Welcome to
CSEP 521 - Applied Algorithms

Lecturer: Tami Tamir (tami@cs)
Office Hours: Mon. 9:20 - 10:00 pm
and by appointment

TA: David Richardson (daverich@cs)
Office Hours: Mon. 5:20 - 6:30 pm

Administrivia

- Books

- The Algorithm Design Manual. Steven Skiena

- Introduction to Algorithms. Cormen, Leiserson,
and Rivest (CLR)

* Most important resource: course web page

- http://www.cs.washington.edu/education/course
s/csepb21

* Papers and sections from other Books.
* Grading:

- Weekly problem sets - 50% (average of n-1
best).

- Final exam - 50%

Course Goals

* An appreciation for applications of
algorithmic techniques in the real world.

* A larger toolbox.

* A better sense of how to model problems
you encounter as well-known algorithmic
problems.

* A deeper understanding of the issues and
tradeoffs involved in algorithm design.

* Funl! Beauty!ll

Some Topics

* Graph algorithms.

* Analysis of algorithms

- Data structures

* NP-completeness

» Dynamic programming

* Linear Programming

* Greedy algorithms

* On-line algorithms

- Approximation algorithms

» Scheduling and Resource Allocation

Other Plan For Today

* Interested in suggestions, feedback, - Introduction - Skiena, chapter 1
constructive criticism. (E.g., fopics/depth
vs. breadth)

- Ask lots of questions! Participate! Offer * Cool lectures from CMU

opinions! - infro to "great theoretical ideas in
computer science”

- the stable marriage problem

Applied Algorithm Scenario Modeling
* What kind of algorithm is needed
Real world problem - Sorting or Searching
] - Graph Problem

Linear Programming

Abstractly model the problem Dynamic Programming

! - Clustering
- Algeb
Find abstract algorithm gebrd
I * Can I find an algorithm or do I have to
invent one

Adapt to original problem

Algorithm Design Goals

- Correctness
» Efficiency
» Simple, if possible.

Evaluating an algorithm

Mike: My algorithm can sort 106 numbers in 3 seconds.
Bill: My algorithm can sort 10® numbers in 5 seconds.

Mike: T've just tested it on my new Pentium IV processor.

Bill: T remember my result from my undergraduate
studies (1985).

Mike: My input is a random permutation of 1..106.

Bill: My input is the sorted output, so I only need to
verity that it is sorted.

10

Types of complexity

We should analyze separately 'good’ and ‘bad’ inputs.
Processing time is surely a bad measurelll
We need a 'stable’ measure, independent of the
implementation.

* A complexity function is a function T: N > N.

T(n) is the number of operations the algorithm
does on an input of size n.

* We can measure three different things.
+ Worst-case complexity

* Best-case complexity

* Average-case complexity

11

The RAM Model of Computation

Each simple operation takes 1 time step.
+ Loops and subroutines are not simple operations.

Each memory access takes one time step, and there
is no shortage of memory.

For a given problem instance:
Running time of an algorithm = # RAM steps.
Space used by an algorithm = # RAM memory cells

useful abstraction = allows us to analyze algorithms in
a machine independent fashion.

12

Big O Notation
+ Goal :

- A stable measurement independent of the machine.
+ Way:

- ignore constant factors.

+ f(n) = O(g(n)) if cig(n) is upper bound on f(n)

< There exist ¢, N, s.t. forany n=N, f(n)<clg(n)

4 5n2
n+120

Foralln=5
n+120 < 5n?

— n+120 = O(p2)

v

Q, © Notation

- f(n) = Q(g(n)) if cig(n) is lower bound on f(n)
< There exist ¢, N, s.t. forany n=N, f(n) = clg(n)

- f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n))

= There exist ¢y, ¢;, N, s.t. forn=N,

¢;g(n) = f(n) < c, g(n)

Examples:
Any positive f is Q(1)
4x2+100 = O(x?) 4x2+100 # O(x3) 123400 = 0(1)
4x2+100 = Q(x?) 4x2+100 = O(x3) 4x? + xlogx =0O(x?)
4x2+100 = O(x?) 4x2+100 = Q(x) 4x2-100 =0(x?)

14

Growth Rates

« Even by ignoring constant factors, we can
get an excellent idea of whether a given
algorithm will be able to run in a reasonable
amount of time on a problem of a given
size.

 The "big O" notation and worst-case
analysis are tools that greatly simplify our
ability to compare the efficiency of
algorithms.

15

Practical Complexity

250

——f(n)=n
—a—f(n) = log(n)
f(n) = nlog(n)
f(n) = n"2
—x—f(n) = n"3
—e—f(n) = 2"

0 %=
123456 7 8 91011121314151617 181920

16

Practical Complexity

500

Practical Complexity

f(n)

f(n) = log(n)
f(n) = n log(n)
f(n) = n"2
—x—f(n) = n"3
—e—f(n) = 2"

—— n
-

s === aa]
T T T

T T T
1234567 8 91011121314151617 181920

17

1000
——f(n)=n
—a—f(n) = log(n)
f(n) = n log(n)
f(n) = n"2
—x—f(n) = n"3
—e—f(n) =2
O a
18

Practical Complexity

5000 j /
4000

/ / ——f(n)=n
3000 —=—f(n) = log(n)

—x—f(n) = n"3
—e—f(n) =2

f(n) = nlog(n)
f(n) = n"2
2000
1000 Z//

0 ﬁvﬂﬂéﬁf-;ﬂwrﬂ%ﬂﬂ%

1 3 5 7 9 1 13 15 17 19

19

Big O Fact

* A polynomial of degree k is O(nk)
- Proof:
- Suppose f(h) = bynk + b, jnk-1+ +bn+ b,
* Let a = max; {b}
-f(nN)<ank+ankl+ _ +an+a
< kank < cnk (for c=ka).

20

Next Bunch of Slides Taken From:

Great Theoretical Ideas In Computer Science
€S 15-251

Professors
Steven Rudich and Bruce Maggs
Carnegie Mellon University

21

The future belongs to the
computer scientist who has

- Content: An up-to-date grasp of
fundamental problems and solutions

- Method: Principles and techniques to
solve the vast array of unfamiliar
problems that arise in a rapidly changing

field
®

1.

Course Content

- A survey of fundamental theoretical
ideas in Computer Science as they occur
in a variety of important applications.

- An introduction to discrete
mathematics, graph algorithm, and other
theoretical tools.

- Effective problem solving techniques.

23

A survey of fundamental
theoretical ideas in Computer
Science as they occur in a variety
of important applications

For example. ..

24

Growth Rates

Time

Input Size

25

Recursion

Recursion is an
important tool

in both

developing and

analyzing of

algorithms \
\

\

|

26

Randomization

27

Use of Randomization: Example

We are given a binary array of length 2n. Either all
the 2n entries are 'I's, or nare '0'and n are '1'.

How can we distinguish between the two cases?

Solution 1: Read the entries, until you cross a 'O’ or
until you see n+1'l's.

Worst case analysis: In the first case, or if all the
'O's are in the second part of the array: n steps.

[t[a]2]2]2]2]1]2]1]o[o[0]0]o]o[o]0]o]

28

Use of Randomization: Example

Solution 2: Randomly select two entries. If they are
both '1" answer all '1’. Otherwise answer half-half.

LT T T T E T o] half-half
LTl PRI ol [T 1] half-half
LTI T [IT] ana
|1]o]1]1]o]1]o]oo]o]2]2]0]1][1]1]0]2] Could be wrong

Repeat more than once to increase your confidence.

S N EY R N EY I N EY
Can still be wrong but with lower probability

29

Use of Randomization: Example

Q: Why is it different than answering 'All 1' after
seeing 2,4,6 or more '1's in solution 1?

A: We are 'playing’ against an adversary who knows
our algorithm and can pick the array

[2[2fa]s]s]s]s]a]2]o]o]o]of0f0[0]0]0]

to fool us. An adversary who knows our randomized
algorithm can not pick a ‘bad’ input in advance.

30

Reduction

$Ne-
;oA

Parallel Versus Sequential Work

000000000000000000

——-

32

Factoring / Multiplication

An introduction to discrete
mathematics

¢

It is easy to multiply two primes.
Very difficult to retrieve the primes composing the resylt. o

Count without counting:
Estimate, Calculate, Analyze ‘-

. How many red dots on this page? .,

37

(n+1l) + (n+1) + (n+1) +

_n(n+1)
2

S

+ nl+ n = S
+ 2 + 1 =S
+(n+l1) +(n+1) = 2S
n (n+1) = 2S

38

1 + 2 + 3 + + nl+ n o= s)
n + nl+ n2+ + 2 + 1 =S
- Algebraic
argument
(n+1) + (n+1)+ (n+1l)+ ... +(n+l) +(n+l) = 2S
/
n (n+1) = 2S

Let's restate this argument using a
geometric representation

39

(n+1) + (n+1)+ (n+1)+ ... + (n+1) +(n+1)

n (n+1)

28

2S

= number of white dots.

1+ 2 + 3 + ...+ ni+ n = s =number of white dots

] = rumber of red dofs

(n+1) + (n+1)+ (n+1)+ ... +(n+l) +(n+l) = 2S

n (n+1) = 28

There are n(n+1)
dots in the grid

_n(n+1)
2

S

s = number of white dots

s = number of yellow dots

<

n+1 n+1 n+1 n+1 nH
42

e Y

At first glance, these problems appeared unrelated, but a
representational change revealed a correspondence. An
extension of the similarity principle is that when we come
to understand that seemingly unrelated things are related,
we are making intellectual progress.

Induction has many

appearances.

* Formal Arguments
* Loop Invariants

* Recursion

+ Algorithm Design

« Recurrences

Review: Induction

* Suppose

- S(k) is true for fixed constant k
+ Oftenk=0

- S(n) = S(n+1) for all n>=k
- Then S(n) is true for all n>= k

Proof By Induction

* Claim:S(n) is true for all n>= k
* Base:

- Show S(n) is true for n = k

* Inductive hypothesis:

- Assume S(n) is true for an arbitrary n

- Step:

- Show that S(n) is then true for n+l

46

Induction Example:
Geometric Closed Form

* Proved®+al+ .. +a"= (a™! - 1)/(a-1)
foralla#1
- Basis: show that a% = (a%1-1)/(a - 1):
a=1=(al-1)/(a-1)
- Inductive hypothesis:
* Assume a®+al+ .. +a"=(a"1-1)/(a-1)
- Step (show true for n+l1):
a+al+ . +a*l=al+qal+ . +qa"+aml
= (a1 -1)/(a-1)+am = (a1 -1)/(a-1)

47

Induction

- Another variation:

- Basis: show S(0), S(1)
- Hypothesis: assume S(n) and S(n+1) are true
- Step: show S(n+2) follows

48

Effective problem solving:

49

Exemplification:
Try out a problem or
solution on small examples.

S SRR

50

Representation:
Understand the relationship between
different representations of the same
information or idea

1 @
2 o0
3 000

Modularity:
Decompose a complex problem into
simpler subproblems

L 3 1Y

52

Abstraction:
Abstract away the inessential
features of a problem

53

Refinement:
The best solution comes from a
process of repeatedly refining and
inventing alternative solutions

Build your toolbox of abstract
structures and concepts. Know the
capacities and limits of each tool.

¥
& =T

Appreciate Alternative Solutions
To The Same Problem

When presented with multiple solutions don't
remember only the one that you find easiest
to understand. The expert learner takes the
opportunity to think through the similarities
and differences between the approaches.
Such meditations lay the foundations for
effective learning and problem solving.

56

Scanning the brains of master
problem solvers

* The better the

masters show
almost no brain
activity!

Simple and to the point

problem solver, the
less brain activity
is evident. The real

57

The Master Programmer

* The master seeks an algorithm that will use as

small an amount of computer resources (e.g.,
time, space, communication) as possible. Most
“expert” programmers (black belts) will miss the
best program because they did not have the
patience to refine their solutions further.

A case study.

Anagram Programming Task.

You are given a 70,000 word dictionary.
Write an anagram utility that given a
word as input returns all anagrams of
that word appearing in the dictionary.

59

Examples

* Input: CAT
- Output: ACT, CAT, TAC

* Input: SUBESSENTIAL
* Output: SUITABLENESS

60

Impatient Hacker

(Novice Level Solution) Performance Analysis:

- Loop through all possible ways of rearranging the On input "microphotographic” the loop will
input word run 17! >> 3* 1014 iterations.
- Use binary search to look up resulting word in

Even at one microsecond (10-%) per iteration

dictionary.
Y this will take 3*108 seconds.

- If found, output it.
This is about a decade.

61 62

"Expert” Hacker Comparing an input word with each
(Black Belt Level) of 70,000 dictionary entries takes
- Subroutine ANAGRAM(X,Y) returns TRUE exactly about 15 seconds.

when X and Y are anagrams. It works by sorting
the letters in X and Y

* Input X

* Loop through all dictionary words Y : —
- If ANAGRAM(X.Y) output Y The hacker is satisfied and reflects no further

63 64

The master keeps trying
to refine the solution.

* The master’s program runs in less
than 1/1000 seconds.

65

Master Solution

* Don't keep the dictionary in
sorted order!

* Rearranging the dictionary into
anagram classes will make the original
problem simple.

66

Suppose the dictionary was the list
below.

- ASP
- DOG
- LURE
- 60D
- NICE
- RULE
- SPA

After each word, write its
"signature” (sort its letters)

67

- ASP APS
- DOG DGO
- LURE ELRU
- 60D DGO
- NICE CEIN
- RULE ELRU
- SPA APS

68

Sort by the signatures

- ASP
- SPA
- NICE
- DOG
- 60D
- LURE
- RULE

APS
APS
CEIN
DGO
DGO
ELRU
ELRU

69

Master Program

* Input word W (e.g., CAT)
+ X := signature of W (ACT)
+ Use binary search to find the anagram class of W

and outpuft it.

About log,(70000) x 25 microseconds
= ,0004 seconds.

70

Right, it takes about 30 seconds to create
the dictionary, but it is perfectly fair to
think of this as programming time. The
building of the dictionary is a one-time cost
that is part of writing the program.

71

2

Learning Advice

* Whenever you see something you wish you
had thought of, try and formulate the
minimal and most general lesson that will
insure that you will not miss the same thing
the next time. Name the lesson to make it
easy to remember.

73

NAME: Preprocessing

« It is sometimes possible to pay a

reasonable, one-time preprocessing cost to
reorganize your data in such a way as to
use it more efficiently later. The extra
time required to preprocess can be thought
of as additional programming effort.

74

Great Theoretical Ideas In Computer Science

The Mathematics Of 1950's Dating:
Who wins the battle of the sexes?

/

if W

Q.adagﬁdade

Girls

0

o
~<

n

L)

v

76

Dating Scenario

- There are n boys and n girls

- Each girl has her own ranked
preference list of all the boys

- Each boy has his own ranked
preference list of all the girls

- The lists have no ties

Question: How do we pair them of f?

Which criteria come to mind?

7

What is considered a "good”
pairing?

Maximizing total satisfaction
* How is the 'average’ match relative to his/her rank.

Maximizing the minimum satisfaction
* How deep in his/her list is the coupe of the most
unsatisfied participant?
Minimizing the maximum difference in mate ranks
+ Everybody is more or less equally satisfied

Maximizing the number of people who get their first
choice

- Barbie and Ken Land

78

Rogue Couples

- Suppose we pair off all the boys and
girls. Now suppose that some boy and
some girl prefer each other o the
people fo whom they are paired. They
will be called a rogue couple.

v QM)QO"’-O—.

79

Why be with them when we can
be with each other?

K RS

S

Stable Pairings

* A pairing of boys and girls is called
stable if it contains no rogue couples.

81

Stability is primary.

» Any list of criteria for a good pairing

must include stability. (A pairing is
doomed if it contains a rogue couple.)

* Any reasonable list of criteria must
contain the stability criterion.

82

The study of stability will be the
subject of the entire lecture.

« We will:
- Analyze various mathematical properties of an
algorithm that looks a lot like 1950's dating

- Discover the naked mathematical truth about
which sex has the romantic edge.

- Learn how the world's largest, most successful
dating service operates.

83

Given a set of preference lists,
how do we find a stable pairing?

Given a set of preference lists,
how do we find a stable pairing?

Wait! There is a
more primary
question!

The Existence Question:
Does every set of preferences
lists have at least one stable
pairing???

85

.
ORNOR:
| 4@3:
.

;

i P

Can you argue that the
couples will not continue
breaking up and reforming
forever?

87

An Instructive Variant:
Roommate Problem
Bl

Insight

+ Any proof that couples do not break up and
reform forever must contain a step that fails in
the case of the roommate problem.

+ If you have a proof idea that works equally well in
the marriage problem and the roommate problem,
then your idea is not adequate to show the couples
eventually stop.

89

The Traditional Marriage

Algorithm

Worshipping males

Female

@
—@

Traditional Marriage Algorithm

* For each day that some boy gets a "No" do:
- Morning
* Each girl stands on her balcony

* Each boy proposes under the balcony of the best
girl whom he has not yet crossed off

- Afternoon (for those girls with at least one suitor)

* To today's best suitor: "Maybe, come back
tomorrow”

* To any others: "No, I will never marry you"
- Evening
* Any rejected boy crosses the girl off his list.

Each girl marries the boy o whom she just said "maybe%

Traditional Marriage Algorithm

+ Example (see slide 89 for preferences lists)

girl |Day 1 [Day 2 (= come
tomorrow

1 @,4,5 @

2

@ In class exercise:

3 Q@ 1'@ Complete the execution.
4 €)

5

93

Does the Traditional Marriage
Algorithm always produce a stable
pairing?

Wait! There is a

more primary
.— question!

Does TMA always terminate?

- It might encounter a situation where the
algorithm does not specify what to do
next (core dump error).

- It might keep on going for an infinite
number of days.

95

Lemma: No boy can be rejected by
all the girls

* Proof by contradiction.

« Suppose Bob is rejected by all the girls. At
that point:
- Each girl must have a suitor other than

Bob (Once a girl has a suitor she will
always have at least one)

- But there are n girls and only n-1 boys
besides Bob.

= Coadgion, =

Theorem: The TMA always
terminates in at most n? days

- Consider the "master list" containing all the boy's
preference lists of girls. There are n boys, and each
list has n girls on it, so there are a total of nx n=n?
girls’ names in the master list.

- Each day that at least one boy gets a "No“, at least
one girl gets crossed of f the master list.

- Therefore, the number of days is bounded by the
original size of the master list.

97

Great! We know that TMA will
terminate and produce a pairing.

But is it stable?

98

MAYBE Lemma: In TMA if onday i a
girl says "maybe" to boy b, she is
guaranteed to marry a husband that she
likes at least as much as b.

She would only let go of him in order to "maybe”
someone better

She would only let go of that guy for someone
even better

She would only let go of that guy for someone
even better

ANDSOON.............

Informal Induction

MAYBE Lemma: In TMA if onday i a
girl says "maybe" to boy b, she is
guaranteed to marry a husband that she
likes at least as much as b.

* (*) For all k=0, on day i+k the girl will say

"maybe" to a boy she likes as much as b.

* Base: k=0 (true by assumption)
+ Assume (*) is true for k-1. Thus she has a

boy as good as b on day i+k-1. The next day
she will either keep him or reject him for
some better. Thus (*) is true for k.

Formal Induction %

Corollary: Each girl will marry her
absolute favorite of the boys who
visit her during the TMA.

o-',f

101

Theorem: The pairing produced
by TMA is stable.

- Proof by contradiction:
Suppose Bob and Mia are a rogue couple.

L g Bob@b@ ‘ ' ’,‘ ..Luke

Alice&j:é
Mia

This means Bob likes Mia more than his wife, Alice.
Thus, Bob proposed to Mia before he proposed to Alice.
Mia must have rejected Bob for someone she preferred.

By the Maybe lemma, she must like her husband Luke
more than Bob.

Contradiction! 102

Opinion Poll

103

Forget TMA for a moment

« How should we define what we mean when
we say “the optimal girl for Bob"?

Flawed Attempt:
"The girl at the top of Bob's list"

104

The Optimal Girl

A boy's optimal girl is the highest ranked
girl for whom there is some stable pairing
in which the boy gets her.

+ She is the best girl he can conceivably get
in a stable world. Presumably, she might be
better than the girl he gets in the stable
pairing output by TMA.

105

The Pessimal Girl

* A boy's pessimal girl is the lowest ranked

girl for whom there is some stable pairing
in which the boy gets her.

+ She is the worst girl he can conceivably get

in a stable world.

106

Dating Heaven and Hell

* A pairing is male-optimal if every boy gets
his optimal mate. This is the best of all
possible stable worlds for all the boys
simultaneously.

* A pairing is male-pessimal if every boy gets
his pessimal mate. This is the worst of all
possible stable worlds for all the boys
simultaneously.

107

Dating Heaven and Hell

* A pairing is female-optimal if every girl

gets her optimal mate. This is the best of
all possible stable worlds for every girl
simultaneously.

* A pairing is female-pessimal if every girl

gets her pessimal mate. This is the worst
of all possible stable worlds for every girl
simultaneously.

108

The Naked Mathematical Truthl

* The Traditional Marriage Algorithm
always produces a male-optimal,
female-pessimal pairing.

109

Theorem: TMA produces a
male-optimal pairing

- Suppose nhot: i.e. that some boy gets
rejected by his optimal girl during TMA.

- In particular, let's say Bob is the first boy
to be rejected by his optimal girl Mia:
Let's say she said "maybe” to Luke, whom
she prefers.

- Since Bob was the only boy to be rejected
by his optimal girl so far, Luke must like
Mia at least as much as his optimal girl.

110

We are assuming that Mia is Bob's optimal girl.

Mia likes Luke more than Bob.

Luke likes Mia at least as much as his optimal girl.

+ We'll show that any pairing S in which Bob marries
Mia cannot be stable (for a contradiction).

*+ Suppose S is stable:
- Luke likes Mia more than his wife in S

* Luke likes Mia at least as much as his best
possible girl, but he does not have Mia in S

- Mia likes Luke more than her husband Bob in S

A 47 2, .
LUkiﬁ Contradiction }(Mua

111

We are assuming that Mia is Bob's optimal girl.
Mia likes Luke more than Bob.
Luke likes Mia at least as much as his optimal girl.

+ We've shown that any pairing in which Bob marries
Mia cannot be stable.

* Thus, Mia cannot be Bob's optimal girl
(since he can never marry her in a stable world).

* So Bob never gets rejected by his optimal girl
in the TMA, and thus the TMA is male-optimal.

112

What proof technique did we just
use?

Theorem: The TMA pairing, T, is
female-pessimal.

* Suppose there is a stable pairing S where some

girl Alice does worse than in T.

« Let Luke be her mate in T.

Let Bob be her mate in S.

- By assumption, Alice likes Luke better than her
mate Bob in S.

- Luke likes Alice better than his mate in S.

+ We already know that Alice is his optimal
girl (remember, T is male-optimal).
- Therefore, S is not stable.

A contradiction

114

References

'D. Gale and L. S. Shapley, College admissions
and the stability of marriage, American
Mathematical Monthly 69 (1962), 9-15

Dan Gusfield and Robert W. Irving, The
Stable Marriage Problem: Structures and
Algorithms, MIT Press, 1989

115

"The Match":
Doctors and Medical Residencies

- Each medical school graduate submits a
ranked list of hospitals where he/she
wants to do a residency.

- Each hospital submits a ranked list of
newly minted doctors.

- A computer runs TMA (extended to
handle Mormon marriages).

- Until recently, it was hospital-optimal

116

History

- 1900
- Idea of hospitals having residents (then called
“interns")
* Over the next few decades

- Intense competition among hospitals for an
inadequate supply of residents

+ Each hospital makes offers independently

* Process degenerates into a race. Hospitals
steadily advancing date at which they
finalize binding contracts

117

History

- 1944 Absurd Situation. Appointments
being made 2 years ahead of time!
- All parties were unhappy

- Medical schools stop releasing any
information about students before some
reasonable date

- Offers were made at a more
reasonable date, but new problems
developed

118

History
- 1945-1949
- Hospitals started putting time limits on
offers

- Time limit gets down to 12 hours
- Lots of unhappy people

- Many instabilities resulting from lack of
cooperation

119

History

- 1950 Centralized System
- Each hospital ranks residents
- Each resident ranks hospitals

- National Resident Matching Program
produces a pairing

Whoops! The pairings were not always stable.
By 1952 the algorithm was the TMA (hospital-
optimal) and therefore stable.

120

