, $F \le c(S)$.

Proof: We know that $F = \sum_{e \in \text{out}(S)} f(e) - \sum_{e \in \text{in}(S)} f(e)$.

By the edge condition, $0 \le f(e) \le c(e)$, $\forall e \in E$. Thus,

$$F \leq \sum_{e \in \text{out}(S)} c(e) - 0 = c(S).$$

Max-flow Min-Cut Theorem

The value of a maximum flow in a network is equal to the minimum capacity of a cut.

Proof: follows from the previous lemma.

An augmenting path with respect to a given flow f:

A directed path from s to t which consists of edges from G, but not necessarily in the original **direction**. Each edge on the path is either:

forward edge: (w,u) in same direction as G and f(w,u) < c(w,u). $(c(w,u)-f(w,u) \text{ called slack}) \rightarrow \text{has}$ room for more flow.

backward edge: (u,v) in opposite direction in G (i.e., (v,u) in E) and $f(v,u) > 0 \rightarrow can 'take back' flow$

Using an augmenting path to increase flow

· Push flow forward on forward edges, deduct flow from backward edges.

•The amount of flow we can push:

minimum { slacks along the forward edges on the path flow along the backward edges on the path

10

The Ford-Fulkerson Method

- Initialize flow on all edges to 0.
- · While there is an augmenting path, improve the flow along this path.

To implement F&F, we need a way to detect augmenting paths.

We build a residual graph with respect to the current flow.

11

Residual Graph w.r.t. flow f

- · Given f, we build the residual graph: a network flow R=(V,E')
- · An edge (v,w)∈ E' if either
 - (v,w) is a forward edge, and then its capacity in R is c(v,w)-f(v,w)
 - or (v,w) is a backward edge (that is, (w,v) is an edge with positive flow in G), and then its capacity in R is f(w,v).
- · An augmenting path is a regular directed path from s to t in R.

Ford-Fulkerson Method (G,s,t)

Initialize flow on all edges to 0.

While there is a path p from s to t in residual network R

- δ = minimum capacity along p in R
- augment δ units of flow along p and update R.

Ford-Fulkerson Method. Example (1)

Example taken from the book Graph Algorithms by Shimon Even

The given network, with initial all-0 flow.

First augmenting path: $s \xrightarrow{e_2} x \xrightarrow{e_6} x \xrightarrow{e_4} x \xrightarrow{e_3} x \xrightarrow{e_7} x t$

 $\delta = 4$

Remark: in the first iteration R=G.

14

Ford-Fulkerson Method. Example (2)

The network after applying the first augmenting path:

(a)

 \bigcirc

The residual network:

(complete in class)

 \bigcirc s

(c)

(

(t)

Second augmenting path: $s \longrightarrow a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow t$

δ = 3

15

Ford-Fulkerson Method. Example (4)

The flow after applying 2nd augmenting path:

The residual network:

(complete in class)

s

C

(a)

(t)

(b)

 $\left(\mathbf{d}\right)$

17

Ford-Fulkerson Method. Example (5)

Third augmenting path: $s \longrightarrow a \longrightarrow b \longrightarrow t$

 $\delta = 3$

18

Ford-Fulkerson Method. Example (6)

The flow after applying 3rd augmenting path:

a

(b)

The residual network:

network: (complete in class)

(c)

 $\left(\mathbf{d}\right)$

Ford-Fulkerson Method. Example (7)

Forth augmenting path: $s \longrightarrow a \leftarrow$

 $\delta = 4$

19

(t)

Ford-Fulkerson Method. Example (8)

Final flow:

{s,a,b} is a saturated min-cut

There are no paths connecting s and t in the residual network

21

Proof of Ford-Fulkerson Method.

Claim: The flow after each iteration is legal

Proof: The initial assignment (of f(e)=0 for all e) is clearly legal.

Let p be an augmenting path. Let δ be the minimum capacity along p in R.

Vertex condition: For each $v \notin p$, the flow that passes v does not change. For each $v \in p$ ($v \ne s,t$), exactly one edge of p enters v and exactly one edge of p goes out of v. In each of these edges the flow increase by δ . The value of $\inf_{s}(v)-\inf_{s}(v)$ remains 0.

Egde condition: preserved by the selection of δ

Note: this is an induction on the number of iteration, 22

Proof of Ford-Fulkerson Method.

Theorem: A flow f is maximum iff it admits no augmenting path

- Already saw that if an augmenting path exists, then the flow is not maximum (can be improved).
- Suppose f admits no augmenting path. We need to show that f is maximum.
- We use the min-cut max-flow theorem: we will see that when no augmenting path exists, some cut is saturated.

Proof of Ford-Fulkerson Method.

Let A be the vertices such that for each $v \in A$, there is an augmenting path from s to v.

The set A defines a cut.

Claim: for all edges in cut, f(v,w)=c(v,w).

Proof: if f(v,w) < c(v,w) then w should join A.

Therefore: The value of the flow is the capacity of the cut defined by $A \rightarrow$ (min cut theorem) f is maximum.

Running time of Ford-Fulkerson

Each iteration (building R and detecting an augmenting path) takes O(|E|) (how?).

How many iterations are there?

Could be f* when f* is the value of the maximum flow.

25

The time complexity of F&F is $O(|E|f^*)$, when f^* is the value of the maximum flow.

Edmonds-Karp Algorithm:

Use F&F method. Search for augmenting path using breadth-first search, i.e., the augmenting path is always a **shortest path** from s to t in the residual network.

Theorem: This way, the number of augmentations is O(|V||E|).

The resulting complexity: $O(|V||E|^2)$ (each iteration takes O(|E|))

26

Drawback of Augmenting-path Algorithms

Any algorithm based on augmenting paths seems to be inefficient here. There are O(n) very similar iterations

Fastest max-flow algorithms: preflow-push

- Flood the network so that some nodes have excess or buildup of flow
- algorithms incrementally relieve flow from nodes with excess by sending flow towards sink or back towards source.

Some applications of max-flow and max-flow min-cut theorem

- Bipartite matching
- Network connectivity
- · Video on demand

Matching

- Definition: a matching in a graph G is a subset M of E such that the degree of each vertex in G'=(V',M) is 0 or 1.
- Example: M={(a,d),(b,e)} is a matching.
 S={(a,d), (c,d)} is not a matching.

29

30

Bipartite Matching

- •Example 1: In a party there are n_1 boys and n_2 girls. Each boy tells the DJ the girls with whom he is ready to dance with. Each girl tells the DJ the boys with whom she is ready to dance with.
- DJ's goal: As many dancing pairs as possible.
- Note: This has nothing to do with the stable pairing problem. No preferences. Some participants can remain lonely (even if n_1 = n_2).
- •Example 2 (production planning): n_2 identical servers need to serve n_1 clients. Each client specifies the subset of servers that can serve him.
- Goal: Serve as many clients as possible.

Bipartite Matching

Graph representation: G=(V,E).

 $V=V_1 \cup V_2$.

 $|V_1|=n_1$ (boys, clients), $|V_2|=n_2$ (girls, servers).

In 1^{st} problem $(u,v) \in E$, if u is ready to dance with v and vice versa.

In 2^{nd} problem $(u,v) \in E$, if u can be served by v.

This is a bipartite!

We are looking for the largest possible matching.

Bipartite Matching

- Input: a bipartite graph $G=(V_1 \cup V_2, E)$
- · Goal: A matching of maximal size.

A matching A m mat

A maximal matching - can not be extended.

A maxim**um** matching – largest maximal.

Our goal!

33

Bipartite Matching

Special cases:

- •A perfect matching: $|M|=|V_1|=|V_2|$ (An ideal instance and solution for problem 1)
- •A full matching for V_1 : $|M| = |V_1| \le |V_2|$ (what we need in problem 2)

Maximum matching in a bipartite can be found using flow algorithms.

34

Using Flow for Bipartite Matching

Input: A bipartite $G=(V_1 \cup V_2, E)$

Output : Maximum matching M⊆E.

Algorithm:

1. Build a network flow N=(V',E')

$$V' = V_1 \cup V_2 \cup \{s,t\}$$

 $E' = E \cup \{(s \rightarrow u) | \forall u \in V_1\} \cup \{(v \rightarrow t) | \forall v \in V_2\}$

All $e \in E'$ have the capacity c(e)=1.

- 2. Find a maximum flow in N.
- 3. M = saturated edges in the cut defined by $\{s,V_1\}$.

Using Flow for Bipartite Matching (Example)

 $V' = V_1 \cup V_2 \cup \{s,t\}$ $E' = E \cup \{(s \rightarrow u) | \forall u \in V_1\}$ $\cup \{(v \rightarrow t) | \forall v \in V_2\}$

For all $e \in E'$, c(e)=1.

Using Flow for Bipartite Matching (proof)

Theorem: G includes a matching of size $k \Leftrightarrow N$ has flow with value k.

Proof:

- 1. (\Rightarrow) Given a matching of size k, define the flow f(u,v)=1 for all (u,v) in M, all all (s,u) and (v,t) such that u or v are matched. For all the other edges f=0.
- •F is legal (why?)
- •The value of f is k (consider the cut $\{s\} \cup V_1$).
- 2. (\Leftarrow) Similar. Based on the capacities of the edges (s,u), (v,t), and the fact that f is legal.

Network Connectivity

- What is the minimum number of links in the network such that if that many links go down, it is possible for nodes s and t to become disconnected?
- What is the minimum number of nodes in the network such that if that many nodes go down, it is possible for nodes s and t to become disconnected?

Video on Demand

- m storage devices (e.g., disks), The ith disk is capable of supporting b_i simultaneous streams.
- k movies, one copy of each on some of the disks (this assignment is given as input).
- Given set of R movie requests, (r_j requests to movie j) how would you assign the requests to disks so that no disk is assigned more than b_i requests and the maximum number of requests is served?

Video on Demand

A copy of movie j on disk i. $c(e)=\infty$

38

Other network flow problems:

- 1. With lower bounds on flow.
- For each (v,w): $0 \le lb(v,w) \le f(v,w) \le c(v,w)$
- Not always possible:

2. Minimum flow

 Want to send minimum amount of flow from source to sink, while satisfying certain lower and upper bounds on flow on each edge. Other network flow problems:

3. Min-cost max-flow

Input: a graph (network) G where each edge (v,w) has associated capacity c(v,w), and a cost cost(v,w).

Goal: Find a maximum flow of minimum cost.

· The cost of a flow:

 $\Sigma_{f(v,w)>0}$ cost (v,w)f(v,w)

Out of all the maximum flows, which has minimal cost?

41

Min-cost max-flow - Disk head scheduling

- Have disk with 2 heads, and sequence of requests to read data on disk at locations $l_1,...,l_n$ (in this order).
- How to schedule movement of disk heads so as to minimize total head movement?

Disk head scheduling

q,r are the starting points M is a very large integer. Additional edges:

 $\forall j > i; c=1, cost=dist(l_i, l_j)$

Weighted Assignment

Production planning: n_2 servers need to serve n_1 clients. Each client specifies for each server how much he is ready to pay in order to be served by this server (this is given by revenue(client, server)).

· Goal: Maximize the profit.

Classical application: Transportation Problem

- Firm has p plants with known supplies, q warehouses with known demands.
- Want to identify flow that satisfies the demands at warehouses from available supplies at plants and minimizes shipping costs.
- Min cost flow yields an optimal production and shipping schedule.

46

Example: Two plants, Two retailers, n car models.

