CSEP 521 - Applied Algorithms

Graph Algorithms

Broadcasting in a Network DFS, BFS,

Shortest Path Problems

Definition

· A graph G is given by the two sets V and E.

V is a set of points (vertices)

• E is a set of lines (edges) connecting pairs of points.

·Examples:

- -airline flight map.
- -communication networks.
- -precedence constraints on the scheduling of jobs.
- -flow networks.

V={A,B,C,D,E} E={(B,E),(E,D),(D,C), (B,D),(A,E)}

Graph Algorithms - reading

DFS, BFS -

CLRS: chapter 22 (1st and 2nd editions.)

Skiena: section 4.4

Shortest Path Problems -

CLRS: chapter 25 (1st ed.) or 24 (2nd ed.)

Skiena: section 4.8

Figure 12.1 Three graphs. (a) and (c) are undirected graphs, (b) is a directed graph. The placement of the vertices on the paper is immaterial when we draw graphs; for example, (a) and (c) are in fact depictions of the same graph.

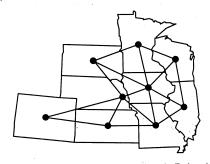


Figure 12.2 A map and its associated undirected graph. Each region is represented by a vertex, and an edge joins each pair of vertices that correspond to bordering regions.

A More Detailed Definition

- An undirected graph is a pair (V,E), where V
 is a finite set, and E is a set of unordered
 pairs (u,v), where u and v are in V.
- Terminology: If (u,v) is an edge (i.e., in E):
 u and v are adjacent; v is a neighbor of u.
- A directed graph is a pair (V,E), where V is a finite set, and E is a set of ordered pairs (u,v) (both in V).

More Definitions

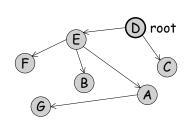
- Let n = |V|, m = |E|
- The size of the graph is n+m
 - Any algorithm that needs to inspect each vertex and edge has running time $\Omega(n+m)$
- A path in G is a sequence $(v_0, v_1, ..., v_k)$ of vertices such that $(v_i, v_{i+1}) \in E$, for all $0 \le i < k$. Its length is k and it is a path from v_0 to v_k .
- A cycle is a path such that $v_0 = v_k$.
- An undirected graph is connected if and only if there is a path between every pair of vertices.
- In any connected graph m= $\Omega(n)$.

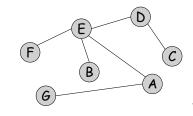
5

6

Trees

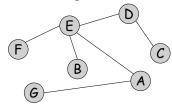
- An undirected graph is a tree if it is connected and contains no cycles.
- A directed graph is a directed tree if it has a root and its underlying undirected graph is a tree.
- $r \in V$ is a root if every vertex $v \in V$ is reachable from r; i.e., there is a directed path which starts in r and ends in v.





Alternative Definitions of Undirected Trees

- G is cycles-free, but if any new edge is added to G, a cycle is formed.
- for every pair of vertices u,v, there is a unique, simple path from u to v.
- G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.
- G is connected and has n-1 edges.



G is a tree \Rightarrow G is cycle-free and has n-1 edges.

 \Rightarrow We show, by induction on n, that if G is a tree (cycle-free and connected), then its number of edges is n-1.

Base: n=1

Step: Assume that it is true for all n < m, and let G be a tree with m vertices. Delete from G any edge e. By definition (3), G is not connected any more, and is broken into two connected components each of which is cycle-free and therefore is a tree. By the inductive hypothesis, each component has one edge less than the number of vertices. Thus, both have m-2 edges. Add back e, to get m-1.

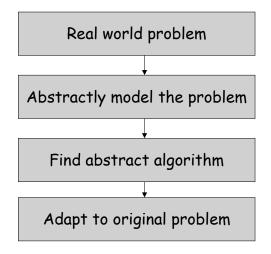
More Definitions

- A subgraph of a graph G=(V,E) is a graph G'=(V',E') such that $V'\subseteq V$ and $E'\subseteq E\cap (V'\times V')$.
- A connected component of an undirected graph G is a maximal connected subgraph of G.

Enough with the definitions. Let's do something.

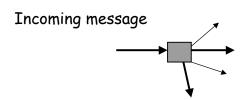
10

Applied Algorithm Scenario



Broadcasting in a Network

- Network of Routers
 - Organize the routers to efficiently broadcast messages to each other.



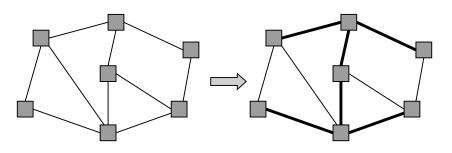
- Duplicate and send to some neighbors.
- Eventually all routers get the message

Goal: Minimize the number of messages.

11

9

Spanning Tree in a Graph



Vertex = router Edge = link between routers Spanning tree

- Connects all the vertices

13

- No cycles

Spanning Tree Problem

- Input: An undirected graph G = (V,E).
 G is connected.
- Output: T contained in E such that
 - (V,T) is a connected graph
 - (V,T) has no cycles

14

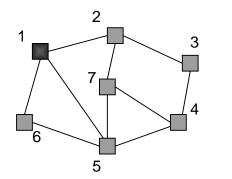
Depth First Search Algorithm

- · Recursive marking algorithm
- Initially every vertex is unmarked

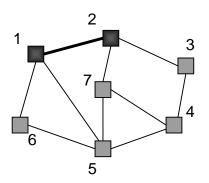
DFS(i: vertex)
 mark i;
 for each j adjacent to i do
 if j is unmarked then DFS(j)
end{DFS}

Example of Depth First Search

DFS(1)

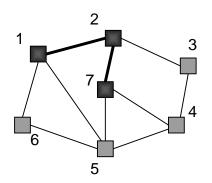


Example Step 2



DFS(1) DFS(2)

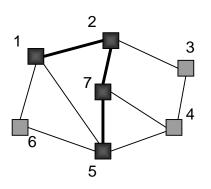
Example Step 3



DFS(1) DFS(2) DFS(7)

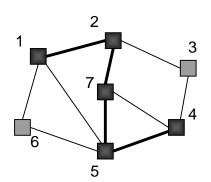
18

Example Step 4



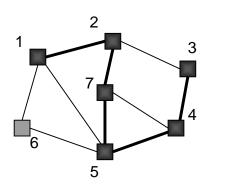
DFS(1) DFS(2) DFS(7) DFS(5) 17

Example Step 5



DFS(1) DFS(2) DFS(7) DFS(5) DFS(4)

Example Step 6



DFS(1) DFS(2) DFS(7) DFS(5) DFS(4) DFS(3)

21

Note that the edges traversed in the depth first search form a spanning tree.

Example Step 7

DFS(1) DFS(2)

DFS(7)

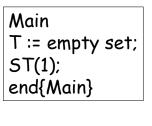
DFS(5)

DFS(4)

DFS(3) DFS(6)

22

Spanning Tree Algorithm



The addition to DFS

ST(i: vertex)

mark i;

for each j adjacent to i do

if j is unmarked then

Add {i,j} to T;

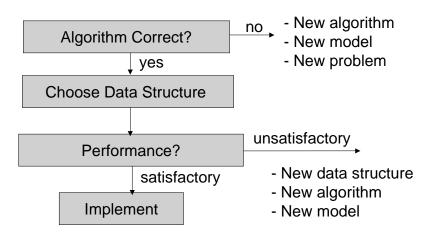
ST(j);

end{ST}

Applied Algorithm Scenario



Evaluation Step Expanded



25

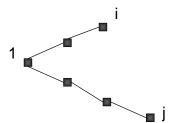
Correctness of ST Algorithm

- · There are no cycles in T
 - This is an invariant of the algorithm.
 - Each edge added to T goes from a vertex in T to a vertex not in T.
- If G is connected then eventually every vertex is marked.

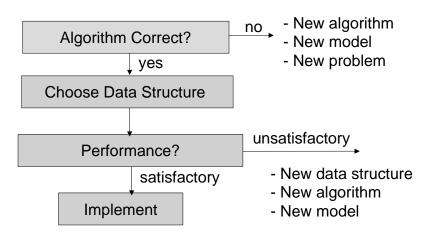
26

Correctness (cont.)

• If G is connected then so is (V,T)



Data Structure Step

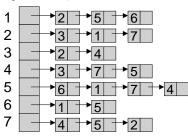


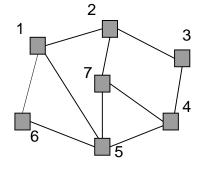
Edge List and Adjacency Lists

List of edges

1	5	1	2	2	3	5	7	5	5
2	1	6	7	3	4	6	4	7	4

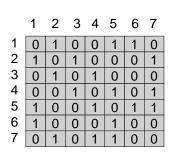
Adjacency lists

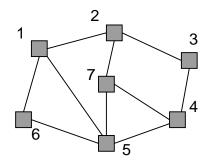




29

Adjacency Matrix





30

Data Structure Choice

- Edge list
 - Simple but does not support depth first search
- Adjacency lists
 - Good for sparse graphs
 - Supports depth first search
- Adjacency matrix
 - Good for dense graphs
 - Supports depth first search

Spanning Tree with Adjacency Lists

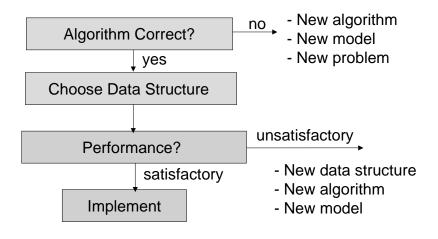
```
Main
G is array of adjacency lists;
M[i] := 0 for all i;
T is empty;
Spanning_Tree(1);
end{Main}
```

M is the marking array.

```
Node of linked list: vertex next
```

```
ST(i: vertex)
    M[i] := 1;
    v := G[i];
    while (v ≠ null)
        j := v.vertex;
        if (M[j] = 0) then
            add {i,j} to T;
            ST(j);
        v := v.next;
end{ST}
```

Performance Step



Performance of ST Algorithm

- n vertices and m edges
- Connected graph ($m \ge n-1$)
- Storage complexity O(m)
- Time complexity O(m) for each edge we perform O(1) operations in each of the two endpoints.

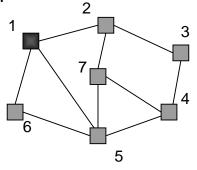
34

Other Uses of Depth First Search

- Popularized by Hopcroft and Tarjan 1973
- Connected components
- Strongly connected components in directed graphs
- Topological sorting of a acyclic directed graphs
- Maze solving

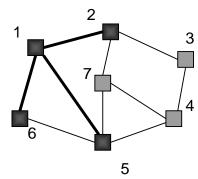
ST using Breadth First Search 1

Uses a queue to order search



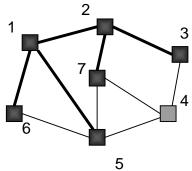
Queue = 1

Breadth First Search 2



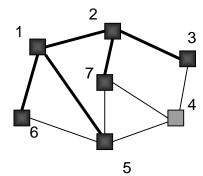
Queue = 2,6,5

Breadth First Search 3



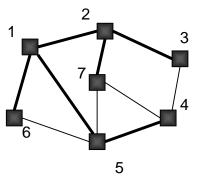
Queue = 6,5,7,3

Breadth First Search 4



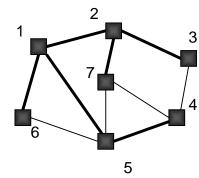
Queue = 5,7,3

Breadth First Search 5



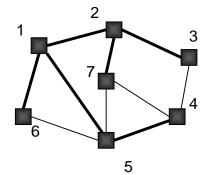
Queue = 7,3,4

Breadth First Search 6



Queue = 3.4

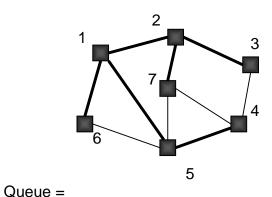
Breadth First Search 7



Queue = 4

1

Breadth First Search 8



Spanning Tree using Breadth First Search (BFS)

```
Initialize T to be empty;
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while (Q is not empty) do
    i := Dequeue(Q);
    for each j adjacent to i do
        if j is not marked then
            add {i,j} to T;
            mark j;
            Enqueue(j,Q);
```

43

44

Depth First vs Breadth First

- Depth First
 - Stack or recursion
 - Many applications
- Breadth First
 - Queue (recursion no help)
 - Can be used to find shortest paths from the start vertex
- Both are O(|E|)

Shortest-path Algorithms

- Scenario: One router creates messages (source).
 Each message needs to reach other routers (one or more) along the shortest possible path.
- Abstraction: given a vertex s, find the shortest path from s to any other vertex of G.
- Other shortest path problems:
 - Different edges have different lengths (delay, cost, etc.)
 - All-pair shortest path problem: no specific source.

46

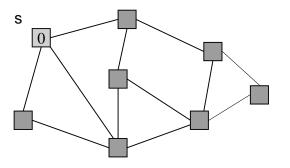
Using BFS for Shortest-path

• Given a vertex s, find the shortest path from s to any other vertex of G.

A 'centralized' version of BFS:

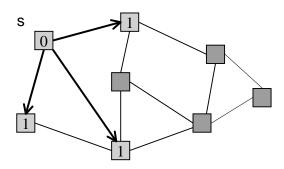
- Label vertex s with 0.
- 2. $i \leftarrow 0$
- 3. Find all unlabeled vertices adjacent to at least one vertex labeled i. If none are found, stop.
- 4. Label all the vertices found in (3) with i + 1.
- 5. $i \leftarrow i + 1$ and go to (3).

BFS for Shortest Path (i=0)



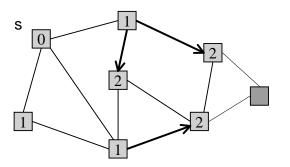
Vertices whose distance from s is 0 are labeled.

BFS for Shortest Path (i=1)



Vertices whose distance from s is 1 are labeled.

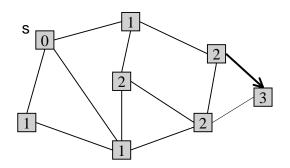
BFS for Shortest Path (i=2)



Vertices whose distance from s is 2 are labeled.

49

BFS for Shortest Path (i=3)



Vertices whose distance from s is 3 are labeled.

In the next iteration we find out that the whole graph is labeled and we stop.

The BFS Tree

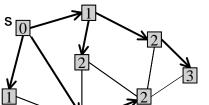
Theorem: Each vertex is labeled by it its length from s.

Proof: By induction on the label.

For any $v \neq s$, let p(v) be the vertex that 'discovered' v in BFS.

Then $T=\{(p(v),v)\}$ is a directed spanning tree rooted in s, and for each vertex v, the path from s to v in T is a shortest path from s to v in G.

Note: the 'centralized' version is for simplification only. When implemented, we need the queue as before.



50

Single-Source Shortest Paths (Dijkstra's algorithm)

- Using BFS, we solve the problem of finding shortest path from s to any vertex v.
- What if edges have associated costs or distances?
 (BFS assumes edge costs are all 1.)
- Assume each edge (u,v) has non-negative weight c(u,v).
- A weight of a path = total weights of all edges on path.
- Problem: Find, for each vertex v, a shortest (minimum weight) path from s to v.

Idea of Dijkstra's Algorithm:

· Maintain:

- λ [0..n-1] where λ (v) is the cost of best path from s to v found so far, and
- T, set of vertices v for which $\lambda(v)$ is not yet known to be optimal.

Initially:

- λ (s) = 0; λ (v) = ∞ for all v other than s.
- T = V.

• In each step:

- remove that v in T with minimum $\lambda(v)$
- update those w in T s.t. (v,w) in E and $\lambda(w) > \lambda(v) + c(v,w)$.

m $\lambda(v)$

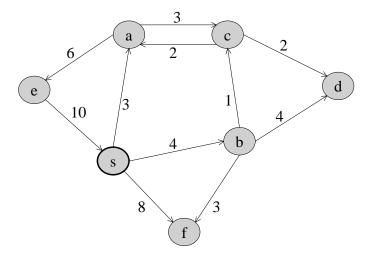
54

Dijkstra's Algorithm

Assumption: $c(u,v) = \infty$ if (u,v) not in E.

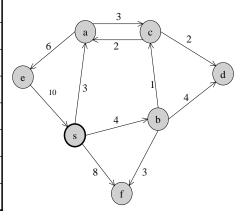
- 1. $\lambda(s) \leftarrow 0$ and for all $v \neq s$, $\lambda(v) \leftarrow \infty$.
- 2. $T \leftarrow V$.
- 3. Let u be a vertex in T for which $\lambda(u)$ is minimum.
- 4. For every edge, if $v \in T$ and $\lambda(v) \geq \lambda(u) + c(v,u)$ then $\lambda(v) \leftarrow \lambda(u) + c(v,u)$.
- 5. $T T \{u\}$, if T is not empty go to step 3.

Dijkstra's Algorithm - Example



Dijkstra's Algorithm - Example

	init	u=s	u=α	
S	0	0 *	0 *	
а	∞	3	3 *	
b	∞	4	4	
С	∞	∞	6	
d	8	8	8	
e	∞	∞	9	
f	8	8	8	

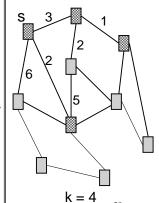


In class exercise: complete the execution.

Why is this Algorithm Correct?

• Theorem: At the termination of the algorithm, $\lambda(v)$ is the length of the shortest path from s to v for each vertex v of G.

- Proof: by induction on |V-T|.
- Inductive hypothesis: Let |V-T|=k.
 - $-\forall v$ in V-T, $\lambda(v)$ is the length of the shortest path from s to v.
 - -the vertices in V-T are the k closest vertices to s.
 - $-\forall v$ in T, $\lambda(v)$ is the length of the shortest path from s to v that only goes through vertices in V-T.



Why is this Algorithm Correct?

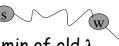
- Base case: |V-T|=1, T=V-{s}.
 - for every v in V-T, $\lambda(v)$ is the length of shortest path from s to v.
 - \checkmark we init $\lambda(s) = 0$.
 - the vertices in V-T are the k closest vertices to s.
 - \checkmark V-T={s}. s is surely the closest to s.
 - for every v in T, $\lambda(v)$ is the length of shortest path from s to v that only goes through vertices in V-T.
 - ✓ At this stage, $\lambda(v) = \infty$ for all v in V-T.

The λ values of vertices in V-T are correct and for each such v, the shortest path from s to v only goes through vertices in V-T

Induction Step: Suppose true for first k steps.
The SP to the (k+1)st closest vertex, say w,
can go through only vertices in V-T, otherwise,
there would be a closer vertex. Therefore,
when selecting the min, we select the (k+1)st
closest vertex to s.

Say w is added.

New λ value for a vertex x is min of old λ value and $\lambda(w) + c(w,x)$



^{*} non-T vertices.

Dijktra's Algorithm - Run Time Analysis

Implementation 1:

- Adjacency lists.
- An array for the λ values.

Complexity:

In each iteration:

- 1. Finding a vertex u in T with minimal λ In the whole execution: $n+(n-1)+(n-2)+...+1 = O(n^2)$
- 2. Updating the λ -values of u's neighbors: In each iteration we check degree(u) values. The total sum of the degrees in $2m \rightarrow O(m)$ All together: $O(m+n^2) = O(n^2)$ (remember, $m \le n(n-1)$)

Dijktra's Algorithm - Run Time Analysis

- · Implementation 2: data structure: priority queue
- Stores set S (in our case, this is T) such that there is a linear order on key values (in our case the key is the λ value).
- Supports operations:
 - Insert(x) insert element with key value x into set.
 - FindMin() return value of smallest element in set.
 - DeleteMin() delete smallest element in set.
- · and usually:
 - Lookup(x), Delete(x)

62

Priority-Queue Implementations

 Priority-Queue can be implemented such that each of these operations takes O(log n) time for sets of size n.

Running time of Dijkstra's algorithm: We need to consider insertions, delete Mins, lookups, modifying λ values.

Running Time of Dijkstra's Algorithm:

n insertions: O(n log n) time
n deleteMins: O(n log n) time
m lookups: O(m log n) time
m λ value mods: O(m log n) time

- Running time: O((n + m) log n))
- The $O(n^2)$ is better for dense graphs

Single-Source Shortest Paths (Bellman-Ford's algorithm)

- each edge (u,v) has a weight c(u,v).
- c(u,v) might be negative, but there are no negative cycles.
- 1. $\lambda(s) \leftarrow 0$ and for every $v \neq s$, $\lambda(v) \leftarrow \infty$.
- 2. As long as there is an edge such that $\lambda(v) > \lambda(u) + c(e)$ replace $\lambda(v)$ by $\lambda(u) + c(e)$.

For our purposes ∞ is not greater than ∞ + k, even if k is negative.

65

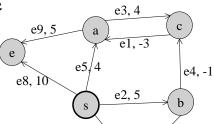
BF algorithm - correctness and run time analysis

- Theorem: if a shortest path from s to v consists of k edges, then by the end of the kth sweep v will have its final label.
- · Proof: induction on k (not here).
- Since k is bounded by |V| (remember, no negative cycles), step 2 is performed at most |E|·|V| times.
- Each comparison in step 2 can takes O(1) if the graph is kept in an Adjacency Matrix (with the weights) and an array with the $\lambda(v)$ values.
- \rightarrow The time complexity of BF is $O(|E| \cdot |V|)$.

Bellman-Ford algorithm

- · How do we implement this algorithm?
- Order the edges: e_1 , e_2 , ..., $e_{|E|}$.
- Perform step 2 by first checking e₁, then e₂, etc.,
 After the first such sweep, go through additional sweeps, until an entire

sweep produces no improvement.



Running Example: