CSE 589 Part VI

Those who fall in love with practice without science
are like a sailor who enters a ship without a helm or
a compass, and who never can be certain whither he
IS going.

Leonardo da Vinci

Reading

D.D. Sleator and R.E. Tarjan "Self- Adiusfing Binary
Search Trees", Journal of the ACM 32 (1985), pp.
652-686

Skiena, Section 8.1.1

Weiss, "Data Structures and Algorithm Analysis in
C++", 2rd Edition, Section 11.5

Lewis and Denenberg, "Data Structures and Their
Algorithms", Section 7.3

Splay Trees — award winning

Danny Sleator of Carnegie Mellon University and Bob Tarjan of
Princeton University have been awarded the 1999 Kanellakis
Theory and Practice Award by the ACM for their invention of the
Splay Tree data structure. This prestigious award “honors specific
theoretical accomplishments that have had a significant and
demonstrable effect on the practice of computing”.

"Splay Trees are a simple, elegant and efficient self-adjusting
data structure for storing ordered sets. They've found their way
into the Linux and NT kernels, the GCC compiler, FORE routers,
and a myriad of other important applications.”

Ancther implementation of a Dictionary:
use binary search tree

A binary search tree is a binary tree with a key at each
node u such that, for each node with left subtree L and
right subtree R, we have

« the key at u is greater than all the keys in L

« the key at u is less than all the keys in R

Splay Trees

self adjusting binary search trees

guarantee that any m consecutive tree operations
starting from an empty tree take O(m log n) time,
where n is the maximum number of elements in tree at
any time.

Another way of saying this is that the average cost of
an operation (averaged over all the operations) is
O(logn). Note: this makes no assumption about the
sequence of accesses.

Call this amortized logarithmic cost.

Amortized Analysis

in general, when a sequence of m operations has a total
worst-case running time O(m f(n)), we say the
amortized running time of each operation is O(f(n))
Definitions of amortize (from real dictionary)

1: to provide for the gradual extinguishment of (as a
mortgage) usually by contribution to a sinking fund at
the time of each periodic interest payment

2 : to amortize an expenditure for <amortize intangibles>
<amortize the new factory>

|dea

Expensive operations can only happen infrequently.

If you ever pay O(n) to access an element, you
must move it.

List Update

Given a linked list L, sequence of requests ¢ to elements in
list, serviced online

Cost of accessing an element x in L = position of element in
list.

Also, can transpose two adjacent list elements at a cost of
one unit.

Goal: minimize total cost of accessing elements in o

Best offline strategy : no efficient algorithm for computing it
known.

Sleator & T arjan
Move-To-Front heuristic always within a factor of

2 of optimal of fline (2-competitive)

Transpose and Frequency Count can be arbitrarily
bad.

Application of these ideas here:

if a node is too deep, after access it is moved to
root

nodes on path to accessed node (which are also
deep) should be moved to less deep position

want restructuring to have side effect of balancing
tree.

S play trees

simpler data structure than those that explicitly
maintain balanced tree (don't explicitly maintain
any height or balance info)

excellent amortized running time -- guarantees do
not depend on any assumption about distribution of
accesses

practically even better.

« Locality of reference -- when a node is accessed it is likely to
be accessed again in the near future.

Crudal Operation called ‘S play”

to "splay” something means to spread it out and

flatten it

Splay (K, T), where K is a key and T is a BST

modifies T so that

* it remains BST with same set of items

* new tree has K at root if K was already in T

« if Kwas not in T, root contains key that would be predecessor
(or successor) of K if K were in tree.

Call this operation "splaying the tree around K"

Splay(K,T) Splay(K,T) \
—

®, X ® S

[®)\ [E)\

Figure 7.16 Effect of Splay(K,T). If kéy K is in tree T, it is brought to
the root, otherwise a key in T that would neighbor K in the dictionary
ordering is brought to the root.

Rest of dictionary operations

Given an implementation of splay operation, rest of
dictionary operations can be implemented easily:
« Lookup(K,T)
« Insert(K, Info, T)
« Delete (K,T)
« Concat(T1, T2):
* input -- two BST's T1 and T2 such that every key in T1 is less than
every key in T2
< output -- BST containing all keys in either T1 or T2

Splay(K,T)
-

Figure 7.17 Implementation of LookUp(K, T) with the aid of Splay. Splay
the tree around K, then see if K is at the root.

® 3
© ®\ /e

Figure 7.18 Implementation of /nsert(K, T) with the aid of Splay. Splay the
tree around K, then make K the root.

Splay(+e0,T;)
A A
T2 T
Ty

gure 7.19 Implementation of Concar A it e ¥. Spla;
Fi 7.19 f Ty, T3) with th aid of Splay. § Y
¥
the first tree around +oo, then m ake the second tree the r ght subtree of

Splay(K.T) Concat(T, T,)
Tz /\ T2
Ti

T

Figure 7.20 Implementation of Delete(K, T) with the aid of Splay and
Clﬁ;rmcm. Splay the tree around K, then concatenate the two subtrees of
the root.

RBoda E deP\Q
How to implement S play (K,T)?

Tnsert(1)) Trsert(y, .., Tnsert (V)

First search for K in usual way, remembering © _,

search path by stacking it. Let P be last node -
inspected. (If K is in tree, K is in node P, otherwise,

P has empty child where search for K terminated)

Idea 1: perform single rotations bottom up --

return along path from P to root carrying out O]
rotations that move P up the tree, so that when . s /d
splay is completed, P will be the new root.

Lookop(V), Meakop(3y, ... , Lakup(n) Lco\r.uf(&)
Luo\z.u‘:(\) i @@
F g s B f
O/\C;/ 4 62}) (-9/ [CaR TN S
Luu‘(v? (»
9 cos\r" ®\ o
S @ e & 7 — t\) - O
®
S @Qf S Y
(C] ® stz -3y

Better propos al

« Case I: P has no grandparent (that is, Parent(P) is the root).
Perform a single rotation around the parent of P, as illustrated
in Figure 7.21 or its mirror image.
Case Il: P and Parent(P) are both left children, or both right
children: Perform two single rotations in the same direction,
first around the grandparent of P and then around the parent
of P as shown in Figure 7.22 or its mirror image.
Case llIl: One of P and Parent(P) is a left child and the other
> @ is a right child: Perform single rotations in opposite directions,
first around the parent of P and then around its grandparent,
/_-" QU Fime as illustrated in Figure 7.23 or its mirror image

d o

Can veqaak |,

©

Q P

AAA AAA

Figure 7.21 Rotation during splay, Case I: P has no grandparent.

FiguLe‘g.ZZ Rotation during splay, Case II: P and its parent are both left
children.

Figure 7.23 Rotation during splay, Case III:

is a right child. Is a left child and its parent

© @

Figure 7.24 Splaying a tree around D. (a) i
la : n . (a) Original tree; D is a left child
of a left child, so Case II applies. (b) After applying the rotations of
F‘I'gllflf 7.22 at D, E, and G. D is now a left child of a right child, so
(JISL!KIL.;pphca.h[c) After applying the rotation of Figure 7.23 at D, H,
and C. D now has no grandparent, so Case I 4 fter applying
the rotation of Figure 7‘2! a(pD and 2 R O ARerelying

T he big theorem

effect of rotations mysterious, subtle and actually
not that well understood.
Splay Tree Theorem:

* Any sequence of m dictionary operations on a splay tree that
is initially empty and never has more than n modes uses O(m
log n) time in worst case. Therefore, the operations have
amortized O(log n) time.

Analysis subtle: need to show that time "saved"
while performing low-cost operations can be "saved
up for use" during time-consuming operations

We'll spend the next several slides proving this.

|dea of Proof

use banking metaphor-.

You will give me O(log n) dollars per dictionary operation

| will either save it or use it to pay for the rotations | do.

If I do a Splay operation that consists of d basic steps, | will
pay you d dollars.

My only source of money is what you give me.

If | can show that I never fail to pay you for the operations,
then we can argue that the total cost of m operations is O(m

log n)

More on idea of proof Definitions

T will save the money you give me in "bank for any vertex v in the tree:

accounts” at each node in the tree, each of which « w(v): the weight of v = number of descendents of v (including
will be required to maintain a certain minimum v itself)

balance. + r(v) : the rank of v = floor(log , w(v))

Minimum balance in a bank account at node will be

related to its number of descendents (money The Money Invariant: each vertex v has r(v) dollars
invariant below) in its account at all times.

payment I make to you for each operation:
« some will come out of bank accounts at nodes
« some will come from new investment (what you paid me)

Using money during s play process T he Investment Lemma
Money is used in two ways during splay process It costs at most 3 floor(log(n)) + 1 new dollars (this
« we pay for the time used. $1 per operation (zig, zag, zigzig, is the money you pay me) to splay a tree with n

zagzag, zigzag, zagzig) nodes while maintaining the Money Invariant
« since the shape of the tree changes as the splay is carried ever‘ywher‘e_

out, we may have to add money to the tree, or redistribute the

money already in the tree, in order to maintain the Money

Invariant everywhere.

We'll do the proof of this later.

Proof of Splay T reeLTgrﬁ%zm using Investment To prove investment lemma

Any dictionary operation on a tree T with at most n Two observations about ranks

nodes costs O(log n) new dollars: « rank of a node >= rank of any of its descendents
Lookup(K,T) costs only what the splay costs, which is O(log * Rank Rule: if a node has 2 children of equal rank, then its

n) rank is greater than that of each child

* Proof of Rank Rule: node x has two children, u and v

Insert(K,Info, T) costs for splay plus what must be banked in
new root to maintain invariant , for a total of O(log n)

« Concat(T1, T2), where T1 and T2 have at most n nodes, w(u)>=2r0
costs the splay at T1, plus what must be banked at root to w(v)>=2'0
make T2 a subtree, for a total of O(log n). W(X) > w(u) +w(v) >=21W+1

« Delete(K,T) costs splay of T, plus the costs to concatenate
resulting subtrees, which is O(log n) log(w(xJ) > 1) + 1

floor(log (w(x)) >=r(u) + 1
Using Investment Lemma O(m log n) dollars are

enough to pay for the whole thing.

Another Lemma

consider single step of splay operation (case I, IT
or ITI)

« let r(P) denote the rank of P before the operation

« let r'(P) denote the rank of P after the operation

Cost of Splay Steps Lemma

« A splay step involving node P, the parent of P and possibly
the grandparent of P can be done with an investment of at
most 3(r’(P)-r(P)) new dollars, plus one more dollar if this was
the last step in the splay

defer proof for a moment

Cost of S play Steps Lemma => Investment
Lemma

Let r)(P) denote the rank of P after i steps of the
splay operation have been carried out.
By CSSL, the total investment of new money
needed to carry out splay is <=
3(r(P) - r(P))

+3(rA(P) - r'(P))

+ ...

+3(rl(P) - re(P)) + 1

where k is the number of steps needed to bring P to root.
But r(P) is the rank of the original root <= floor (log n)
Total <= 3(r®(P) - r(P)) + 1 <= 3 floor (log n) +1

Proof of Cost of S play Steps Lemma

Case 1. P has no grandparent (last step)
1 extra dollar pays for time to do rotation

new dollars need to add
=r(p) - r'(@) - r(p) - r(a)
=r'(a) - r(p)

<=r(p) - r(p)

Figure 7.21 Rotation during splay, Case I: P has no grandparent.

Proof of Cost of S play Steps Lemma, cont.

Case 2: zig zig
to maintain money invariant need to add
r(p) +r(@) +r() - r(p) - r(a) - r(r)
=r(p) +r(r) - r(p) - r(a)
<=2(r'(p) - r(p))

Case (a): r'(p) > r(p). Then there are $ left over to pay for
rotations

Case (b): r'(p) = r(p)

CSSL, Case 2(b) r’'(p) =r(p)

Fact 1: r'(p) = r(r)
Fact 2: r'(r) < r(p)

r'(r) <=r(p) = r(p)

can’t have r'(r) = r(p) by Rank Rule on middle tree
Fact 3: r'(q) <= r(q)

r'(a) <=r(p) = r(p) <= 1(q)

=> can move r's money to p, p's money to r and q's
money to q to maintain invariant and still have $
leftover to pay for rotation.

Proof of Cost of S play S teps Lemma, cont.

remaining cases require similar analysis

Figure 7.22 Rotation during splay, Case II: P and its parent are both left
children.

Summary on S play Trees

one of the most popular ways to implement binary
search tree

relatively simple (splaying can also be done top down)

no extra fields needed

excellent temporal locality properties

m>= n operations costs O(m log n), good amortized time
complexity

on negative side

« all those rotations add a significant constant factor

« worst case for a single operation can be costly

big open problem: dynamic optimality conjecture

