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Five or six weeks later, she asked me if I had deciphered
the manuscript.. I told her that I had.

"Without the key, sir, excuse me if I believe the thing
impossible. "

"Do you wish me to name your key, madame?"

"If you please.”

I then told her the key-word which belonged to no
language, and I saw her surprise. She told me it was
impossible, for she believed herself the only possessor of
that word which she kept in her memory and which she had
never written down.

I should have told her the truth -- that the same
calculation which had served me for deciphering the
manuscript had enabled me to learn the word -- but on a
caprice it struck me to tell her that a genie had revealed it
to me. This false disclosure fettered Madame d'Urfe to me.
That day I became the master of her soul, and I abused my
power.

From the autobiography
of Casanova (1757)
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Cryptography

Goal:

« to be able to communicate securely over a channel,
any medium for communication between two parties.
* Telephone, radio waves, Internet, satellite communication,
etc.
« of immense commercial importance, particularly with
increasing use of Internet for commercial purposes.

S ecurity Risks of Internet Communication

Eavesdropping

« intermediaries listen in on private conversations

* Solution: encryption (public or private-key)

Manipulation

« intermediaries change information in a private communication

« Solution: methods for preserving data integrity (one-way
hash fn’s and MACs)

Impersonation
« asender or receiver communicates under false identification
« Solution: authentication (signatures, etc.)




T erminology Cryptography: communication in the presence of

adversaries.
A sender wants to send a message to a receiver securely -- Goals:
wants to make sure no eavesdropper can read the message. « privacy: adversary learns nothing about message sent
ciphertext + authentication: recipient of message can convince herself

Plaintext ----> Encryption ----------- > Decryption ----> Plaintext that the message as received originated with alleged sender.

M E(M) C=E(M) D(C) * signatures: recipient of a message can convince a third party

M=D(C) that the message as received originated with the alleged
plaintext -- original message signer.

minimality: nothing is communicated except that which is
specifically desired to be communicated.

simultaneous exchange: something of value not released
untile something else of value received.

multi-party coordination: parties can coordinate activities
towards common goal even in presence of adversaries.

encryption -- process of disguising message so as to hide its substance
ciphertext -- encrypted message

decryption -- process of turning ciphertext back into plaintext.
cryptography -- art and science of keeping messages secure

cryptanalysis -- art and science of breaking ciphertext

T he cast of characters Cryptanalysis
Alice: first participant in all protocols One possibility: security through obscurity
Bob: second participant in all protocols Restricted algorithms: depend on keeping inner

Eve: eavesdropper workings of algorithm secret.

Mallory: malicious C_‘Chve attacker Difficult for communications between parties with
Trent: trusted arbitrator no prior contact, as in Internet commerce
applications.

Wildly optimistic to assume details of security
mechanisms won't fall into the wrong hands.

No quality control or standardization

Kerckhoff’s Doctrine Key-Based S ecurity
All security in key; alg can be published

Associated with algorithm is key. All security is in Exi (M)=C, Do (€)= M
key. keyspace -- range of possible key values
Kerckhoffs: If the strength of your cryptosystem relies Symmetric algorithms: encryption key can be
on the fact that the attacker does not know the algorithm's calculated from decryption key and vice versa
hidden workings, you're sunk!ll (usually same)
) ) « stream ciphers -- operate on plaintext a bit (byte) at a time
Key question: can we do it? « block ciphers -- operate on group (block) of bits.
As Edgar Allan Poe wrote in "The Gold-Bug": Examples: DES, RC4, IDEA, Blowfish....

It may well be doubted whether human ingenuity can
construct an enigma of the kind which human ingenuity

o Notable feature: fast
may not, by proper application, resolve.




Protocadl for communicating using symmetric
ayptography

Alice and Bob agree on a cryptosystem
Alice and Bob agree on a key

Alice encrypts plaintext using encryption
algorithm and key => ciphertext

Alice sends ciphertext to Bob

Bob decrypts ciphertext with same algorithm
and key and reads it.

Problems

keys must be distributed in secret
if key compromised, all is lost
# keys needed grows like Omega (n?)

What doesit mean to say an algorithm is unbreakable?

Shannon’s T heory

"Communication Theory of Secrecy Systems”
by Claude Shannon, 1949.

Many important ideas

ayptosystem

Computational security
cannot be broken with “available resources” current or
future.
* best known method of breaking system takes
unreasonably large amount of time
« can reduce the security of the cryptosystem to some well-
studied problem that is thought to be difficult.
Unconditional security
cannot be broken, even with infinite computational
resources.

Two approaches to discussing security of a

Unconditional S ecurity

Framework: probability theory
Probability distribution over plaintexts (known to Eve)
Probability distribution over keys.




Perfect S ecrecy

Cryptosystem has perfect secrecy if
Prob (plaintext | ciphertext) = Prob(plaintext)

Ie., a posteriori probability of plaintext, given that the
ciphertext is observed is identical to the a priori probability
of plaintext.

Readlization of Perfect S ecrecy: T he One-
time Pad (1917)

P= C= K= n bit strings
E«(p) = bitwise xor of Kand p = c.
Dy(c) = bitwise xor of Kand c = p

Problems:

» amount of key that must be communicated securely equals
amount of plaintext

* severe key management problems since can use each key
for only one encryption

(vulnerable to known plaintext attack)

Computational S ecurity: Types of cyptanalytic
attack

ciphertext only -- analyze ciphertexts to gain info acbut
plaintext

known-plaintext attack -- intercept ciphertexts for which
plaintexts are known

chosen-plaintext attack -- choose plaintexts to be encrypted
adaptive-chosen-plaintext attack -- modify choices based on
results

chosen ciphertext attack -- get Bob to decrypt ciphertexts
of choosing

rubber-hose cryptanalysis -- threaten, blackmail, torture
until key is released

Public Key Cryptography

We stand today on the brink of a revolution in cryptography.
Diffie and Hellman, 1976

Public-Key Cryptography
Private key crypto => Alice and Bob must secretly
choose K, exposure of Ey renders system insecure
=> requires prior communication of the key K using
secure channel before any ciphertext is
transmitted.
Public-key system:
Tdea: to find a cryptosystem where computationally
infeasible to determine D given E => E could be
made public by publishing it in a directory.
=> Alice can send encrypted message using public E

Bob is only person who can decrypt it, using secret
decryption rule.

Public-Key Cryptography

Idea due to Diffie & Hellman 1976 (indep Merkle)
First realization 1977: Rivest, Shamir, Adleman.
Since then, many others.

Security rests on different computational problems.
* RSA -- factoring large integers (??)

McEliecee -- decoding linear code (NP-complete)

El Gamal -- discrete logarithm problem (??)

Chor-Rivest -- knapsack (NP-complete)

Public-key cryptosystem can never provide unconditional
security.




ldea: uses trapdoor one-way function.

E¢ should be easy to compute
Dy (inverting Ey ) should be hard
=> E¢ should be a one-way function
Example of possible one-way function:
n=pq (p.q two large prime numbers)
f(x)=x>modn
Don't want E¢ to be one-way from Bob's point of

view => Bob must possess trapdoor, secret
information that permits easy inversion of E

One-Way Functions

A function f is one-way if, given x it is easy
to compute f(x), but given f(x) it is hard to
compute x (superpolynomial, or exponential
time).

Trapdoor one-way functions: easy to
compute f(x) given x, hard to compute x
given f(x). But there is some secret
information y, s.t. given f(x) and y, easy to
compute x.

Number T heoretic Preliminaries

... both Gauss and lesser mathematicians may be justified in
rejoicing that there is one science [number theory] at any
rate... whose very remoteness from ordinary human
activities should keep it gentle and clean.

From the autobiography
A Mathematician's Apology

Number-theoretic Preliminaries

Modular arithmetic
 Digression about cryptanalytic attacks

Prime numbers

Greatest common divisor
Inverses modulo a number
Fermat's Little Theorem
Euler Totient Function

of 6.H. Hardy, Chinese Remainder Theorem
number theorist and pacifist, « Factoring
1940 * Prime Number Generation
Modular Arithmetic Digression to use modular arithmetic,

“clock arithmetic”

If Mildred says she'll be home by 10:00 and she's 13 hours
late, what time does she get home and for how many years
does her father ground her? => arithmetic modulo 12.

(10 + 13) mod 12 = 23 mod 12 = 11 mod 12
23 =11 mod 12
a=b (modn) ifa=b+kn for some integer k
<=> ais congruent to b, modulo n
<=> b is the residue of a, modulo n
<=> anon-negative, 0 <= b<=n =>b is remainder of a
when divided by n.

cyptanalysis
Caesar cipher:
plaintext abcde
+K=
ciphertext d e f g h

K is offset between O and 26 => Ey (P) = P+K mod 26
Easy attack: try all possible keys.

Moral: cryptosystem insecure if # keys too small.




Possible solution: use more keys
=> Addition Cipher

Imagine alien alphabet with 10'2 keys.

Break message up into blocks of numbers
between O and 10%2-1

Known-plaintext attack
Alice sends Bob message using block size of 20
digits.
Eve intercepts, and she knows message starts with

“Dear Bob" => knows both plaintext and ciphertext
of first block.

cyph = plain + key mod 1020
=> key = cyph - plain mod 10%°
Also works if Eve knows of some number of ways
Alice's message likely to begin. Tries each one =>
set of possible keys => tries each key on entire
message.

Using prior knowledge about message -- in English

Ciphertext-only attack

To get useful information about plaintext.

Each month Alice sends Bob amount to spend,
encrypted with 20-digit addition cipher, same key.

Eve intercepts Jan and Feb ciphertexts.
Jan ciph = Jan plain + key mod 1020
Feb ciph = Feb plain + key mod 10%°

Jan ciph - Feb ciph = Jan plain - Feb plain mod 1020

Modular Arithmetic (cont.)
Like normal arithmetic: commutative, associative and
distributive
Can reduce intermediate results modulo n.
(a*b) mod n = ((a mod n)(b mod n) mod n)

Speeding up exponentiation in modular arithmetic
a8 mod n = (a*a*a*a*a*a*a*a) mod n
= ((a@ mod n) 2 mod n) 2 mod n
a®modn=(a*a®* al®)modn
= (@ ((@®)?)2 *(((a?)?®)?3)2)modn
=(a* (((@*a?d)?)?2)2)modn
Can be done in O( log x) operations [a* mod n]

Prime Numbers and GCD

A prime number is an integer greater than 1 whose only
factors are 1 and itself. No other number evenly divides it.
Examples: 2, 3,5,7,11,13,..,73, 2521, 27%68%9 -1

Two numbers, a and n, are relatively prime when they share

no factors in common other than 1, i.e., the greatest common
divisor (gcd) of aand nis equal to 1.

ged(a,n) =1

Examples: 4,9
15, 28
15, 27
5,12

Inverses Modulo a Number

4 and 1/4 are inverses because 4* 1/4 =1
In modulo world, want to find x such that
1=a*x (mod n)
Also written a-! = x (mod n)
Has unique solution if a and n are relatively prime.
If aand naren't relatively prime, has no solution.

4x =1(mod 7) <=>Finding x, k such that 4x=7k+1
Inverse of 5 modulo 14 = 3
2 has no inverse modulo 14.




E xtended E udidean Algorithm

can be used to calculate the gcd of two numbers a and b

to calculate the the multiplicative inverse modulo n of a humber
a.

Fermat’s Litle Theorem

If misaprime and ais not a multiple of m,
then

a™!l=1modm

Euler T otient Function
(Euler phi function ¢(n) )

¢(n) = number of positive integers less than
n that are relatively prime to n (n>1).

If nis prime, o(n) =
If n = pq, where p and q are prime,
o(n) =

Multiplicative Inverse

Euler's generalization of Fermat's Little Theorem.
If ged(a,n) = 1, then
a®™ modn=1

=> almodn=

Example: 5-1 mod 7

S pedal cas e of Chinese Remainder

Theorem
p and q prime
There is a unique x < pq such that
X =amodp
x=bmodq

Can find it by first finding u such that ug=1 mod p

Then x = (((a-b)u)mod p)q +b

Easy corollary: x = a mod p,
=> x = a mod n.

x = a mod q

S ummary of Number-theoretic Preliminaries

Modular Arithmetic:
+ Speed up calculations by reducing modulo n
« Exponentiation is fast.

Two numbers relatively prime when share no common factors.

a ! (mod n) is the number x such that ax (mod n) = 1.
« has unique solution if a and n are relatively prime.

« has no solution otherwise.
Extended Euclidean Algorithm

« to calculate gcd(a,b)

« tocalculate a-* (mod n)




Summary, cont.

Fermat's Little Theorem: If mis aprime and ais
not a multiple of m, then

am-!=1modm
Euler phi function ¢(n) = number of positive
integers less than n that are relatively prime to n
(n>1).
If n=pq, where p and q are prime, ¢(n) =(p-1)(q-1)
Euler's generalization of FLT: If gcd(a,n) =1, then

a®™ modn=1

Summary, cont.:

Special Case of Chinese Remainder Theorem:

P. q prime, n=pq
There is a unique x < pq such that
x = amod p
x=bmodgq
Easy corollary: x=amodp, x=amodq
=> x=amodn,

The RSA Cryptosystem

RSA

Bob selects at random 2 large prime numbers p and q, say 150
decimals each.

Compute n=pq

Bob chooses integer e relatively prime to o(n) = (p-1)(g-1).
Compute d as multiplicative inverse of e, modulo ¢(n).
Publish P=(e,n) as public key.

Keep secret S=(d,n) as private (secret) key.

Domain of plaintexts is Z,
Encryption function E(M) = C = Me (mod n)
Decryption function D(C) = €4 (mod n)

Example

p=47,q=71 =>n=pq = 3337

encryption key e must have no factors in common with (p-
1)(q-1)=46 * 70 = 3220.

Choose e at random to be 79.

=> d=79 "1 mod 3220 = 1019. [ (1019 x 79) mod 3220 = 1]
Publish e, n; keep d secret.

To encrypt M = 688, then E(M) = 688 7 mod 3337 = 1570
To decrypt C= 1570, then D(C) = 1570 99 mod 3337 = 688

Issues

Why does it work?
How do we implement it?

What kind of security guarantees does it
provide?




Why does it work?
Encayption & decryption inverses

N=pq, de =1 mod ¢(n)
EM)=Memodn=C
D(C) = C4mod n.

Assume M and n relatively prime
de =1 mod ¢(n) =>de=10¢(n)+1 fortinteger
=> (M) 9modn=Memodn
= M 1 o(n) +1 mod n
= (M¥X™) T M mod n
=1*Mmodn by FL.T.
=M modn

Implementing RS A

Bob generates two large primes, p & q

« Probabilistic primality testing O((log n) )

Bob computes n = pq and o(n) =(p-1)(g-1)

Bob chooses random e (1 < e < ¢(n)) such that
ged(e, ¢(n) ) =1

 Euclidean algorithm

Bob computes d = e -! mod ¢(n)

» Extended Euclidean Algorithm O((log n)?)

Bob publishes n and e in a directory as his public
key.

Probabilistic Primality T esting

FLT: am-!=1modm, for mprime (*)

For most composite numbers, equation false for more

than half the d's.

Gives way to test a number m to see if it's prime.
Choose a random 1<= a <= m-1.
Raise it to power m-1 to see if equation (*) is true.
If not, misn't prime.
If is, repeat with bunch more random d's.

Probabilistic Primality T esting

To find a random 100 digit prime number,
pick random 100 digit humber, and perform
test.

Keep going until you choose a number that
turns out to be prime.

Luckily, primes are plentiful.

(Prime Number Theorem: # primes <= N
about N/ In N)

=> About 1/230 100 digit numbers are prime.

A few obvious questions....

If everyone needs a different prime number,
won't we run out?

« About 105! prime numbers < 512 bits

What is two people accidentally pick the
same prime number?

If someone creates a database of all primes,

won't he be able to use the database to break

public-key algorithms?

Implementing RS A, cont.

Break input into humerical blocks smaller
than n.

Encryption and decryption
» Modular exponentiation




Security of RSA

Rests on difficulty of factoring large
numbers.

If factoring large integers is easy, breaking
RSA is easy

Converse unproven: it is conjectured that if
factoring large numbers is hard, breaking
RSA is hard.

Sure as hell better make sure n is a very very
big number.

Factoring

Factoring a number means finding its prime factors.
10=2*5
60=2*2*3*5
8338169264555846052842102071 =
179424673 * 2038074743 * 22801763489

To factor a number n, best known algorithm (number
field sieve) has exponential running time
e c(nn) /3 (ininny 2/3

A bit of factoring history...

1971 The big news was the factoring of a 41 digit number.
1991 RSA Data Security Inc set up RSA Factoring
Challenge: list of hard numbers, each product of 2 primes,
ranging from 100 digits to 500 digits.

1994 "RSA129", one of challenge numbers, 129 digits (428)
bits), factored over 8 months, using 1600 computers on
Internet around the world (~5000 MIPS-years)

" We conclude that commonly used 512-bit RSA moduli are vulnerable to
any organization prepared to spend a few million dollars and to wait a
few months."

With this method, a 250-digit nhumber would take
100,000,000 times as long.

Genera Comments About Public-Key
Cryptosystems

Slow.

Vulnerable to exhaustive search, and chosen-
ciphertext attacks.

Hybrid Cryptos ys tems

In practice, public-key crypto used to secure and distribute
session keys, which are then used with private-key crypto to
secure message traffic.

Bob sends Alice his public key.

Alice generates random session key K, encrypts it using Bob's
public key, and sends it to Bob.

Bob decrypts Alice's message using his private key to recover
session key.

Both encrypt their communications using same session key.

Public-key crypto solves important key-management problem.

Exerdse: ShowRS A encryption and
decryption inverses.
N=pq, de =1 mod ¢(n)

EM)=Memodn=C
D(C)=Cd9mod n.

Show (M ¢)dmod n =1, also in case where M, n not relatively
prime.
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Digital Signatures

Digital Signatures

Hand-written signatures used as proof of
authorship or agreement with contents of a
document.

* authentic

unforgeable

not reusable

unalterable

cannot be repudiated.

Not so obvious how to do on a computer.
« Trivial to copy, cut and paste, easy to modify,....

Digital Signatures

Two components:
« secret signing algorithm S, (M) = Signature
* public verification algorithm V, (M, Signature)
V, (M, Signature)= true if S, (M) = Signature,
false otherwise.

Signing Documents with PublicKey
Cryptography

How Alice sends a signed message to Bob using
RSA
* Alice signs with her private key. S (M) = D,(M)
+ Bob verifies with Alice’s public key. V (C) = E,(C)
A B
C =D 4(M) CcM

Authentic, unforgeable, not reusable, unalterable, can't be
repudiated.

Just to be completely dear...

UsingRSA...
How Alice sends a secret message to Bob
A B
C=EgM) c
——————————— > M=D (O
How Alice sends a signed message to Bob
A B
c=D M) c
——————————— > M=E L0

Digital Signatures

=> can use RSA public-key cryptosystem to
provide digital signatures.

There are many other digital signature
schemes:

« Discrete Log Signature Schemes.

« DSA
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Problem

Copy of signed digital message identical to

original.

« Bob can cheat by reusing document and signature
together.

« Example: Alice sends Bob a signed digital check for
$1000.

Solution: timestamp.

Digital Signatures + Encryption
proof of authors hip + privacy

Alice signs with her private key then encrypts with
Bob's public key
A B
C=Eo(SAM) ¢

Bob decrypts with his private key, then verifies
with Alice's public key.
S 4(M) =D g(C)
M=V .(C)

Issues

Bad idea to encrypt then sign.

Timestamps should be used to prevent reuse
of messages.

Digital Signatures us eful for

Authentication: protocol by which the
receiver of a message is convinced of the
identity of the sender and the integrity of
the message.

Chosen Ciphertext Attack Against RS A:
Scenario 1

Eve collects c. She needs m, for which m = ¢4
she chooses random r < n, she gets Bob's public key and then
computes
x=remodn => x4 =red modn
= xd9=rmodn
y = xc mod n

t=r-lmodn
Eve gets Bob to decrypt y with his private key. Bob sends Eve
uzydmodn.

Now Eve computes
tumodn=r-tydmodn=r-!xdcdmodn
=cdmodn=m.

Chosen Ciphertext Attack Against RS A:
S cenario 2

Trent is a computer notary public. When Alice wants a
document notarized, she sends it to Trent who signs it with
an RSA digital signature.

Mallory wants Trent to sign a message he otherwise wouldn't,
call it m*

Mallory chooses arbitrary x and computes y = x ¢ mod n
(where e is Trent's public key).

Then he computes m=ym' mod n and sends m to Trent to sign.
Trent returns md mod n = (ym') 4 mod n = xm’ 4 mod n.

Mallory calculates (md mod n) x -! mod n = m’ 4 mod n, which is
the signature of m'.
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What’s going on?

(xm)¥ modn=x9md9modn

13



