CSEP 517 Natural Language Processing

Word Embeddings

Luke Zettlemoyer

How to represent words?

N-gram language models

It is 76 F and _____.

Text classification

I like this movie.

$$P(y = 1 \mid x) = \sigma(\theta^{\mathsf{T}}w + b)$$

$$w^{(1)}$$
 [0, 1, 0, 0, 0, ..., 1, ..., 1]

$$w^{(2)}$$
 [0, 1, 0, 1, 0, ..., 1, ..., 1]

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel — a localist representation

```
one 1, the rest o's
```

Words can be represented by one-hot vectors:

```
hotel = [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
motel = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
```

Vector dimension = number of words in vocabulary (e.g., 500,000)

Challenge: How to compute similarity of two words?

Representing words by their context

Distributional hypothesis: words that occur in similar contexts tend to have similar meanings

J.R.Firth 1957

- "You shall know a word by the company it keeps"
- One of the most successful ideas of modern statistical NLP!

```
...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...
```

These context words will represent banking.

Distributional hypothesis

"tejuino"

C1: A bottle of _____ is on the table.

C2: Everybody likes _____.

C3: Don't have _____ before you drive.

C4: We make ____ out of corn.

Distributional hypothesis

C1: A bottle of ____ is on the table.

C2: Everybody likes _____.

C3: Don't have _____ before you drive.

C4: We make ____ out of corn.

	C1	C2	С3	C4
tejuino	1	1	1	1
loud	0	0	0	0
motor-oil	1	0	0	0
tortillas	0	1	0	1
choices	0	1	O	0
wine	1	1	1	O

"words that occur in similar contexts tend to have similar meanings"

Words as vectors

- We'll build a new model of meaning focusing on similarity
 - Each word is a vector
 - Similar words are "nearby in space"
- A first solution: we can just use context vectors to represent the meaning of words!
 - word-word co-occurrence matrix:

	aardvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Words as vectors

What is the range of $\cos(\cdot)$?

Words as vectors

Problem: not all counts are equal, words can randomly co-occur

- Solution: re-weight by how likely it is for the two words to co-occur by simple chance
- PPMI = Positive Pointwise Mutual Information

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

	computer	data	result	pie	sugar
cherry	2	8	9	442	25
strawberry	0	0	1	60	19
digital	1670	1683	85	5	4
information	3325	3982	378	5	13

	computer	data	result	pie	sugar	
cherry	0	0	0	4.38	3.30	
strawberry	0	0	0	4.10	5.51	
digital	0.18	0.01	0	0	0	
information	0.02	0.09	0.28	0	0	

Sparse vs dense vectors

- Still, the vectors we get from word-word occurrence matrix are sparse (most are o's) & long (vocabulary size)
- Alternative: we want to represent words as **short** (50-300 dimensional) & **dense** (real-valued) vectors
 - The focus of this lecture
 - The basis of all the modern NLP systems

Dense vectors

Why dense vectors?

- Short vectors are easier to use as features in ML systems
- Dense vectors may generalize better than storing explicit counts
- They do better at capturing synonymy
 - w_1 co-occurs with "car", w_2 co-occurs with "automobile"

- Different methods for getting dense vectors:
 - Singular value decomposition (SVD)
 - word2vec and friends: "learn" the vectors!

Word2vec and friends

(Mikolov et al, 2013): Distributed Representations of Words and Phrases and their Compositionality

Word2vec

- Input: a large text corpora, V, d

 - Text corpora:
 - Wikipedia + Gigaword 5: 6B
 - Twitter: 27B
 - Common Crawl: 840B
- Output: $f: V \to \mathbb{R}^d$

V: a pre-defined vocabulary d: dimension of word vectors (e.g. 300)
$$v_{\text{cat}} = \begin{pmatrix} -0.224 \\ 0.130 \\ -0.290 \\ 0.276 \end{pmatrix}$$
 $v_{\text{dog}} = \begin{pmatrix} -0.124 \\ 0.430 \\ -0.200 \\ 0.329 \end{pmatrix}$ Text corpora:

$$v_{\text{the}} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\text{language}} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

Word2vec

Word

Cosine distance

	norway	0.760124
	denmark	0.715460
1 " 1 "	finland	0.620022
word = "sweden"	switzerland	0.588132
	belgium	0.585835
	netherlands	0.574631
	iceland	0.562368
	estonia	0.547621
	slovenia	0.531408

Word2vec

Continuous Bag of Words (CBOW)

Skip-gram

- The idea: we want to use words to **predict** their context words
- Context: a fixed window of size 2m

Skip-gram

Skip-gram: objective function

• For each position t = 1, 2, ... T, predict context words within context size m, given center word w_i :

all the parameters to be optimized
$$\mathcal{L}(\theta) = \prod_{t=1}^{T} \prod_{-m < j < m, j \neq 0} P(w_{t+j} \mid w_t; \theta)$$

• The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log \mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log P(w_{t+j} \mid w_t; \theta)$$

How to define $P(w_{t+j} \mid w_t; \theta)$?

We have two sets of vectors for each word in the vocabulary

$$\mathbf{u}_i \in \mathbb{R}^d$$
: embedding for target word i

$$\mathbf{v}_{i'} \in \mathbb{R}^d$$
 : embedding for context word i'

• Use inner product $\mathbf{u}_i \cdot \mathbf{v}_{i'}$ to measure how likely word i appears with context word i, the larger the better

"softmax" we learned last time!

$$P(w_{t+j} \mid w_t) = \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

 $\theta = \{\{\mathbf{u}_k\}, \{\mathbf{v}_k\}\}\$ are all the parameters in this model!

Q: Why two sets of vectors?

Any issues?

How to train the model

Calculating all the gradients together!

$$\theta = \{\{\mathbf{u}_k\}, \{\mathbf{v}_k\}\}\}$$

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log P(w_{t+j} \mid w_t; \theta) \quad \nabla_{\theta} J(\theta) = ?$$

Q: How many parameters are in total?

We can apply stochastic gradient descent (SGD)!

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} J(\theta)$$

Skip-gram with negative sampling (SGNS)

Idea: recast problem as binary classification!

- Target word is positive example
- All words not in context are negative

positive	e examples +	negative examples -			-
t	c	t	c	t	c
apricot	tablespoon	apricot	aardvark	apricot	seven
apricot	of	apricot	my	apricot	forever
apricot	jam	apricot	where	apricot	dear
apricot	-	apricot	coaxial	apricot	if

$$P(D=1 \mid t,c) = \sigma(\mathbf{u}_t \cdot \mathbf{v}_c)$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

To compute loss, pick K random words as negative examples:

$$J(\theta) = -P(D = 1 \mid t, c) - \frac{1}{K} \sum_{i=1}^{K} P(D = 0 \mid t_i, c)$$

Continuous Bag of Words (CBOW)

$$L(\theta) = \prod_{t=1}^{T} P(w_t \mid \{w_{t+j}\}, -m \le j \le m, j \ne 0)$$

$$\bar{\mathbf{v}}_t = \frac{1}{2m} \sum_{-m \le j \le m, j \ne 0} \mathbf{v}_{t+j}$$

$$P(w_t \mid \{w_{t+j}\}) = \frac{\exp(\mathbf{u}_{w_t} \cdot \bar{\mathbf{v}}_t)}{\sum_{k \in V} \exp(\mathbf{u}_k \cdot \bar{\mathbf{v}}_t)}$$

GloVe: Global Vectors

• Let's take the global co-occurrence statistics: $X_{i,j}$

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

- Training faster
- Scalable to very large corpora

GloVe: Global Vectors

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

litoria

rana

leptodactylidae

eleutherodactylus

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

FastText: Sub-Word Embeddings

Similar as Skip-gram, but break words into n-grams with n = 3 to 6

where: 3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>

5-grams: <wher, where, here>

6-grams: <where, where>

- Replace $\mathbf{u}_i \cdot \mathbf{v}_j$ by $\sum_{g \in n\text{-}\operatorname{grams}(w_i)} \mathbf{u}_g \cdot \mathbf{v}_j$
- More to come! Contextualized word embeddings

Trained word embeddings available

- word2vec: https://code.google.com/archive/p/word2vec/
- GloVe: https://nlp.stanford.edu/projects/glove/
- FastText: https://fasttext.cc/

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby <u>script</u> for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...

Evaluating Word Embeddings

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

- Let's plug these word embeddings into a real NLP system and see whether this improves performance
- Could take a long time but still the most important evaluation metric

Intrinsic evaluation

- Evaluate on a specific/intermediate subtask
- Fast to compute
- Not clear if it really helps the downstream task

Intrinsic evaluation

Word similarity

Example dataset: wordsim-353 353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word 1	Word 2	Human (mean)
tiger	cat	7.35
tiger	tiger	10
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62
stock	CD	1.31
stock	jaguar	0.92

Cosine similarity:

$$\cos(\boldsymbol{u}_i, \boldsymbol{u}_j) = \frac{\boldsymbol{u}_i \cdot \boldsymbol{u}_j}{||\boldsymbol{u}_i||_2 \times ||\boldsymbol{u}_j||_2}.$$

Metric: Spearman rank correlation

Intrinsic evaluation

Word Similarity

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	<u>72.7</u>	75.1	56.5	37.0
CBOW [†]	6B	57.2	65.6	68.2	57.0	32.5
SG [†]	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	65.8	<u>72.7</u>	<u>77.8</u>	53.9	<u>38.1</u>
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

Intrinsic evaluation

Word analogy

man: woman \approx king: ?

$$\arg\max_{i} \left(\cos(\mathbf{u}_i, \mathbf{u}_b - \mathbf{u}_a + \mathbf{u}_c)\right)$$

semantic

syntactic

Chicago:Illinois≈Philadelphia:?

bad:worst \approx cool: ?

More examples at

http://download.tensorflow.org/data/questions-words.txt

What can go wrong with word embeddings?

 What's wrong with learning a word's "meaning" from its usage?

What data are we learning from?

What are we going to learn from this data?

What do we mean by bias?

 Identify she - he axis in word vector space, project words onto this axis

 Nearest neighbor of (b - a + c)

Extreme she occupations

1. homemaker 2. nurse 3. receptionist 4. librarian 5. socialite 6. hairdresser 8. bookkeeper 9. stylist 7. nanny 10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations

2. skipper 1. maestro 3. protege 6. architect 4. philosopher 5. captain 9. broadcaster 7. financier 8. warrior 12. boss

11. figher pilot 10. magician

Bolukbasi et al. (2016)

Racial Analogies				
$black \rightarrow homeless$	$caucasian \rightarrow servicemen$			
caucasian → hillbilly	asian \rightarrow suburban			
asian \rightarrow laborer	$black \rightarrow landowner$			
Religious Analogies				
$jew \rightarrow greedy$	$muslim \rightarrow powerless$			
$christian \rightarrow familial$	$muslim \rightarrow warzone$			
$muslim \rightarrow uneducated$	$christian \rightarrow intellectually \\$			

Manzini et al. (2019)

Debiasing

 Identify gender subspace with gendered words

 Project words onto this subspace

 Subtract those projections from the original word

Bolukbasi et al. (2016)

Hardness of Debiasing

 Not that effective...and the male and female words are still clustered together

 Bias pervades the word embedding space and isn't just a local property of a few words

(a) The plots for HARD-DEBIASED embedding, before (top) and after (bottom) debiasing.

Gonen and Goldberg (2019)