CSEP 521 - Applied Algorithms

Greedy Algorithms

Reading:

- CLRS,
- Chapter 17 (15t ed.)
- Chapter 16 (2" ed.)

Greedy Algorithms

*A greedy algorithm always makes the
choice that looks best at the moment
- everyday example: Driving in heavy traffic
-The hope: a locally optimal choice will lead to a
globally optimal solution
-For some problems, it works
‘Dynamic programming can be overkill;
greedy algorithms tend to be easier to
code

Activity-Selection Problem

* Problem: get your money's worth out of a
carnival
- Buy a wristband that lets you onto any ride

- Lots of rides, each starting and ending at
different times
- Your goal: ride as many rides as possible
* Another, alternative goal that we don't solve here:
maximize time spent on rides

+ Welcome to the activity selection problem

Activity-Selection

+ Formally:

- Given a set 5={q,, a,,..,a,} of nactivities
s; = start time of activity /
f; = finish time of activity /

- Find max-size subset A of non-conflicting

activities
3 .—6‘
o r— 0
. 5 o o 8 .
. 2o 4 9
o— [2 7 L

m Assume (w.l.o.g) that ;< o< ..< 7,

[=}

Activity-Selection - A DP solution

Define:

S;j={a0S: fi<s < fi<s}

The subset of activities that can start after g,
finishes and finish before a; starts.

Remark: we add ‘dummy activities' ay with ;=0

And a,,; with s,,=0

3 —5 o
—>—9
° > e o 8 ° 10
. 20 o2 o 9 ™
*——eo ° °

Examples: S,5={4,6,7} . S;3={2,4}. Sp10= S

Activity-Selection - A DP solution

Define:

C[i.jJ= maximal number of activities from S;; that can
be selected.

if SiJ- = [

Clijl= . . .
max {c[i k] + c[k,j1+ 1} if S;; 20
a, 1S

In words: if S;; is not empty, then for any activity k in
S;; we check wtwa‘r is the best we can do if k is
selected.

Based on this formula we can write a DP algorithm
whose time complexity is O(n3)

Activity-Selection - A DP solution

Define:

C[i.jJ= maximal number of activities from S; that can
be selected.

0 if Sl-j =0

Clijl= . .)
mé]lg {clik]+c[kjl+1} if 520

Inwords: if S;; is not empty, then for any activity k in
S;; we check wtm‘r is the best we can do if k is
selected.

Based on this formula we can write a DP algorithm
whose time complexity is O(n3)

Greedy Choice Property

* Activity selection problem also exhibits the
greedy choice property:
- Locally optimal choice = globally optimal sol'n
+ Theorem: if Sis an activity selection instance
sorted by finish time, then there exists an optimal
solution A O Ssuch that {a;} 0 A

* Proof: Given an optimal solution B that does not
contain {a;}, replace the first activity in B with
{a;}. The resulting solution is feasible (why?), it
has the same number of activities as B, and it
includes {a,}.

Activity Selection:
A Greedy Algorithm

* So actual algorithm is simple:
- Sort the activities by finish time
- Schedule the first activity

- Then schedule the next activity in sorted list
which starts after previous activity finishes

- Repeat until no more activities
- Time complexity: O(n log n)
* Intuition is even more simple:

- Always pick the earliest to finish ride available
at the time.

Minimum Spanning Tree

Each edge has a cost.

Goal: a minimal-cost subset of edges that will
keep the graph connected.

Price of this tree = 18+19+4+10+17+64

10

Kruskal's Greedy Algorithm

Sort the edges by increasing cost;
TInitialize T o be empty:
For each edge e chosen in increasing order do
if adding e does not form a cycle then
addeto T

In lecture 2 we saw that this is a possible
executing of the blue/red rules.

Indeed, when proving these rules, we used the
'greedy choice property'.

11

Proof of Kruskal using Greedy-
Choice Property

» Claim: for any k = 0, after Kruskal's

algorithm inserts k edges to T, there
exists an MST that includes all these
edges.

* Proof: By induction on k (just a special

case of the general proof we had for the
blue/red rules)

12

The Coupon Collector Problem

*There are n different brands of cereal,
each comes with a single coupon for a
discount on another box of cereal, of
another brand.

*You can use multiple coupons when
purchasing a new box, up to getting the new
box free, but you never get money back.

*You want to buy one box of each brand, for
as little money as possible.

13

The Coupon Collector Problem

Example:

*Trix costs 2% and has a 50c coupon for Cheerios.
-Cheerios costs 3% and has a 30c coupon for Smack.
-Smack costs 3% and has a 50c coupon for Cheerios

Order 1: Trix, Cheerios, Smack

cost = 2$+(3$-50¢)+(3$-30¢) = 7.20%
Order 2: Cheerios, Trix, Smack

cost = 3$+2$+3%$-30c = 7.70%
Order 3: Smack, Trix, Cheerios

cost = 3$+2$+3$-(50+50)c = 7$

The Coupon Collector Problem

In general:

Input: a list of n brands, each associated with a
price, a value of the enclosed coupon, and the brand
for which the coupon gives a discount.

Output: The optimal order.

- Inefficient algorithm: Check all n! possible orders.
- Can be solved by dynamic programming.
- We will see a simple optimal greedy algorithm.

15

A Greedy Algorithm for the Coupon
Collector Problem

*If there is a brand with no coupon for it, buy a
box of one such brand.

*If not, then every brand has exactly one coupon
for it (why?). Let the real value of a coupon be the
minimum of its value and the price of the brand it
is for. Then we buy the brand where the coupon
for it has the smallest real value.

:Let X be the brand for which we have a new
coupon. Set the price of brand X to be maximum
(old price minus coupon value, 0).

*Solve recursively (repeat for remaining brands).

A Greedy Algorithm for the Coupon
Collector Problem

Proof: We show that there exists an optimal order
that agrees with the order produced by the algorithm.
Formally, let i be the brand which is selected first,
then there exists an optimal order in which i is first.

Since we continue recursively for the rest of the
brands, we conclude that there exists an optimal order
that is identical to the greedy order.

We distinguish between two cases

Case 1: We select a brand with no coupon for it.
Case 2: We select a brand where the coupon for it has

the smallest real value.
17

A Greedy Algorithm for the Coupon
Collector Problem

Case 1: We select a brand, X, with no coupon for it .

‘Let S be any order in which X is not first. Let S' be
the order where we buy X first, and then buy the
other brands in the same order as in S.

*Since X had no coupon, we pay the same price for X in
both orders (full price). For all of the other brands,
the price in S' is at most the price in S (the price of
the brand we got a coupon for by buying X may have
dropped).

‘Therefore, the total cost of S'is at most that of S.

18

A Greedy Algorithm for the Coupon
Collector Problem

Case 2: We select a brand, X, where the coupon for
it has the smallest real value.

Consider a directed graph with edges from each
brand to the brand it has coupons for.

Claim: This graph must be a union of disjoint cycles .

Proof: There are no vertices with in-degree=0
(since we are not in case 1).

Each vertex has out-degree=1 (one coupon per box)
- Each vertex has in-degree=1

- Only cycles, and must be disjoint.

19

A Greedy Algorithm for the Coupon
Collector Problem

Case 2 (cont.): Let S be any order that does not buy X
first, and define S' as first buying all the brands in X's
cycle in order starting from X and then buying the rest
asin S.

We show that the total cost of S'is not larger than
the cost of S.

- No brand outside of X's cycle has changed price.

-Let's compare the prices of the brands in X's cycle in
Svs. S

-Let Y be the first brand in X's cycle bought in S.

20

A Greedy Algorithm for the Coupon
Collector Problem

Case 2 (cont’):

For brands in the cycle except X and ¥: in S' we pay
full price minus value of coupon. In S we pay at least
that amount (since there is only one coupon).

The price of X in S’ may have increased over that in S
by the value of its coupon, but the price of Y has
decreased: in S, we pay full price, in S' we deduct the
real value of ¥Y' coupon. Since X had the smallest real
coupon value, this means the total price for S'is at
most that for S.

21

Data Compression
Basic concepts
original compressed decompressed

Encoder Y » Decoder 4X>

* Lossless compression x=x'

- Also called entropy coding, reversible coding.

- Lossy compression x #x'

- Also called irreversible coding.

- Compression ratio = |x|/|y]|

- |x| is number of bits in x.
22

Why Compress?

- Conserve storage space

« Reduce time for transmission

- Faster to encode, send, then decode than to
send the original

* Progressive tfransmission

- Some compression techniques allow us to send
the most important bits first so we can get a
low resolution version of some data before
getting the high fidelity version

* Reduce computation
- Use less data to achieve an approximate answer

23

Lossless Compression

* Data is not lost - the original is really needed.

- text compression
- compression of computer binaries to fit on a
floppy

+ Compression ratio typically no better than 4:1 for

lossless compression.

* Major techniques include

- Huffman coding

Arithmetic coding

Dictionary techniques (Ziv, Lempel 1977,1978)
Sequitur (Nevill-Manning, Witten 1996)

Standards - Morse code, Braille, Unix compress,
gzip, zip, 6IF, JBIG, JPEG

24

Lossy Compression

+ Data is lost, but not oo much.
- audio
- video
- still images, medical images, photographs

+ Compression ratios of 10:1 often yield quite high
fidelity results.

* Major techniques include
- Vector Quantization
- Wavelets
- Transforms
- Standards - JPEG, MPEG

25

Huffman Coding (1951)

- Uses frequencies of symbols in a string to
build a variable rate prefix-free code.

- Each symbol is mapped to a binary string.

- More frequent symbols have shorter
codes.

- No code is a prefix of another.

26

Frequency-based Codes

Suppose we have a 100,000 character data file that
we wish to store compactly.

The file contains only the characters a-f with the
following frequencies.

a b |¢c |d |e |f
Frequency |45 |13 |12 |16 |9 |5

Fixed-len | 000 001|010 |011 |100 |101

We are looking for a binary code.

In a fixed-length code, we need 3 bits per character.
The total length of the code is 300,000 bits.

27

Variable-length Codes
Can we reduce the total size by using variable-
length code?

We limit ourselves fo prefix-free codes: no
codeword is a prefix of another codeword.

This guarantees a simple one-pass decoding. Each
code string has a unique parse, no need of ‘end of
character’ sign.

Example: Consider the non-prefix-free code
C(a)=0, C(b)=01, C(c) =10.

The string 010 is a decoding of both ‘ac’ and 'ba’

28

Variable-length Codes

Can we reduce the total size by using variable-
length code?

Yesl!

In our example:

a b ¢ |d |e |f
Frequency 145 |13 |12 |16 |9 |5

var-length O | 101 | 100 | 111 | 1100 | 1100

The total code length is
45k-1 + 13k-3 + 12k-3 + 16k-3 + 9k-4 + Bk-4 =224,000.
Improving by ~25% the 300,000 we had before.

Tree Representation of a binary-code

Every binary prefix-free code can be represented by a
binary tree.

Each left-edge is marked O, each right-edge is marked 1.

Each leaf represents a character. The path to the leaf
determines the decoding of the character.

Each internal
node is
marked with
the sum of
weights of the
leaves in its

Example 1: The tree representing the sub-free.

la45| |b13] |c12| |d16]| e9 | | f5 |

fixed-length code 20

Tree Representation of a Binary-code

A simple observation: An optimal code is always
represented by a full binary tree (each internal
node has two children).

Proof: If we have a

node with a singe

child, we can

improve the coding: =)

31

Encoding and Decoding

* Encoding: send the code, then the encoded data

+ X = aabddcaa
-+ ¢(x) = a0,b100,c101,d11,0010011111010 O

* Decoding: Build the Huffman tree, then use it to

decode.
repeat
o O start at root of tree
ﬁ 0 repeat

6 \E if node is not a leaf

0 1 if read bit = 1 then go right
else go left
report leaf

o
N

Tree Representation of a Binary-code

Example 2: The
tree representing
the optimal
variable-length
code

Given a tree T, For each character alC:
f(a) - the frequency of a in the file.

d(a) - the depth of a in the file (= length of
codeword for a)
The cost of the tree = B(T) = £, f(a)d(a)

33

Constructing an Huffman Code

Huffman code - an optimal prefix-free code
constructed by a greedy algorithm.

We build the tree in a bottom-up manner:

Starting with |C| isolated trees, we perform a
sequence of |C|-1 merging operations to create
the final tree.

Data Structure: A priority queue Q, keyed on f
(the frequencies).

The objects in the queue are the trees. Whenever
we merge two frees, the frequency of the merged
tree is the sum of the frequencies of the merged

trees.

Constructing an Huffman Code

Huffman(C)

*Init: |C| isolated vertices. Each vertex is a root
of a tree of size 1. Each vertex gets a value p(v;)=
the frequency of the ith character.

‘Repeat |C|-1 times:

Add a new vertex v, whose children are the two
tree-roots uy,u, with minimal p value.

Determine p(v)=p(uy)+p(u,)

35

Constructing an Huffman Code -
example

*Init: |C| isolated vertices. Each vertex is a root
of a tree of size 1. Each vertex gets a value p(v;)=
the frequency of the ith character.

la45| |b13] |[c12| |di16| | e9 | | f:5 |

-Step 1: e and f have minimal value.

A new vertex
@ = with value
9+5=14

la45| |b13] |[c12| |di16| | e9 | | f:5 |

36

Constructing an Huffman Code -
example (2)

Step 2: b and ¢ have minimal value.

A new vertex
@ with value
12+13=25

la45| |b13] |c12] |d16] [e9 | | f:5]

*Step 3: d and '14' have minimal value.

A new vertex
with value
14+16=30

la45| |b13]| |c12] -

Constructing an Huffman Code -
example (3)

Step 4: '25' and ‘30" have minimal value.

(55)
(25) (30) A new vertex
. i o s with value
S5 BB B2 @8 @ 555050

38

Constructing an Huffman Code -
example (4)

Step 5: ‘45" and '55' have minimal value.

A new vertex
with value
45+55=100

All the
characters are
connected.

b:13| |c12| [d:16]

The coding is done!

39

Optimality of Huffman Code

*We show that Huffman code is optimal by
showing that Huffman algorithm follows 3
optimality principles:

40

Optimality Principle 1
* Inan optimal tree a lowest probability symbol has

maximum distance from the root.

- If not exchanging a lowest probability symbol
with any deeper one will lower the cost.

p smallest
T o,
k <h

C(T) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(g-p) < C(T)

I

P

4

Optimality Principle 2
* The second lowest probability is a sibling of the

smallest in some optimal tree.

- If not, we can move it there not raising the
cost.

p smallest T
T q 2" smallest
q<r
k< h r

C(T)=C(T)+ hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

q p

a2

Optimality Principle 3

* Assuming we have an optimal free T whose two lowest
probability symbols are siblings at maximum depth,
they can be replaced by a new symbol whose
probability is the sum of their probabilities.

- The resulting tree is optimal for the new symbol
seft.

T
p smallest
q 2rd smallest
q*p

C(T) = &(T) + (h-1)(p*q) - hp -hq = C(T) - (p+q) 4

Optimality Principle 3 (cont’)

- If T was not optimal then we could find a
lower cost tree T". This will lead to a lower
cost tree T" for the original alphabet.

T T ™
q+p
q+p
C(T")=C(T)+p+q<C(T)+p+q=C(T)

which is a contradiction
a4

Optimality of Huffman's Algorithm

* By the optimality principles, Huffman
algorithm is an optimal greedy algorithm:
In each stage, the tree that is built by
Huffman is a subtree of some optimal
tree.

'the greedy choice property’

* Inparticular, the final tree is optimal.

