
CSEP 517
Natural Language Processing

Recurrent Neural Networks

Luke Zettlemoyer

(Slides adapted from Danqi Chen, Chris Manning, Abigail See, Andrej Karpathy)

Overview

• What is a recurrent neural network (RNN)?
• Simple RNNs
• Backpropagation through time
• Long short-term memory networks (LSTMs)
• Applications
• Variants: Stacked RNNs, Bidirectional RNNs

Recurrent neural networks (RNNs)

A class of neural networks allowing to handle variable length inputs

A function: y = RNN(x1, x2, …, xn) ∈ ℝd

where x1, …, xn ∈ ℝdin

Recurrent neural networks (RNNs)
Proven to be an highly effective approach to language modeling,
sequence tagging as well as text classification tasks:

Language modeling Sequence tagging

The movie sucks .

👎

Text classification

Recurrent neural networks (RNNs)
Form the basis for the modern approaches to machine translation,
question answering and dialogue:

Why variable-length?
Recall the feedfoward neural LMs we learned:

The dogs are barking

the dogs in the neighborhood are ___

x = [ethe, edogs, eare] 2 R3d
<latexit sha1_base64="o+E5BkBVqzV8FU9SF1g20jIaEIM=">AAACVnicbVFNT+MwEHXCskD3gwBHLtZWK+1hVSULEntBQnDZIyD6ITXZynEmrYXjRPZkRRXlT8KF/SlcEG4bJGg7kqXn9+Zpxs9xIYVB3//vuBsfNj9ube+0Pn3+8nXX29vvmbzUHLo8l7kexMyAFAq6KFDCoNDAslhCP769mOn9f6CNyNUNTguIMjZWIhWcoaVGXhZmDCdxWt3V9JQOX29Qj6oQ4Q4rnEBd/6SrQpKPzXqFaWuJaChUI8bVdf23Okrqkdf2O/686CoIGtAmTV2OvPswyXmZgUIumTHDwC8wshNQcAl1KywNFIzfsjEMLVQsAxNV81hq+t0yCU1zbY9COmffOiqWGTPNYts5W9MsazNynTYsMf0dVUIVJYLii0FpKSnmdJYxTYQGjnJqAeNa2F0pnzDNONqfaNkQguUnr4Ler07gd4Kr4/bZeRPHNjkk38gPEpATckb+kEvSJZw8kCfHdTacR+fZ3XS3Fq2u03gOyLtyvRfjObdo</latexit><latexit sha1_base64="o+E5BkBVqzV8FU9SF1g20jIaEIM=">AAACVnicbVFNT+MwEHXCskD3gwBHLtZWK+1hVSULEntBQnDZIyD6ITXZynEmrYXjRPZkRRXlT8KF/SlcEG4bJGg7kqXn9+Zpxs9xIYVB3//vuBsfNj9ube+0Pn3+8nXX29vvmbzUHLo8l7kexMyAFAq6KFDCoNDAslhCP769mOn9f6CNyNUNTguIMjZWIhWcoaVGXhZmDCdxWt3V9JQOX29Qj6oQ4Q4rnEBd/6SrQpKPzXqFaWuJaChUI8bVdf23Okrqkdf2O/686CoIGtAmTV2OvPswyXmZgUIumTHDwC8wshNQcAl1KywNFIzfsjEMLVQsAxNV81hq+t0yCU1zbY9COmffOiqWGTPNYts5W9MsazNynTYsMf0dVUIVJYLii0FpKSnmdJYxTYQGjnJqAeNa2F0pnzDNONqfaNkQguUnr4Ler07gd4Kr4/bZeRPHNjkk38gPEpATckb+kEvSJZw8kCfHdTacR+fZ3XS3Fq2u03gOyLtyvRfjObdo</latexit><latexit sha1_base64="o+E5BkBVqzV8FU9SF1g20jIaEIM=">AAACVnicbVFNT+MwEHXCskD3gwBHLtZWK+1hVSULEntBQnDZIyD6ITXZynEmrYXjRPZkRRXlT8KF/SlcEG4bJGg7kqXn9+Zpxs9xIYVB3//vuBsfNj9ube+0Pn3+8nXX29vvmbzUHLo8l7kexMyAFAq6KFDCoNDAslhCP769mOn9f6CNyNUNTguIMjZWIhWcoaVGXhZmDCdxWt3V9JQOX29Qj6oQ4Q4rnEBd/6SrQpKPzXqFaWuJaChUI8bVdf23Okrqkdf2O/686CoIGtAmTV2OvPswyXmZgUIumTHDwC8wshNQcAl1KywNFIzfsjEMLVQsAxNV81hq+t0yCU1zbY9COmffOiqWGTPNYts5W9MsazNynTYsMf0dVUIVJYLii0FpKSnmdJYxTYQGjnJqAeNa2F0pnzDNONqfaNkQguUnr4Ler07gd4Kr4/bZeRPHNjkk38gPEpATckb+kEvSJZw8kCfHdTacR+fZ3XS3Fq2u03gOyLtyvRfjObdo</latexit><latexit sha1_base64="o+E5BkBVqzV8FU9SF1g20jIaEIM=">AAACVnicbVFNT+MwEHXCskD3gwBHLtZWK+1hVSULEntBQnDZIyD6ITXZynEmrYXjRPZkRRXlT8KF/SlcEG4bJGg7kqXn9+Zpxs9xIYVB3//vuBsfNj9ube+0Pn3+8nXX29vvmbzUHLo8l7kexMyAFAq6KFDCoNDAslhCP769mOn9f6CNyNUNTguIMjZWIhWcoaVGXhZmDCdxWt3V9JQOX29Qj6oQ4Q4rnEBd/6SrQpKPzXqFaWuJaChUI8bVdf23Okrqkdf2O/686CoIGtAmTV2OvPswyXmZgUIumTHDwC8wshNQcAl1KywNFIzfsjEMLVQsAxNV81hq+t0yCU1zbY9COmffOiqWGTPNYts5W9MsazNynTYsMf0dVUIVJYLii0FpKSnmdJYxTYQGjnJqAeNa2F0pnzDNONqfaNkQguUnr4Ler07gd4Kr4/bZeRPHNjkk38gPEpATckb+kEvSJZw8kCfHdTacR+fZ3XS3Fq2u03gOyLtyvRfjObdo</latexit>

(fixed-window size = 3)

Simple RNNs

h0 ∈ ℝd is an initial state

ht = f(ht−1, xt) ∈ ℝd

ht = g(Wht−1 + Uxt + b) ∈ ℝd

Simple RNNs:

W ∈ ℝd×d, U ∈ ℝd×din, b ∈ ℝd

: nonlinearity (e.g. tanh),g

ht : hidden states which store information from to x1 xt

Simple RNNs

Key idea: apply the same weights repeatedlyW

ht = g(Wht−1 + Uxt + b) ∈ ℝd

RNNs vs Feedforward NNs

Recurrent Neural Language Models (RNNLMs)

P(w1, w2, …, wn) = P(w1) × P(w2 ∣ w1) × P(w3 ∣ w1, w2) × … × P(wn ∣ w1, w2, …, wn−1)

= P(w1 ∣ h0) × P(w2 ∣ h1) × P(w3 ∣ h2) × … × P(wn ∣ hn−1)

• Denote , ŷt = softmax(Woht) Wo ∈ ℝ|V|×d

• Cross-entroy loss:

L(θ) = −
1
n

n

∑
t=1

log ŷt−1(wt)

the students opened their …exams

…

θ = {W, U, b, Wo, E}

Training RNNLMs

• Backpropagation? Yes, but not that simple!

• The algorithm is called Backpropagation Through Time (BPTT).

Backpropagation through time

h1 = g(Wh0 + Ux1 + b)

h2 = g(Wh1 + Ux2 + b)

h3 = g(Wh2 + Ux3 + b)

L3 = − log ŷ3(w4)

You should know how to compute:
∂L3

∂h3

∂L3

∂W
=

∂L3

∂h3

∂h3

∂W
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂W
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂W

∂L
∂W

= −
1
n

n

∑
t=1

t

∑
k=1

∂Lt

∂ht

t

∏
j=k+1

∂hj

∂hj−1

∂hk

∂W

Truncated backpropagation through time

• Backpropagation is very expensive if you handle long sequences

• Run forward and backward through chunks of the sequence instead of whole sequence

• Carry hidden states forward in time forever, but only backpropagate for some smaller
number of steps

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

KN5: Kneser-Ney 5-gram

https://ieeexplore.ieee.org/author/37298983000

Progress on language models

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

On the Penn Treebank (PTB) dataset
Metric: perplexity

Vanishing/exploding gradients

• Consider the gradient of at step , with respect to the hidden state
 at some previous step ():

Lt t
hk k k < t

∂Lt

∂hk
=

∂Lt

∂ht ∏
t≥j>k

∂hj

∂hj−1

(advanced)

• (Pascanu et al, 2013) showed that if the largest eigenvalue of is less than 1
for , then the gradient will shrink exponentially. This problem is
called vanishing gradients.

W
g = tanh

• In contrast, if the gradients are getting too large, it is called exploding
gradients.

=
∂Lt

∂ht
× ∏

t≥j>k
(diag (g′�(Whj−1 + Uxj + b)) W)

Why is exploding gradient a problem?

• Gradients become too big and we take a very large step in SGD.

• Solution: Gradient clipping — if the norm of the gradient is
greater than some threshold, scale it down before applying
SGD update.

Why is vanishing gradient a problem?

• If the gradients becomes vanishingly small over long distances (step to
step), then we can’t tell whether:

• We don’t need long-term dependencies
• We have wrong parameters to capture the true dependency

k
t

the dogs in the neighborhood are ___
Still difficult to predict “barking”

• How to fix vanishing gradient problem?
• LSTMs: Long short-term memory networks
• GRUs: Gated recurrent units

Long Short-term Memory (LSTM)
• A type of RNN proposed by Hochreiter and Schmidhuber

in 1997 as a solution to the vanishing gradients problem

ht = f(ht−1, xt) ∈ ℝd

• Work extremely well in practice

• Basic idea: turning multiplication into addition

• Use “gates” to control how much information to add/erase

• At each timestep, there is a hidden state
 and also a cell state

• stores long-term information

• We write/erase after each step

• We read from

ht ∈ ℝd ct ∈ ℝd

ct

ct

ht ct

Long Short-term Memory (LSTM)

There are 4 gates:

• Input gate (how much to write):
it = σ(W(i)ht−1 + U(i)xt + b(i)) ∈ ℝd

• Forget gate (how much to erase):
ft = σ(W(f)ht−1 + U(f)xt + b(f)) ∈ ℝd

• Output gate (how much to reveal):
ot = σ(W(o)ht−1 + U(o)xt + b(o)) ∈ ℝd

• New memory cell (what to write):
c̃t = tanh(W(c)ht−1 + U(c)xt + b(c)) ∈ ℝd

How many parameters in total?

• Final memory cell: ct = ft ⊙ ct−1 + it ⊙ c̃t

• Final hidden cell: ht = ot ⊙ ct element-wise product

Long Short-term Memory (LSTM)

• LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it
does provide an easier way for the model to learn long-distance dependencies

• LSTMs were invented in 1997 but finally got working from 2013-2015.

Is the LSTM architecture optimal?

(Jozefowicz et al, 2015): An Empirical Exploration of Recurrent Network Architectures

Overview

• What is a recurrent neural network (RNN)?
• Simple RNNs
• Backpropagation through time
• Long short-term memory networks (LSTMs)
• Applications
• Variants: Stacked RNNs, Bidirectional RNNs

Application: Text Generation

You can generate text by repeated sampling.
Sampled output is next step’s input.

Fun with RNNs

Andrej Karpathy “The Unreasonable Effectiveness of Recurrent Neural Networks”

Obama speeches Latex generation

Application: Sequence Tagging

P(yi = k) = softmaxk(Wohi) Wo ∈ ℝC×d

L = −
1
n

n

∑
i=1

log P(yi = k)

Input: a sentence of n words: x1, …, xn

Output: y1, …, yn, yi ∈ {1,…C}

Application: Text Classification

the movie was terribly exciting !

hn

P(y = k) = softmaxk(Wohn) Wo ∈ ℝC×d

Input: a sentence of n words

Output: y ∈ {1,2,…, C}

Multi-layer RNNs

• RNNs are already “deep” on one dimension (unroll over
time steps)

• We can also make them “deep” in another dimension by
applying multiple RNNs

• Multi-layer RNNs are also called stacked RNNs.

Multi-layer RNNs

The hidden states from RNN layer
are the inputs to RNN layer

i
i + 1

• In practice, using 2 to 4 layers is common (usually better than 1 layer)
• Transformer-based networks can be up to 24 layers with lots of skip-

connections.

Bidirectional RNNs

• Bidirectionality is important in language representations:

terribly:
• left context “the movie was”
• right context “exciting !”

Bidirectional RNNs

ht = f(ht−1, xt) ∈ ℝd

h t = f1(h t−1, xt), t = 1,2,…n

h t = f2(h t+1, xt), t = n, n − 1,…1

ht = [h t, h t] ∈ ℝ2d

Bidirectional RNNs

• Sequence tagging: Yes!
• Text classification: Yes! With slight modifications.

• Text generation: No. Why?

terribly exciting !the movie was
terribly exciting !the movie was

Sentence encoding

element-wise mean/max element-wise mean/max

