CSEP 521 - Applied Algorithm Spring 2003 Homework 1.

Due date: 4/9/03 (see submission instructions in course web-page).

1. (12 points) True of False? Prove or give a counter example. The functions f, g, h are positive and monotonically increasing.
a. if $f(n)=\Omega(g(n))$ and $g(n)=O(h(n))$ then $f(n)=\Theta(h(n))$
b. if $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ then for any $\mathrm{h}, \mathrm{h}(\mathrm{f}(\mathrm{n}))=\Theta(\mathrm{h}(\mathrm{g}(\mathrm{n}))$
2. (18 points) True or False? Give a brief explanation.
a. $\sum_{k=1}^{n} k=O(n)$
b. $\sum_{k=1}^{n} k=\Omega(n)$
c. $2^{n}=\Theta\left(3^{n}\right)$
d. $3 n^{2}+n+n \cdot \log (n)=\Omega\left(n^{2}\right)$
e. $3 n^{2}+n+n \cdot \log (n)=\Omega(n \cdot \log (n))$
f. $\frac{n^{2}}{2^{n}}=O(1)$
3. (12 points) For each of the following questions, briefly explain your answer.
a. If I prove that an algorithm takes $O\left(n^{2}\right)$ worst-case time, is it possible that it takes $O(n)$ on some inputs?
b. If I prove that an algorithm takes $O\left(n^{2}\right)$ worst-case time, is it possible that it takes $O(n)$ on all inputs?
c. If I prove that an algorithm takes $\Theta\left(\mathrm{n}^{2}\right)$ worst-case time, is it possible that it takes $O(n)$ on some inputs?
d. If I prove that an algorithm takes $\Theta\left(\mathrm{n}^{2}\right)$ worst-case time, is it possible that it takes $O(n)$ on all inputs?
4. (14 points) Use induction to show that for any $\mathrm{n}>0$

$$
(1+2+\ldots+n)^{2}=1^{3}+2^{3}+\ldots+n^{3}
$$

5. (22 points) In class we argued that the Traditional Marriage Algorithm will never require more than n^{2} days to terminate. In fact, it is possible to prove a tighter upper bound, $n^{2}-2 n+2$, on the maximum number of days until the algorithm terminates. Describe a set of preference lists that requires $n^{2}-2 n+2$ days to terminate.
6. (22 points) Let A and B be two different stable pairings of n boys with n girls. Consider the following way to build a new pairing C from A and B . For each boy, A pairs him with some girl g_{A} and B pairs him with some girl g_{B}; to construct C we give him his favorite of the two girls g_{A} and g_{B}. (g_{A} and g_{B} might be the same girl, which is fine.) It is not even obvious that C is a pairing-perhaps some girl will get matched with two boys. Strangely, C is not only a pairing, it is stable! Prove that it is a pairing and that it is stable.
