CSEP521 – Homework 4 Solutions

Except for Problem 1, the following solutions consist of selected solution writeups from students in the class.  These writeups were modified to create more succinct solutions.

1) Given the graph G, we compute the max­flow F. Let GF be the residual graph.  Source s and sink t are disconnected in GF. 

a) Increasing the capacity of arc e = (v; w) increases the flow value iff there is an augmenting path in GF after adding a small capacity in e. There exists in augmenting path iff v belongs to the component of s and w belongs to the component of t in GF.

b) Decreasing the capacity of arc e = (v; w) by a small value decreases the flow value iff flow cannot be routed from v to w in GF – e.  There exists such a path iff v and w are disconnected in GF.

2)  Every vertex v has a maximum capacity of w(v). To solve this problem we modify the graph as follows:

Every vertex v is replaced by 2 vertices vin and vout.

All the edges coming in to v are replaced by edges coming in to vin (weights of these edges are not altered).

An edge of weight w(v) is added from vin to vout.

All the edges coming out of v are replaced by edges coming out of vout (weights of these edges is not altered).

An example:
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The above vertex with weight is transformed into the following. Only the edges have weights.
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We perform maximum flow in this transformed graph to get the maximum flow of the original graph.

Analysis:

If the original graph had n vertices and m edges then the new graph has 2n vertices and m+n edges. The complexity of max flow for the new graph is

 O(2n (n+m)2) = O(n (m+n)2)

Correctness:

Instead of routing edges into a node v and out of a node v, all incoming edges into a node v are instead rerouted into node vin, then to vout and then out of vout.  Thus, the semantics of the original graph are preserved.  No more than w(v) total flow can enter a node v because all flow entering v is now routed through vin and across an edge with capacity w(v).

3. We solve this problem by converting this into a maximum flow problem. We create a directed graph G=(V,E) as follows:

V= {s,t} ( U ( {s1,s2,…,sk}

E=  {(s,u) for all u in U} (
       {(u,sj) for all u in Sj} (
       {(sj, t) for all j=1,..,k} 

Thus, the graph has a total of n+k+2 vertices and n+|S1|+|S2|+…+|Sk|+k edges.

The capacity of each of the edges is 1.

See below for a drawing of the graph:
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We find the maximum flow of this graph. If the flow is not equal to k, no selection exists. If the flow is k, then each set vertex Sj will have an incoming edge from number vertex i having flow equal to 1. The flow of all other incoming edges to Sj will be 0. Similarly the flow of outgoing edge from number vertex i to Sj is 1. The outgoing flow of all other edges from i will be 0. Each such i is the representative of the set Sj (where the flow from i to Sj is 1). There will only be one such i for each Sj and it will be a member of Sj.

Correctness Proof: 

We show that there is a selection of representatives if anf only if there is a flow f with valuw F=k.

1. Let M= r1,r2,…,rk be a set of representatives. For each j the edge r1 ( s1 exists, we can use the directed path s ( r1 ( s1 ( t to flow one unit from s to t. Clearly, all these paths are vertex disjoint. Thus, F ( k.

2. Let f be a flow function of G which is integral and whose value is k. All the directed paths connecting s and t are of the form s ( x ( y ( t. If such a path is used to flow (one unit) from s to t then no other edge x ( y’ or x’ ( y can carry flow, since there is only one edge s ( x and its capacity is one, and the same is true for y ( t. Thus, the set of edges x ( y, for which f(x ( y ) = 1, indicates that x is a representative of the set y. Thus, we have a set of representatives of size k.
Analysis of the algorithm:

The graph has n+k+2 vertices and n+|S1|+|S2|+…+|Sk|+k ≤  n+ kn+k edges.

Solving maximum flow (using Edmonds-Karp) is O(|V||E|^2))=

                                     = O((n+k+2)(n+nk+k)2)

                                     = O((n+k)n2k2) = O(n3k2)

All other steps are neglected.

4a)  (Once again, this is a very thorough solution and is included for this reason).

We will solve this problem by converting this into a maximum flow problem.

Let |A|=n. Let us denote the girls in A as A1, A2, …, An.

Let |B|=m. Let us denote the boys in B as B1, B2, …, Bm.

Let |C|=p. Let us denote the boys in C as C1, C2, …, Cp………………..(1)

We create a directed graph G as follows.

We create 2 vertices per girl Ai, call them AiB and AiC.  The graph G=(V,E) is then:


V= {s,t} ( {A1B,A2B,…,AnB} ( {A1C,A2C,…,AnC} ( 

      {B1,B2,…,Bm} ( {C1,C2,…,Cp}

E= {(s,a) for all a in AiB} (
       
     {(a,b) for all a in AiB and b in Bi if girl Ai wants to dance with boy Bi} (
                 {(a,c) for all a in AiC and c in Ci if girl Ai wants to dance with boy Ci} (
       
     {(Bi,t) for all i=1,2,…m} (
                 {(Ci,t) for all i=1,2,…p}

Thus, the graph has a total of 2n+m+p+2 vertices and a maximum of 2n+m+p+nm+np edges (if girls are fully connected to boys in B and C).  The capacity of each of the edges is 1.

See below for an example picture of the constructed graph:
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We find the maximum flow of this graph. The maximum flow is the total number of boys dancing. If the flow of an edge from AiB to Bj is 1, girl Ai dances with Bj. Similarly if the flow of an edge from AiC to Ck is 1, the girl Ai dances with Ck. Girl Ai may dance with utmost 2 boys: Bj and Ck.

Analysis of the algorithm:

The graph has 2n+m+p+2 vertices and a maximum of 2n+m+p+nm+np edges.

Solving maximum flow (using Edmonds-Karp) is O(|V||E|^2))=

                                     = O((2n+m+p+2)( 2n+m+p+nm+np)2)

                                     = O(n3m3p3)

All other steps are neglected.

4b)  We will solve this problem by converting this into a maximum flow problem.

Let |A|=n. Let us denote the girls in A as A1, A2, …, An.

Let |B|=m. Let us denote the boys in B as B1, B2, …, Bm.

Let |C|=p. Let us denote the boys in C as C1, C2, …, Cp………………..(1)

We create a directed graph G as follows.

We create 2 vertices per girl Ai, call them AiB and AiC.  The graph G=(V,E) is then:


V= {s,t} ( {A1B,A2B,…,AnB} ( {A1C,A2C,…,AnC} ( 

      {B1,B2,…,Bm} ( {C1,C2,…,Cp}

E= {(s,Bi) for all i=1,2,…,m} (
     {(Ci,t) for all i=1,2,…p}

       
     {(b,a) for all b in Bi and a in AiB if girl Ai wants to dance with boy Bi} (
                 {(a,c) for all a in AiC and c in Ci if girl Ai wants to dance with boy Ci} (
       
     {(AiB,AiC) for all i=1,2,…n}              

Thus, the graph has a total of 2n+m+p+2 vertices and a maximum of n+m+p+nm+np edges (if girls are fully connected to boys in B and C).  The capacity of each of the edges is 1.

See below for an example picture of the constructed graph:
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We find the maximum flow of this graph. The maximum flow is the total number of girls dancing. Since each girl has to dance with 2 boys (one from B and one from C) or not dance at all, the number of girls dancing is equal to number of boys from B dancing and that is equal to the number of boys from C dancing. If the flow of an edge from Bj to AiB is 1, then the flow of an edge from AiC to some Ck will also be 1. The girl Ai will dance with Bj and Ck.

Analysis of the algorithm:

The graph has 2n+m+p+2 vertices and a maximum of n+m+p+nm+np edges.

Solving maximum flow (using Edmonds-Karp) is O(|V||E|^2))=

                                     = O((2n+m+p+2)( n+m+p+nm+np)2)

                                     = O(n3m3p3)

All other steps are neglected.
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