CSEP 521 - Applied Algorithms

Graph Algorithms
Broadcasting in a Network
DFS, BFS,
Shortest Path Problems

Graph Algorithms - reading

DFS, BFS -
CLRS: chapter 22 (15t and 2"d editions.)
Skiena: section 4.4

Shortest Path Problems -
CLRS: chapter 25 (1st ed.) or 24 (2nded.)

Skiena: section 4.8

Definition

* A graph G is given by the two sets V and E.
+ Vs aset of points (vertices)

+ E is aset of lines (edges) connecting pairs of
points.

‘Examples:
-airline flight map.
-communication networks.
-precedence constraints on v={A,B,C,D,E}

the scheduling of jobs. E={(B.E)(E.D),(D.C)
-flow networks. (B,D),I(A:E)j T

(a) ®) ©)

Figure 12.1 Three graphs. (a) and (c) are undirected graphs, (b) is a directed
graph. The placement of the vertices on the paper is immaterial when we
draw graphs; for example, (a) and (c) are in fact depictions of the same

graph.

—| '

Figure 12.2 A map and its associated undirected graph. Each region is
represented by a vertex, and an edge joins each pair of vertices that
correspond to bordering regions.

A More Detailed Definition

* Anundirected graph is a pair (V,E), where V
is a finite set, and E is a set of wnordered
pairs (u,v), where uand vare in V.

+ Terminology: If (u,v)is anedge (i.e.,inE):

u and v are adjacent; v is a neighbor of u.

+ A directed graph is a pair (V,E), where Vis a
finite set, and E is a set of ordered pairs
(u,v) (both in V).

More Definitions

+ Letn=|V], m=|E|
* The size of the graph is n+m

- Any algorithm that needs to inspect each
vertex and edge has running time Q(n+m)

+ A path in G is a sequence (vy,vy,...,v)) of vertices

such that (v;, vi,;) OE, forall 0 <i< k. Itslength
is k and it is a path from v, fo v,.

+ Acycle is a path such that v, = v,.
- Anundirected graph is connected if and only if

there is a path between every pair of vertices.

* Inany connected graph m= Q(n).

Trees

* Anundirected graph is a tree if it is
connected and contains no cycles.

* A directed graph is a directed tree if it has a
root and its underlying undirected graph is a
tree.

« rOV is aroot if every vertex vOV is reachable
from r; i.e., there is a directed path which
starts inrand ends in v.

Alternative Definitions of
Undirected Trees

+ G is cycles-free, but if any new edge is added to

G, a cycle is formed.

+ for every pair of vertices u,v, there is a unique,

simple path from u to v.

+ G is connected, but if any edge is deleted from G,

the connectivity of G is interrupted.

* G is connected and has n-1 edges.

G is atree =
G is cycle-free and has # -1 edges.

= We show, by induction on n, that if G is a tree (cycle-
free and connected), then its number of edges is n-1.

Base: n=1 O

Step: Assume that it is true for all n<m, and let G be a
tree with m vertices. Delete from G any edge e. By
definition (3), G is not connected any more, and is
broken into two connected components each of which
is cycle-free and therefore is a tree. By the inductive
hypothesis, each component has one edge less than
the number of vertices. Thus, both have m-2 edges.
Add back e, to get m-1.

More Definitions

« A subgraph of a graph 6=(V,E) is a graph

G'=(V',E") such that VO Vand E' O E n (V'xV').

- A connected component of an undirected

graph G is a maximal connected subgraph of
G.

Enough with the definitions. Let's do
something.

10

Applied Algorithm Scenario

Real world problem

}

Abstractly model the problem

)

Find abstract algorithm

.
Adapt to original problem

11

Broadcasting in a Network

- Network of Routers

- Organize the routers to efficiently
broadcast messages to each other.

Incoming message
* Duplicate and send
to some neighbors.
* Eventually all routers
get the message

Goal: Minimize the number of messages.

12

Spanning Tree in a Graph Spanning Tree Problem

* Input: An undirected graph G = (VE).
G is connected.

—> + Output: T contained in E such that

- (V,T) is a connected graph

- (V,T) has no cycles

Vertex = router Spanning free
Edge = link between routers - Connects all the vertices
- No cycles
13 14
Depth First Search Algorithm Example of Depth First Search

DFS(1)

* Recursive marking algorithm
* Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do
if j is unmarked then DFS(j)
end{DFS}

15 16

Example Step 2

Example Step 3

DFS(1) DFS(1)
DFS(2) DFS(2)

DFS(7)

Example Step 4 Example Step 5

DFS(1) DFS(1)
DFS(2) DFS(2)
DFS(7) DFS(7)
DFS(5) DFS(5)

19

DFS(4)

20

Example Step 6 Example Step 7
DFS(1) DFS(1)
2 DFS(2) DFS(2)
DFS(7) DFS(7)
DFS(5) DFS(5)
DFS(4) DFS(4)
DFS(3) DFS(3)
DFS(6)
Note that the edges traversed in the depth first
search form a spanning tree.
Spanning Tree Algorithm Applied Algorithm Scenario
Wrong problem
Main ST(i: vertex) Real world problem
T := empty set; mark i; }
ST(1); for each j adjacent to i do Wrong model
end{Main} if J is unmarked then Abstractly model the problem
Add {i J} to T: I Incorrect algorithm
ST(J)' ! ’ B poor performance
The addition to DFS~end{ST} Find abstract algorithm \
Il Evaluate
Adapt to original problem

Evaluation Step Expanded

no - New algorithm

Algorithm Correct? - New model
| yes - New problem
Choose Data Structure
unsatisfactory
Performance? >
Satisfactory - New data structure
- New algorithm
Implement - New model

25

Correctness of ST Algorithm

* Thereare no cyclesin T

- This is an invariant of the algorithm.

- Each edge added to T goes from a vertex in T
to a vertex not in T.

+ If G is connected then eventually every

vertex is marked.

1/\“\ unmarked

26

Correctness (cont.)

If G is connected then sois (V,T)

27

Data Structure Step

_ no - New algorithm
Algorithm Correct? " - New model
i yes - New problem

Choose Data Structure

unsatisfactory
Performance? >
satisfactory - New data structure
- New algorithm

Implement - New model

28

Edge List and Adjacency Lists

- List of edges

115/1/2|2]|3
2|11|6|7|3|4|6[4|7]4

Adjacency Matrix

31

1 2 345 617
_ . 1[0o]1]o]ol1]1]o0
 Adjacency lists 2[1]of1]0fo]0]1
— 3[o[1]o[1]0]0]0
1 [2l 3slTel] 4lolof1]of1]o0]1
2 | gElalrl 5/1]/ofol1]0[1]1
3| 2[4l] 6/1/0[0/0[1]0]0
4 | Bl 70o0l1]of1]1]0]o0
S | el a7 3{al]
6 | ——al3E0
7 | o~ EEe2r
29 30
Data Structure Choice Spanning Tree with Adjacency Lists
+ Edge list
- Simple but does not support depth first Main ST(i: vertex)
search G is array of adjacency lists; M[i]:= 1;
. Ad I M[i]:= 0 forall i; v:=G[il
Adjacency lists T is empty; while (v # null)
- Good for sparse graphs Spanning_Tree(1); j = vvertex;
- Supports depth first search end{Main} if (M[j] = 0) then
. . add{i,j} to T;
- Adjacency matrix <t ok ST()):
- Good for dense graphs Mis the marking array. V iz v.next;
- Supports depth first search Node of linked list: end{ST}

vertex| | | next

32

Performance Step

- New algorithm
_ no
Algorithm Correct? " - New model

| yes - New problem

Choose Data Structure

unsatisfactory
Performance? >
satisfactory - New data structure
- New algorithm
Implement - New model

33

Performance of ST Algorithm

* nvertices and m edges
« Connected graph (m = n-1)
+ Storage complexity O(m)

- Time complexity O(m) - for each edge we
perform O(1) operations in each of the two
endpoints.

Other Uses of Depth First Search

* Popularized by Hopcroft and Tarjan 1973
+ Connected components

« Strongly connected components in
directed graphs

- Topological sorting of a acyclic directed
graphs
* Maze solving

35

ST using Breadth First Search 1

- Uses a queue to order search

Queue =1

36

Breadth First Search 2

Queue =2,6,5

37

Breadth First Search 3

Queue =6,5,7,3

38

Breadth First Search 4

Queue =5,7,3

39

Breadth First Search 5

Queue =7,3,4

Breadth First Search 6

41

Breadth First Search 7

Queue =4

a2

Breadth First Search 8

Queue =

Spanning Tree using Breadth First
Search (BFS)

Initialize T to be empty:;
Initialize Q to be empty:
Enqueue(1,Q) and mark 1;
while (Q is not empty) do
i := Dequeue(Q);
for each j adjacent to i do
if j is not marked then
add {i,j} to T;
mark j:
Enqueue(j,Q):

Depth First vs Breadth First

* Depth First
- Stack or recursion
- Many applications
* Breadth First
- Queue (recursion no help)

- Can be used to find shortest paths from
the start vertex

- Both are O(|E|)

Shortest-path Algorithms

+ Scenario: One router creates messages (source).

Each message needs to reach other routers (one
or more) along the shortest possible path.

* Abstraction: given a vertex s, find the shortest

path from s to any other vertex of 6.

* Other shortest path problems:

- Different edges have different lengths (delay,
cost, etc.)

- All-pair shortest path problem: no specific
source.

46

Using BFS for Shortest-path

Given a vertex s, find the shortest path from s
to any other vertex of G.

A 'centralized' version of BFS:

1. Label vertex s with O.

2. i0

3. Find all unlabeled vertices adjacent to at least
one vertex labeled i. If none are found, stop.

4. Label all the vertices found in (3) with i + 1.

5. i« i+1landgo to(3).

47

BFS for Shortest Path (i=0)

Vertices whose distance from s is O are labeled.

48

BFS for Shortest Path (i=1)

Vertices whose distance from s is 1 are labeled.

49

BFS for Shortest Path (i=2)

Vertices whose distance from s is 2 are labeled.

50

BFS for Shortest Path (i=3)

Vertices whose distance from s is 3 are labeled.

In the next iteration we find out that the whole graph

is labeled and we stop. 5

The BFS Tree

Theorem: Each vertex is S

labeled by it its length from s.
Proof: By induction on the label.

For any v#s, let p(v) be the
vertex that 'discovered’ v in BFS.

Then T={(p(v),v)} is a directed spanning tree rooted in
s, and for each vertex v, the path fromstovin Tisa
shortest path from s to v in 6.

Note: the ‘centralized’ version is for simplification only.

When implemented, we need the queue as before.
52

Single-Source Shortest Paths
(Dijkstra's algorithm)

+ Using BFS, we solve the problem of finding

shortest path from s to any vertex v.

+ What if edges have associated costs or distances?

(BFS assumes edge costs areall 1.)

*+ Assume each edge (u,v) has non-negative weight

c(u,v).

+ A weight of a path = total weights of all edges on

path.

+ Problem: Find, for each vertex v, a shortest

(minimum weight) path from s to v.

53

Idea of Dijkstra's Algorithm:

* Maintain:

— M[O..n-1] where A(v) is the cost of best path from
s to v found so far, and

- T, set of vertices v for which A(v) is not yet
known to be optimal.

* TInitially:

— A(s) = 0; A(v) = o for all v other than s.
-T=V.

- Ineach step: @WM@\@
- remove that vin T with minimum A(v)

- update those w in T s.t. (vw) in E and
A(w) > A(v) + c(v,w).

| —

w N

Dijkstra's Algorithm

Assumption: c(u,v) = o if (u,v) not in E.

. AMsS) « O and for all v #s,

AV) < oo
T « V.
Let u be a vertex in T for which A(u)
i's mninmm
For every edge, if v/T and

A(v) = A(u) + c(v,u) then

AV) <« A(u) + c(v,u).
T-T-{u}, if Tis not enpty go to
step 3.

55

Dijkstra's Algorithm - Example

56

Dijkstra's Algorithm - Example

init u=s u=a
s| O oO* O*
a| o 3 3*
b| 4 4
c| o 00 6
d 00 00 00
e| o 0 9
f| o 8 8

In class exercise: complete the execution.
* non-T vertices.

57

* Proof: by induction on |V-T]|.

Why is this Algorithm Correct?

+ Theorem: At the termination of the algorithm,

A(v) is the length of the shortest path from s to v
for each vertex v of 6.

Inductive hypothesis: Let |V-T|=k.
-0Ov in V-T, A(v) is the length of the
shortest path from s fo v.

-the vertices in V-T are the k closest
vertices fo s.

-Ovin T, A(v) is the length of the
shortest path from s to v that only
goes through vertices in V-T.

Why is this Algorithm Correct?

- Base case: |V-T|=1, T=V-{s}.
- for every v in V-T, A(v) is the length of
shortest path from s to v.
V' we init A(s) =0.
- the vertices in V-T are the k closest vertices
to s.
v V-T={s}. s is surely the closest to s.

- for every vin T, A(v) is the length of
shortest path from s to v that only goes
through vertices in V-T.

v At this stage, A(v) = » forallvin V-T.

59

The A values of vertices in V-T are correct
and for each such v, the shortest path froms
to v only goes through vertices in V-T

- Induction Step: Suppose frue for first k steps.
The SP to the (k+1)' closest vertex, say w,
can go through only vertices in V-T, otherwise,
there would be a closer vertex. Therefore,
when selecting the min, we select the (k+1)s'
closest vertex to s.

Say w is added.

New A value for a vertex x is min of old A

value and A(w) + c(w,x)

60

Dijktra's Algorithm - Run Time Analysis

Dijktra's Algorithm - Run Time Analysis

Implementation 1:
- Adjacency lists.
- Anarray for the A values.
Complexity:
In each iteration:
1. Finding a vertex u in T with minimal A
In the whole execution: n+(n-1)+(n-2)+..+1 = O(n?)
2. Updating the A-values of u's neighbors:
In each iteration we check degree(u) values.
The total sum of the degrees in 2m > O(m)
All fogether: O(m+n?)= O(n?) (remember, msn(n-1))

- Implementation 2: data structure: priority queue
- Stores set S (in our case, this is T) such that there is

a linear order on key values (in our case the key is the
A value).

*+ Supports operations:

- Insert(x) - insert element with key value x into set.
- FindMin() - return value of smallest element in set.
- DeleteMin() - delete smallest element in set.

+ and usually:

- Lookup(x), Delete(x)

61

62

Priority-Queue Implementations

* Priority-Queue can be implemented
such that each of these operations takes
O(log n) time for sets of size n.

Running time of Dijkstra's algorithm:

We need to consider insertions, delete
Mins, lookups, modifying A values.

63

Running Time of Dijkstra's
Algorithm:

n insertions: O(n log n) time
n deleteMins: O(n log n) time
m lookups: O(m log n) time
m A value mods: O(m log n) time

Running time: O((n + m) log n))

* The O(n?) is better for dense graphs

Single-Source Shortest Paths
(Bellman-Ford's algorithm)

+ each edge (u,v) has a weight c(u,v).
+ ¢(u,v) might be negative, but there are no negative
cycles.

1. A(s) — O and for every v Zs, A(v) « oo,

2. As long as there is an edge such that A(v) > A(u) +
c(e) replace A(v) by A(u) + c(e).

For our purposes « is not greater than « + &, even if
k is negative.

65

* Running Example:

Bellman-Ford algorithm

How do we implement this algorithm?

* Order the edges: e;, e,, ..., .
* Perform step 2 by first checking e, then e,, etc.,

After the first such sweep, go through additional
sweeps, until an entire €3, 4

sweep produces
no improvement.

66

BF algorithm - correctness and run
time analysis

* Theorem: if a shortest path from s to v consists
of k edges, then by the end of the k™ sweep v will
have its final label.

+ Proof: induction on k (not here).

- Since k is bounded by |V| (remember, no negative
cycles), step 2 is performed at most |E|0V|
times.

+ Each comparison in step 2 can takes O(1) if the
graph is kept in an Adjacency Matrix (with the
weights) and an array with the A(v) values.

- The time complexity of BF is O(|E|(JV|).

67

