CSEP 517
Natural Language Processing

Recurrent Neural Networks

Luke Zettlemoyer

(Slides adapted from Dangqi Chen, Chris Manning, Abigail See, Andrej Karpathy)

Overview

e What is a recurrent neural network (RNN)?
e Simple RNNs

e Backpropagation through time

e Long short-term memory networks (LSTMs)
e Applications

e Variants: Stacked RNNs, Bidirectional RNNs

Recurrent neural networks (RNNs)

A class of neural networks allowing to handle variable length inputs

w unfold D
rec

A function: y = RNN(X;, X5, ..., X,) € R4

where x,, ..., x, € R%

Recurrent neural networks (RNNs)
Proven to be an highly effective approach to language modeling,
sequence tagging as well as text classification tasks:

Sequence tagging . Text classification
¥
I-ORG O I-PER O O I-LOC O
T +—{T T
he s h,_ hey = F(Waeoy + Uhez +b) I | | | | I
| M OO o+ttt t
X¢—3 X2 Xt—1
U.N. official Ekeus heads
Wt_2 W1

for Baghdad -

The movie suTcks T

Recurrent neural networks (RNNs)

Form the basis for the modern approaches to machine translation,
question answering and dialogue:

sws etudlant </s>

attention @ B W
vector
context ‘ i :

vector
attention - -':
weights *

+*
ot
gttt o
ol ou 8,
Ov ‘-
: 1
5 ' .

0.5
A*'

'0
g

,0.1_

a student <s> Je suis étudiant

Why variable-length!?

Recall the feedfoward neural LMs we learned:

i-th output = P(w, = i | context)

softmax
(eeeo [X] 000)
/ V4 w

put layer

input layer
hidden layer 1 hidden layer 2

The dogs are barking X = |€the, €dogs €are| € R3¢

(fixed-window size = 3)

the dogs in the neighborhood are

Simple RNNs

h, € R? is an initial state

h,=f(h_,,x) € R?

h, : hidden states which store information from x; to X,

Simple RNNSs:

h, = g(Wh,_, + Ux, + b) € R?

g: nonlinearity (e.g. tanh),

W € R¥ U € R™dn b € R?

Simple RNNs
h, = g(Wh,_, + Ux, + b) € R

Key idea: apply the same weights W repeatedly

outputs ~ (1) ~(2) (3) 3(4)
(optional) { Y Y g

Y
h'Y) h(i h(:i h(4)
~ S .
- |24 o %% ‘ %% ° 1% %
hidden states < : > : S : S, : AN
® O ® e
input sequence ‘ |
(any length) { A x(2) 2 (3) x(4)

RNNs vs Feedforward NNs

o

Feed-Forward Neural Network Recurrent Neural Network

Recurrent Neural Language Models (RNNLMs)

P(WI’WZ"“’WH) =P(W1)XP(W2 | WI)XP(W3 | WI’WZ)X XP(Wn | WI’WZ’ ”"Wn—l)

=P(W1|hO)XP(W2|h1)XP(W3|h2)X...XP(Wn|hn_1)

e Denote §, = softmax(W h), W, & RIVIX

3(1) 1(2) 2(3) o (4)
e Cross-entroy loss: Y Y Y Y
TU U U U
h(0) h(V) h() h) h(4)
@ (] ()))
| R : > : > : N : N : B
L(Q) - - 2 'lOg yt—l(Wt) @ @ O 0 0
n 1 A A
=1 T
5 o S o
(1) 2) (3) ()]
e O e O e O e O
0={W,UDb,W_E} o O 0 O

the students opened their exams
(1) z(2) x(3) %)

Training RNINLMs

e Backpropagation? Yes, but not that simple!

Y, 1 L Y, 1 L Y [Ls Yr b
T T T T
h0 »fW >h1 >fW >h2—>fW >h3—> —»h_l_
W X1 X2 X3

e The algorithm is called Backpropagation Through Time (BPTT).

Backpropagation through time

h, = g(Wh,+ Ux,; +b)
h, = g(Wh, + Ux, + b)
h; = g(Wh, + Ux; + b)
Ly = —log ¥3(wy)

oL
You should know how to compute: —)

h3
0L, 0L, oh, 0L, oh; oh, 0L, oh; oh, oh,

= + +
OW ~ oh; OW oh; oh, OW oh; oh, oh, W

(\
oL 1 Z 2 oL, li[;| oh,
oW n & & oh, oh,_; | oW

Truncated backpropagation through time

e Backpropagation is very expensive if you handle long sequences

> > >

¢ Run forward and backward through chunks of the sequence instead of whole sequence

e Carry hidden states forward in time forever, but only backpropagate for some smaller
number of steps

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

KN5: Kneser-Ney 5-gram

Model Individual
KNS5 141.2
KNS5 + cache 125.7
Feedforward NNLM 140.2
Log-bilinear NNLM 144.5
Syntactical NNLM 131.3
Recurrent NNLM 124.7
RNN-LDA LM 113.7

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

https://ieeexplore.ieee.org/author/37298983000

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

Model #Param Validation Test
Mikolov & Zweig (2012) — RNN-LDA + KN-5 + cache oM+ - 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal & Ghahramani (2016) — Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) — CharCNN 19M - 78.9
Merity et al. (2016) — Pointer Sentinel-LSTM 21IM 72.4 70.9
Grave et al. (2016) — LSTM + continuous cache pointerT - - 72.1
Inan et al. (2016) — Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2016) — Variational RHN 23M 67.9 65.4
Zoph & Le (2016) — NAS Cell 25M - 64.0
Melis et al. (2017) — 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017) — AWD-LSTM w/o finetune 24M 60.7 58.8
Merity et al. (2017) - AWD-LSTM 24M 60.0 57.3
Ours — AWD-LSTM-MoS w/o finetune 22M 58.08 55.97
Ours — AWD-LSTM-MoS 22M 56.54 54.44
Merity et al. (2017) — AWD-LSTM + continuous cache pointer’ 24M 539 52.8
Krause et al. (2017) - AWD-LSTM + dynamic evaluation’ 24M 51.6 51.1
Ours — AWD-LSTM-MoS + dynamic evaluation' 22M 48.33 47.69

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

(advanced)

Vanishing/exploding gradients

e Consider the gradient of L, at step 7, with respect to the hidden state
h, at some previous step k (k < 1):

(\

oh, ~ oh,

\ t2i>k hJ_l)

oL
oh, >j>k

e (Pascanu et al, 2013) showed that if the largest eigenvalue of W is less than 1

for g = tanh, then the gradient will shrink exponentially. This problem is
called vanishing gradients.

e In contrast, if the gradients are getting too large, it is called exploding
gradients.

Why is exploding gradient a problem?

e Gradients become too big and we take a very large step in SGD.

¢ Solution: Gradient clipping — if the norm of the gradient is

greater than some threshold, scale it down before applying
SGD update.

Algorithm 1 Pseudo-code for norm clipping
T
if ||g|| > threshold then

~ , threshold 4
& “gl 8

end if

Why is vanishing gradient a problem?

e If the gradients becomes vanishingly small over long distances (step k to
step 1), then we can’t tell whether:

¢ We don’t need long-term dependencies
e We have wrong parameters to capture the true dependency

the dogs in the neighborhood are
Still difficult to predict “barking”

e How to fix vanishing gradient problem?
e LSTMs: Long short-term memory networks
e GRUs: Gated recurrent units

Long Short-term Memory (LSTM)

e A type of RNN proposed by Hochreiter and Schmidhuber
in 1997 as a solution to the vanishing gradients problem

e Work extremely well in practice

e Basic idea: turning multiplication into addition

e Use “gates” to control how much information to add/erase

h,=f(h,_,,x) € R? 4
Ct-1 (O — + —» Ct
e At each timestep, there is a hidden state f
h, € R? and also a cell state ¢, € R? -
e ¢, stores long-term information W— A P
e We write/erase ¢, after each step) |
ht-1 — > stack | 0 O — h
e Weread h, from ¢, ~ !

Long Short-term Memory (LSTM)

There are 4 gates:

e Input gate (how much to write):
i, = c(WWh,_, + U9, + b?) € R?

a N

e Forget gate (how much to erase): Ci1 - ? e g

f,=c(Wh,_, + UV, + b)) € R? ot | l

>

e Output gate (how much to reveal): W_'?’* g}'Q tanh

0, = o(WOh,_, + U%x, + b)) € R R :

t-1 _ t -0 -0 —> htj_’

e New memory cell (what to write):)|(

¢ = tanh(Wh,_, + U, + b)) € R? t
e Final memorycell: ¢, =1, 0c¢,_; +1,O¢,
e Final hidden cell: h, = 0,0 ¢, element-wise product

How many parameters in total?

Long Short-term Memory (LSTM)

Uninterrupted gradient flow!

«
C< =®:+2C _=C_ =@:+T_>C _=CA =®:+:c :C

0 T 1 T Zz T 3
g kel > f
- | . &

W— _L’ ® tanh W— _L’ ® tanh W— _L’ ® tanh
— S Sl p—— SiEl
i ey U ey = U Y

e LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it
does provide an easier way for the model to learn long-distance dependencies

e LSTMs were invented in 1997 but finally got working from 2013-2015.

MUTI:

o

hisa

MUT2:

(8]

hiiq

MUTS3:

(8]

heiq

Is the LSTM architecture optimal?

= sigm(Wx,x¢ + b,)
= sigm(Wy,xy + Wy hy + by)

+ h®((1-2)

= sigm(Wy,x; + Wi, hy + b,)
= sigm(xzy + Whehe + by)

= t‘dllll(”'},h(r) ht) + Wopxe + bh) 0

+ ht :E: (]. — :)

= sigm(Wy,x; + Wy, tanh(h;) + b,)
= sigm(Wx,xy + Wiehe + by)

= tanh(Win(r © hy) + Wonz, + by) @

+ he®(1-2)

(8]

S

tanh(Whn(r ® hy) + tanh(zy) + by) © 2

Arch. Arith. XML PTB

Tanh 0.29493 | 0.32050 | 0.08782
LSTM 0.89228 | 0.42470 | 0.08912
LSTM-f | 0.29292 | 0.23356 | 0.08808
LSTM-1 || 0.75109 | 0.41371 | 0.08662
LSTM-o || 0.86747 | 0.42117 | 0.08933
LSTM-b || 0.90163 | 0.44434 | 0.08952
GRU 0.89565 | 0.45963 | 0.09069
MUT1 0.92135 | 0.47483 | 0.08968
MUT2 0.89735 | 0.47324 | 0.09036
MUT3 0.90728 | 0.46478 | 0.09161
Arch. SM-tst | 10M-v | 20M-v 20M-tst
Tanh 4811 4729 | 4.635 4.582 (97.7)
LSTM 4.699 | 4511 4437 | 4399 (81.4)
LSTM-f || 4785 | 4752 | 4.658 | 4.606 (100.8)
LSTM-i 4755 | 4558 | 4480 | 4.444 (85.1)
LSTM-o || 4.708 | 4496 | 4.447 4411 (82.3)
LSTM-b || 4.698 | 4437 | 4423 | 4.380 (79.83)
GRU 4684 | 4554 | 4559 | 4519(091.7)
MUTI 4699 | 4605 | 4594 | 4550 (94.6)
MUT?2 4707 | 4539 | 4538 | 4.503(90.2)
MUT3 4692 | 4523 | 4530 | 4494 (89.47)

(Jozefowicz et al, 2015): An Empirical Exploration of Recurrent Network Architectures

Overview

What is a recurrent neural network (RNN)?
Simple RNNs

Backpropagation through time

Long short-term memory networks (LSTMs)
Applications

Variants: Stacked RNNs, Bidirectional RNNs

Application: Text Generation

favorite season is spring
Tsample Tsample Tsample Tsample
g(l) (3)
U U U U
h©) __ h(1) h(2) h(3) h(4)
O O O O @)
| W, |6 W, (@ W, |@| Wr |@| W,
O 1@ O O 1@ i
O _‘ O O O
R 7 w
We We We We
8 r—o—x r—o—\ rOw
(1) (2)| © (3)| © (4)| ©
€lel “le| “le|l ° e
i O O O
= Tz & s
my favorite season is spring

You can generate text by repeated sampling.

Sampled output is next step’s input.

Fun with RNNs

Obama speeches

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will
not be able to get this done. The promise of the men and women who were still
going to take out the fact that the American people have fought to make sure
that they have to be able to protect our part. It was a chance to stand together
to completely look for the commitment to borrow from the American people.
And the fact is the men and women in uniform and the millions of our country
with the law system that we should be a strong stretcks of the forces that we can
afford to increase our spirit of the American people and the leadership of our

country who are on the Internet of American lives.

Thank you very much. God bless you, and God bless the United States of

America.

Latex generation

\begin{proof}

We may assume that \mathcal{I} is an abelian sheaf on $\mathcal{C}S$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let S$\mathfrak gq$ be an abelian sheaf on X.

Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let \mathcal{F} be an abelian quasi-coherent sheaf on $\mathcal{C}S$.
Let \mathcal{F} be a coherent $\mathcal{0} X$-module. Then
\mathcal{F} is an abelian catenary over $\mathcal{C}S$.

\item The following are equivalent

\begin{enumerate}

\item \mathcal{F} is an $\mathcal{0}_ X$-module.

\end{lemma}

Andrej Karpathy “The Unreasonable Effectiveness of Recurrent Neural Networks”

Application: Sequence Tagging

Input: a sentence of n words: xi, ..., x,
Output: y;, ...,y,,¥;, € {1,...C}

DT J

—

NN VBN IN DT

\ 4

P 7T
S

the startled cat knocked over the

Pl
i

P(y; = k) = softmax,(W) WO e RExd

111
[=—— loe P(v. =k
”’;:1' g P(y, = k)

:
s

—| 0000 — 2

vase

Application: Text Classification

Input: a sentence of n words

Output: y € {1,2,...,C}

hl’l

S— S S S S i\
@) @) @) @) @) @)
@) @) @) @) @) O

— > — — o >

@) @) @) @) @) O
@) @) @) @) @) O

— — — —_— —— —_—

the movie was terribly exciting !

P(y = k) = softmax;,(W h,) W, e R

Multi-layer RNNs

RNNs are already “deep” on one dimension (unroll over
time steps)

We can also make them “deep” in another dimension by
applying multiple RNNs

Multi-layer RNNs are also called stacked RNNs.

Multi-layer RNNs

ol 3| s
J @ .
RNN layer 3 ‘J ,L.J L’
O O O
ol [s] [s] [s| [3
(@)
RNN layer 2 > >
e : : : :_J L:J ’L: The hidden states from RNN layer i
T T T T are the inputs to RNN layeri + 1
D B
RNN layer 1 : /: ,: ,: >: >:
(@) \% @) M O (@)
the movie was terribly exciting !

e In practice, using 2 to 4 layers is common (usually better than 1 layer)

e Transformer-based networks can be up to 24 layers with lots of skip-
connections.

Bidirectional RNNs

e Bidirectionality is important in language representations:

O O @) @) O O
@) Q| @\ N Q| O O
@) O O @) O O
@) O @) @) @) O
the movie was terribly exciting !
terribly:

e left context “the movie was”
e right context “exciting !”

Bidirectional RNNs

This contextual representation of “terribly”
has both left and right context!

/
(@] (@] (@ (@] (@ (@]
@) O O O O O
HEE R IR d
Concatenated
~ o S o S S h=f(h,_.x)eR
hidden states ® : ® ® ® ® t f(—1° t)
O O O O O O
O O O @) O O
=
—> —
Backward RNN hz =f1(ht_1, Xt),t — 1,2,...I’l
<« <«
h,=f(h,x),t=nn-1,..1

Forward RNN
«—

h,=[h,h,]ec R

the movie was terribly exciting !

Bidirectional RNNs

e Sequence tagging: Yes!
e Text classification: Yes! With slight modifications.

(@) (@) @) o o
o o @) o o
@ @ o o @
(@) (@) (0) (0) (@)
0 0 / 0 0 o
() 1@ R 1@) (*
0 1o @ ‘| @ o) :
@ ()] () (* ®
A °
the movie was terribly exciting ! T
/

the movie was terribly exciting

e Text generation: No. Why?

