CSE P 517
Natural Language Processing
Winter 2021

Hidden Markov Models

Yejin Choi

University of Washington

[Many slides from Dan Klein, Michael Collins, Luke Zettlemoyer]

Overview

= Hidden Markov Models
= | earning

= Supervised: Maximum Likelihood
* Inference (or Decoding)

= Viterbi

= Forward Backward

= N-gram Taggers

Pairs of Sequences

= Consider the problem of jointly modeling a pair of strings
» E.g.: part of speech tagging

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

= Q: How do we map each word in the input sentence onto the
appropriate label?

= A: We can learn a joint distribution:

P(T1 .o T, Y1+ Yn)

= And then compute the most likely assignment:

arg max p(Ti...Tn,Y1---Yn)
Y1..-Yn

Classic Solution: HMMs

= We want a model of sequences y and observations x

ROaON
STPP\T ! - Stop

P(x1...Tp, Y1 - yn+1)—q(STOP\yn) q(Yilyi—1)e(z:|ys)
1=1

where y,=START and we call q(y’|y) the transition distribution and e(x|y) the
emission (or observation) distribution.

= Assumptions:
= Tag/state sequence is generated by a markov model
= Words are chosen independently, conditioned only on the tag/state
= These are totally broken assumptions: why?

Example: POS Tagging

The Georgia branch had taken on loan commitments ...

=

DT NNP NN VBD VBN RP NN NNS

= HMM Model:
» States Y ={DT, NNP, NN, ... } are the POS tags

= Observations X =V are words

* Transition dist’ n q(yi|yi-1) models the tag sequences
= Emission dist’ n e(xi|yi) models words given their POS

= Q: How do we represent n-gram POS taggers?

Example: Chunking

= Goal: Segment text into spans with certain properties
= For example, named entities: PER, ORG, and LOC

Germany ’s representative to the European Union s
veterinary committee Werner Zwingman said on Wednesday
consumers should...

=

[Germany], o 's representative to the [European Union]gors 's
veterinary committee [Werner Zwingman]eg said on
Wednesday consumers should...

= Q: Is this a tagging problem?

Example: Chunking

[Germany], oc ’s representative to the [European Union]grg 'S
veterinary committee [Werner Zwingman]pcg said on Wednesday
consumers should...

=

Germany/BL 's/NA representative/NA to/NA the/NA European/BO
Union/CO 's/NA veterinary/NA committee/NA Werner/BP Zwingman/CP
said/NA on/NA Wednesday/NA consumers/NA should/NA...

= HMM Model:
= States Y = {NA,BL,CL,BO,CO,BP,CP} represent beginnings
(BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well
as other words (NA)

» Observations X =V are words
= Transition dist’ n q(yi|yi-1) models the tag sequences
= Emission dist’ n e(xi|yi) models words given their type

Example: HMM Translation Model

1 2 3 = 5 6 7 8 9
E: Thank you | shall do so gladly .

/ A7

R

F: Gracias |, lo haré de muy buen grado .

Model Parameters

Emissions: e(F1 = Gracias | Ea1 = Thank) Transitions: p(A2=3|A1=1)

HMM Inference and Learning

= | earning
= Maximum likelihood: transitions g and emissions e
mn

P(%1.-Tn, Y1--Ynt1) = q(STOP|yy) H q(Yilyi—1)e(zi|y:)
1=1
* Inference (linear time in sentence length!)

= Viterbi: Y* = argiax p(ivl--wm Z/l---yn+1)

Y1...Yn
where 9,11 = STOP

= Forward Backward:
p(SE1 . -l‘myi) —

Why on the earth
forward-backward

Py - T, yi) = Z > @1 mn, Y yn)

- Yi—1 Yi4+1---Yn

?

Why learn forward-backward

1. It's a subroutine inside EM for unsupervised
learning of sequence labeling (HMMSs)
* To replace actual counts with expected counts

c(Yi—1,Yi) GML(ﬂify) _ C(y7m)

qvr(Yilyi-1) = (yi_1) c(y)

2. It generalizes to inside-outside algorithm for
unsupervised learning of trees (PCFGs)

3. It's also a subroutine when training linear-chain
Conditional Random Fields

11

Inside-outside and forward-backward algorithms

are just backprop.

Jason Eisner (2016).
In EMNLP Workshop on Structured Prediction for NLP.

Nando de Freit
Inside-Outside and Forward-Backward
Algorithms Are Just Backprop - Structured

Inference is back. cs.jhu.edu/~jason/papers
/...

10:04 AM - 11 Feb 2017

10 Retweets 47 Likes : ‘“6@ z ‘ : @

O 10 Q a7 &

’ll

http://www.cs.jhu.edu/~jason/papers/

Inside-Outside &
Forward-Backward Algorithms
are just Backprop

(tutorial paper)

Jason Eisner

CENTER FOR LANGUAGE
JOHNS HOPKINS (< ANDSPEECH PROCESSING

UNIVERSITY

“The inside-outside algorithm is the hardest
T algorithm I know.”

— a senior NLP researcher,

ﬁ (X in the 1990’s

Published as a conference paper at ICLR 2017

STRUCTURED ATTENTION NETWORKS

Yoon Kim* Carl Denton”* Luong Hoang Alexander M. Rush
{yoonkim@seas, carldenton@college, lhoang@g, srush@seas}.harvard.edu
School of Engineering and Applied Sciences

Harvard University

Cambridge, MA 02138, USA

procedure FORWARDBACKWARD(6) procedure BACKPROPFORWARDBACKWARD(6, p, Vﬁ)
al0, ()] «+ 0 V5 «logp®logVs @ B® —A
5[”% 1, (t)] < 0 V5§« logp®Rlog Vs ® a® —A
forz=.1,...,n;c€.Cdo &[0, (t)] + 0
ali, c] < @y ali—1,y|®0i-1,i(y,c) B[n +1,(t)] <0
fori=n,...,1;ceCdo ﬁwizﬁpnhc€Cdo
Bli,c] « D, Bli+ 1,y ®0i,i+1(c, y) Bli,c] < VEi,c] ® D, bi,i+1(c,y) ® Bli+1,]

f}_(T 0‘[1"‘*‘1’5?)] ~ fori=1,...,n;ceCdo

V2 PN

Google DeepMind Is Now Analysing Magic
And Hearthstone Cards

Logan Booker 5
3/28/16 8:30pm -+ Filed to: GOOGLE v 1249K 69 8 f ¥ & ¢

2 lx Xa1 l Xa2 X Xs2 X X X l X X X X X X X X

|T|r|on Fordring | [Divide Shield . Taunt . Deathrattle Eqmp a b5 3 Ashbrmqer)

Yol

QO ©a O BOOI)0Oloo]0o] 0O] COIO I| OO0 [EJ] [C

...

0.02 | Copy Attack 0.01 | generate “a” E
0.03 | Copy Health 0.03 | generate “b"

. ! . Tirione ! i -] i
0.05 | copy Cost : i QOl, £ o 0-95 | Copy “Tirion™ : €| _[0.03 |generate c” !
0.66 Copy Name ! V [e)e) § 0.05 | Copy “Fordring” :B—>(§ *0.04 | generate “a" !

0.09 | generate “e” |

0.20 Generate Character E

...

Copy From Attack

‘ R O R
Copy From Health _ et) @ @
Copy From Cost ; . :

Copy From Name -J Tirion | 4 Fordring |

cription

|Ge"e'a‘e°“a'a°‘e's4lIIE]ElEHI]D upnpnRpnpn ED.E.EE}E}E}EDDD‘D EID Ell

= BB A AR B AR BE B A

ey MHNNHUODNNHNHNRDNOFLRDNE N GODNDAODDBLOE 6|

yr Y2 Ys Ya Ys Ye yr Ye Yo Yo Y Y Y Yu Yis Y Yo Y Y Yo Yoo Yo Ya Yau Y Y Yo Ya Ya

Figure 4: Generation process for the code init (‘Tirion Fordring’, 8, 6, 6) using LPNs.

Latent Predictor
Networks for Code
Generation

Wangqg Ling, Edward
Grefenstette, Karl Moritz
Hermann, Tomas
Kodisky, Andrew Senior,
Fumin Wang, Phil
Blunsom

ACL 2016

While the number of possible paths grows ex-
ponentially, o and 3 can be computed efficiently
using the forward-backward algorithm for Semi-
Markov models (Sarawagi and Cohen, 2003)),
where we associate P(ry | y1..y¢+—1,) to edges
and P(s; | y1..y¢+—1,x,7¢) to nodes in the Markov
chain.

The derivative P(iﬁiﬁ?}m,n)
puted using the same logic:

can be com-

8Ozt,St})(St | yl"yt—laxart)/@t+|st|—1 + grt .
Py |)OP(s¢ | y1.-yt—1,2,7¢)
Ot iy Bit| s —1

Aly|+1

https://arxiv.org/search/cs?searchtype=author&query=Ling%2C+W
https://arxiv.org/search/cs?searchtype=author&query=Grefenstette%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Hermann%2C+K+M
https://arxiv.org/search/cs?searchtype=author&query=Ko%C4%8Disk%C3%BD%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Senior%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Wang%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Blunsom%2C+P

Learning: Maximum Likelihood

P(%1---ZTn, Y1---Ynt1) = q(STOP|yy) H q(Yilyi—1)e(i|y:)
1=1
= | earning (Supervised Learning)

» Maximum likelihood methods for estimating
transitions g and emissions e

qrvn(Yslyi—1) = €ML(37’?J) —

= Will these estimates be high quality?

= Which is likely to be more sparse, q or e?

» Can use all of the same smoothing tricks we saw for
language models!

Learning: Low Frequency Words

p(xl Ln,Y1-. yn—|—1)_Q(STOP|yn Hq yzlyz 1) (xz’yz)

=1
= Typically, linear interpolation Works well for transitions

q(yilyi—1) = Maqnrr (Wilyi—1) + Aoqarr (vi)

= However, other approaches used for emissions

= Step 1: Split the vocabulary
* Frequent words: appear more than M (often 5) times
= Low frequency: everything else

= Step 2: Map each low frequency word to one of a small, finite
set of possibilities

= For example, based on prefixes, suffixes, etc.

» Step 3: Learn model for this new space of possible word
sequences

Low Frequency Words: An Example

Named Entity Recognition [Bickel et. al, 1999]

» Used the following word classes for infrequent words:

Word class Example Intuition

twoDigitNum 90 Two digit year

fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date

containsDigitAndSlash 11/9/89 Date

containsDigitAndComma | 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount,percentage
othernum 456789 Other number

allCaps BBN Organization

capPeriod M. Person name initial

firstWord first word of sentence | no useful capitalization information
mitCap Sally Capitalized word

lowercase can Uncapitalized word

other Punctuation marks, all other words

b

Low Frequency Words: An Example

= Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

=

= firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity

SC = Start Company

CC = Continue Company
SL = Start Location

CL = Continue Location

Inference (Decoding)

= Problem: find the most likely (Viterbi) sequence under the model

yx = argmax p(Ti...Tn, Y1---Yni1)
Y1...Yn
= Given model parameters, we can score any sequence pair

NNP VBZ NN NNS CD NN
Fed raises Interest rates 0.5 percent

q(NNP|#) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....

= |n principle, we’ re done — list all possible tag sequences,
score each one, pick the best one (the Viterbi state sequence)

NNP VBZ NN NNS CD NN =) IlogP=-23
NNP NNS NN NNS CD NN => logP =-29
NNP VBZ VB NNS CD NN = logP =-27

mn

Dynamic Programming! |pee:ensmmia) = atsroplm TLatwls-vetedds)

1=1

yx = argmax p(Ti...Tn, Y1---Yni1)
Y1..--Yn

= Define 11(i,y;) to be the max score of a sequence of
length i ending in tag v,

w(t,y;) = max p(x1...T;5Y1...Y;)

Yi---Yi—1
= max e(;|y;)q(yilyi—1) yfl,%?;p(xl T YL Yie1)
Yi—1 v
— Iyr}f_}ﬁ(e(a?i’yi)Q(yi‘yi—l) w(i—1,y;_1)

= We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

Time flies like an arrow;
Fruit flies like a banana

N
)

\ , \ \
Tw-me;fiies Lo an &row.

Feud Lres Llea o\ \co:wcwxcb,

4 A v dev /N K
N N)
NP \ _ WP

START

Fruit

(1, N)

Flies

m(2,N)

m(1,V)

m(2,V)

(1, IN)

(2, IN)

W(ivyi)

Yi---Yi—1

Like

m(3,N)

Bananas

(4, N)

m(3,V)

m(4,V)

m(3,IN)

max p(Ti...T;,y; ..

(4, IN)

i)

24

STOP

START

STOP

Fruit Flies Like Bananas
(1, N) m(2,N) m(3,N) (4, N)
=0.03
m(1,V) m(2,V) m(3,V) m(4,V)
=0.01
m(1,IN) m(2,IN) m(3,IN) m(4,IN)
=0
w(1,y;) = max p(x1...T;Y1---Yi)

Yi-..Yi—1

25

START

STOP

Fruit Flies Like Bananas
(1, N) m(2,N) m(3,N) (4, N)
=0.03 =0.005
m(1,V) m(2,V) m(3,V) m(4,V)
=0.01
m(1,IN) m(2,IN) m(3,IN) m(4,IN)
=0
w(1,y;) = max p(x1...T;Y1---Yi)

Yi-..Yi—1

26

START

Fruit

(1, N)

=0.03

| t(1,V)

Flies

m(2,N)

Like

=0.005

m(3,N)

Bananas

=0.01

(1, IN)

=0

W(ivyi)

m(2,V)

(4, N)

=0.007

m(3,V)

(2, IN)

m(4,V)

=0

= max p(x1...%;Y1--
Yi.--Yi—1

m(3,IN)

(4, IN)

i)

27

STOP

START

Fruit

(1, N)

=0.03

| t(1,V)

Flies

m(2,N)

Like

=0.005

m(3,N)

=0.01

(1, IN)

=0

W(ivyi)

m(2,V)

=0.0001

=0.007

m(3,V)

(2, IN)

=0.0007

=0

= max p(x1...%;Y1--
Yi.--Yi—1

m(3,IN)

=0.0003

Bananas

(4, N)

m(4,V)

(4, IN)

i)

28

STOP

(1,N)

=0.03

| t(1,V)

START

=0.01

(1, IN)

=0

m(2,N) m(3,N)
=0.005 =0.0001

m(2,V) m(3,V)
=0.007 =0.0007

m(2,IN) m(3,IN)
=0 =0.0003

w(i,9;) = max p(xy1...2;,Y1---Ys)

Yi...Yi—1

max p(ri...T;_1,Y1

Yi...Yi—2

m(4,N)

m(4,V)

(4, IN)

— max e(x;|y:)q(yilyi—1) 72 —1,yi—1)

Yi—1

STOP

- Yio1)

START

Fruit Flies Like Bananas
(1,N) m(2,N) m(3,N) m(4,N)
=0.03 =0.005 =0.0001 =0.00003
| t(1,V) m(2,V) m(3,V) m(4,V)
~0.01 =0.007 =0.0007 =0.00001
m(1,IN) m(2,IN) m(3,IN) m(4,IN)
=0 =0 =0.0003 =0
w(1,y;) = max p(x1...T;Y1---Yi)

Yi-..Yi—1

30

STOP

Fruit Flies Like Bananas

START

(1, N) m(2,N) m(3,N) (4, N)
=0.03 =0.005 =0.0001 =0.00003
| t(1,V) m(2,V) m(3,V) m(4,V)
~0.01 =0.007 =0.0007 =0.00001
m(1,IN) m(2,IN) m(3,IN) m(4,IN)
=0 =0 =0.0003 =0

7T(’i, yz) — y1m3X_1p($1 ce e Lgy Y1 - yZ)

31

STOP

Fruit Flies Like Bananas

START

m(1,N) m(2,N) m(3,N) m(4,N)
=0.03 =0.005 =0.0001 =0.00003
A1 (1,1) m(2,V) m(3,V) m(4,V)
~0.01 =0.007 =0.0007 =0.00001
m(1,IN) m(2,IN) m(3,IN) m(4,IN)
=0 =0 =0.0003 =0
w(1,y;) = max p(x1...T;Y1---Yi)
Yi.--Yi—1

32

STOP

Why is this not a greedy algorithm?
Why does this find the max p(.)?
What is the runtime?

START

(1,N) m(2,N) m(3,N)
=0.03 =0.005 =0.0001
| t(1,V) m(2,V) m(3,V)
=0.01 =0.007 =0.0007
(1, IN) m(2,IN) m(3,IN)
=0 =0 =0.0003
w(1,y;) = max p(xy...x; Y1

Yi---Yi—1

(4, N)

=0.00003

m(4,V)

=0.00001

(4, IN)

=0
)

STOP

mn

DynamiC PrOgramming! (1.0, Y1 Ynt1) = q(5TOPlyn) | [a(wilyi—r)e(ily:)

1=1

yx = argmax p(Ti...Tn, Y1---Yni1)
Y1..--Yn

= Define 11(i,y;) to be the max score of a sequence of
length i ending in tag v,

(%, yi) = yf{%?‘ﬁ_lp(fﬁl e T YL Yi)

= max e(x;
Yi—1

— max e(x;
Yi—-1

Yi)q(yi

Yi)q(Yi

yq;—1) max p($1---$i—1yy1---yi—1)
Y1...Yi—2

yz’—l) 7T(i — 17%—1)

= We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

Viterbi Algorithm

= Dynamic program for computing (for all i)

w(i,9;) = max p(xy1...2;,Y1---Ys)

Vit 1
= lterative computation Viterbi
(0, y0) =
Fori=1..n:
m(i,yi) = Yylz}éfe(ﬂfi!yi)Q(yi\yi—l)W(i —1,yi-1)

= Also, store back pointers

bp(t,y;) = argmax e(w;|y;)q(yi|yi—1)m(e — 1,y;—1)

Yi—1

= \What is the final solution to y* = argmax p(z1...Tpn, Y1.--Yn+1) ?
yl---yn

The Viterbi Algorithm: Runtime

= Linear in sentence length n
= Polynomial in the number of possible tags |K|

(%, Ys) = Iyn?i(e(xiwi)Q(yi‘yi—l)W(i —1,yi-1)
= Specifically:
O(n|K|) entries in (7, y;)

O(|K]) time to compute each 7 (i, y;)
Total runtime: O(TLVC‘Q)

Q: Is this a practical algorithm?
A: depends on [K]....

Broader Context

Beam Search: Viterbi decoding with K best sub-
solutions (beam size = K)

Viterbi algorithm - a special case of max-product
algorithm

Forward-backward - a special case of sum-product
algorithm (belief propagation algorithm)

Viterbi decoding can be also used with general graphical
models (factor graphs, Markov Random Fields,
Conditional Random Fields, ...) with non-probabilistic
scoring functions (potential functions).

37

Reflection

= Viterbi: why argmax over joint distribution”?

*

y* =arg max p(T1...Tp,Y1---Yn)

Y1...Yn
= Why not this: ¥ = azglvleaxp(y1...yn!af1...xn)
— g max P(Y1eYny T1... L)
Y1.-.-Yn p(xl...a:n)

Tale L
u Same th|ng. — arg maxp(ail---if»‘m ylyn)

Yi...Yn

Marginal Inference

= Problem: find the marginal probability of each tag for vy,

P21 ... T, ;) = Z Z P&+ Ty Y1 - Yt

Yi—1 Yi+1--

= Given model parameters, We can score any sequence pair

NNP VBZ NN NNS CD NN
Fed raises Interest rates 0.5 percent

q(NNP|#) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....

= |n principle, we’ re done — list all possible tag sequences,
score each one, sum over all of the possible values for vy,

NNP VBZ NN NNS CD NN => IlogP=-23
NNP NNS NN NNS CD NN => logP =-29
NNP VBZ VB NNS CD NN = logP =-27

Marginal Inference

= Problem: find the marginal probability of each tag for vy,

p(afl Ly yz — Z Z p L1 Tn,Y1--- yn—l—l)

Yi—1 Yit+1--

Compare it to “Viterbi Inference”

m(i,y;) = le.I.l.%?c—l p(Ty...x5y1 .- Yi)

The State Lattice / Trellis: Viterbi

’ ®» ® ©® O
Q/P/@ (raises|V) g(interest|V) e(STOP|V)
@ q(V|V) @

e(rates|J) 4\5\

ORROSNO

START Fed raises interest rates STOP

000 006k
000060

p(xy ..

t

10 @0 06 6]

10 0 0 0 0!
|

000 0 0.:;
000 006E

=

The State Lattice / Trellis: Marginal

Dynamic Programming!

p(x1... Tn,yi) =p(T1 ... 24, Yi)D(Tig1 - - Tn|Yi)
= Sum over all paths, on both sides of each vy,

Oé(’L,yz) :p($1 xzyyz — Z p L1 ---Liy Y1 -+ - Yi)

B, yi) = p(Tit1 - Tnly:) = Z P(Zit1 - Tny Yit1 - Ynt+1|Yi)

— Z e(Tit1|Yit1)qWir1ly) B0+ 1, 9i41)

Yi+1

The State Lattice / Trellis: Forward

(i, yi) = p(@1 ... Ti, Yi) = Z p(T1-. Tiy Y1 .- Yi)

®@6 0 06 0
®@Oe 0 06 0

2
D
(72}
)}
—
@)
3

The State Lattice / Trellis: Backward

B(Za y’b) — p(33¢+1 xn‘y Z p LTit1l - TnyYit1--- yn—l—l‘yi)
— Z e(xi—l—l‘yz’—l—l)Q(yi—H’yi)ﬁ(i + 1, yiv1)
o O 0 O
®» © ©®©® O
© © © ¢
© © O O
©® © ©® ©
® ©

Forward Backward Algorithm

= Two passes: one forward, one back

. Forward:(0 o 1 if yo == START
A5 Y0) =9 0 otherwise
= Fori=1...n

ali,y) = Y elwily)a(yilyi—1)ai = 1,5:-1)

= Backward: et

[q(yn+1lyn) if Y41 = sTOP
B(n, yn) = { 0 otherwise
= Fori=n-1...0

Bli,yi) = Z e(Tit1|Yit1)q(Yit1]y:)B(+ 1, yiv1)

Yi+1

Forward Backward: Runtime

= Linear in sentence length n
= Polynomial in the number of possible tags |K]|

ali,y) = > e@ily)q(yilyi1)oi — 1,4i1)
Yi—1

Bi,yi) = > e(@i1lyis1)q(yiralv) B + 1, yit1)
Yit1

= Specifically: O(n|K|) entries in «(i,y;) and G(i,y;)

O(|K|) time to compute each entry

= Total runtime: O(n IC|2)

Q: How does this compare to Viterbi?
A: Exactly the same!!!

Other Marginal Inference

= We've been doing this:
play ... Tn, yi) = Z > pl@i T,y Yng)

Yi—1 Yi+1---Yn

= Can we Compute this?

p In Z p X1 . xnayl---yn—kl)

— ?-- p(Il Ly U?)

E Il Ln s U?
Yi

Other Marginal Inference

= Can we compute this?

In

Zp L1y, y?

= Relation with forward quantity?

CV(Z, yi) — p(CEl

p(iﬁl In)

xzayz — Z p Ly .

Ll aln,yn)
§:qSTOPwn

UYUn

N, Yp) =

a(n+1,5STOP)

Unsupervised Learning (EM) Intuition

= We’'ve been doing this:
pr . Tmy) = Y > pE@1eTn Y1 Ynt)
Y1---Yi—1 Yit1---Yn
= What we really want is this: (which we now know how to compute!)
p(@1...Tn, i)
p(x1...2p)

= This means we can compute the expected count of things

p(yilxr..xn) =

(expected) count(NN) Zp (y; = NN|z1...2p)

Unsupervised Learning (EM) Intuition

= What we really want is this: (which we now know how to compute!)

| p(z1.T, i)
p(y@|£l’51---ﬂ?n)— play..xp)

= This means we can compute the expected count of things:
(expected) count(NN) Zp (y; = NN|x1...2p)

P(X1. X, Yiy Yit1)
p(ay...xy)

= |f we have this: p(yz’yz'+1|£81--.$n) —

= We can also compute expected transition counts:
(expected) count(NN — VB) = Z:p(yz = NN, y;11 = VB|z1...2)

= Above marginals can be Computeé as
p(iUl....’,Un, y’z,) — Q(Z: y%)ﬁ(?’ y’l)
p(ﬂfl...ﬂfn, Yis %—}—1) — O{(Z, yﬁ) (y’l-i-l‘y%) (9:2-1-1@%-1-1)5(?: T 19 yi-I—l)

Unsupervised Learning (EM) Intuition

= EXxpected emission counts:

(expected) count(NN — apple) = Zp(y,; = NN, z; = apple|z1...z,)

1

= Z p(y; = NN|z1...2,,)
i:mizapple

» Maximum Likelihood Parameters (Supervised Learning):

c(Yi—1,Yi) . c(y,x)
c(yi—1) emriely) = c(y)

QML(yi|yi—1) —

= For Unsupervised Learning, replace the actual counts with the
expected counts.

Expectation Maximization

= |nitialize transition and emission parameters
= Random, uniform, or more informed initialization

= |terate until convergence
= E-Step:
= Compute expected counts

(expected) count(NN) Zp y; = NN|z1...2p)
(expected) count(NN — VB) Zp NN,yHl VB|zy...2p)

= M-Step: (expected) count(NN — apple) = Zp = NN, z; = apple|z1...2,)

= Compute new transition and emission parameters (using the
expected counts computed above)

o, _c(Yi-1,¥i) . N :C(y,x)
gL (Yilyi-1) =) waly) = = 5

= Convergence? Yes. Global optimum? No

function FORWARD-BACKWARD(observations of len T, output vocabulary V., hidden state

ser Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step
N a(j)B(J) \ :
¥:(J) = P(O[r) rand j
e oo _ Gli)aijbi(or11)Brr1()
&(i,J) = oz (N)
M-step
-1
Z & (i, 7)
A t=1
azj — T N
EI(’*])
=1 j=1
T
Z v:(J)
BJ(I‘k) e f=1$.I.TO;—-\k
> nli)
t=1

return A. B

Yt, i, and j

Equivalent to the procedure given
in the textbook (J&M) — slightly
different notations

How is Unsupervised Learning Possible (at all)?

= | water the garden everyday
= Saw a weird bug in that garden ...
= While | was thinking of an equation ...

Noun

S: (n) garden (a plot of ground where plants are cultivated)

S: (n) garden (the flowers or vegetables or fruits or herbs that are cultivated in a garden)
S: (n) garden (a yard or lawn adjoining a house)

Verb

S: (v) garden (work in the garden) "My hobby is gardening”

Adjective

S: (adj) garden (the usual or familiar type) "it is a common or garden sparrow”

95

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=garden&i=0&h=00000
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=garden&i=1&h=00000
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=garden&i=2&h=00000
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=garden&i=3&h=00000
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=garden&i=4&h=00000

Does EM learn good HMM POS-taggers?

Frequency

“‘Why doesn’t EM find good HMM POS-taggers”,
Johnson, EMNLP 2007

2E+5 - HMMs estimated by EM
generally assign a roughly
equal number of word
tokens to each hidden state,
while the empirical
distribution of tokens to
POS tags is highly skewed

1E+5 -

OE+O
Tag / hidden state (sorted by frequency)

56

Unsupervised Learning Results

EM for HMM
» POS Accuracy: 74.7%

Bayesian HMM Learning [Goldwater, Griffiths 07]

= Significant effort in specifying prior distriubtions
» |ntegrate our parameters e(x|y) and t(y’|y)
= POS Accuracy: 86.8%

Unsupervised, feature rich models [Smith, Eisner 03]

= Challenge: represent p(x,y) as a log-linear model, which requires
normalizing over all possible sentences x

= Smith presents a very clever approximation, based on local
neighborhoods of x

= POS Accuracy: 90.1%

Newer, feature rich methods do better, not near
supervised SOTA

Quiz: p(S1) vs. p(S2)

S1 = Colorless green ideas sleep furiously.

S2 = Furiously sleep ideas green colorless

= ‘It /s fair to assume that neither sentence (S17) nor (S52) had ever
occurred in an English discourse. Hence, in any statistical model for
grammaticalness, these sentences will be ruled out on identical
grounds as equally "remote” from Englisi’ (Chomsky 1957)

How would p(S1) and p(S2) compare based on (smoothed)
bigram language models?

How would p(S1) and p(S2) compare based on marginal
probability based on POS-tagging HMMs?

* j.e., marginalized over all possible sequences of POS tags

58

