CSEP 517 Natural Language Processing

Parsing (Trees)

Luke Zettlemoyer - University of Washington

[Slides from Yejin Choi, Dan Klein, Michael Collins, and Ray Mooney]

Topics

- Parse Trees
- Probabilistic) Context Free Grammars
 - Supervised learning
 - Parsing: most likely tree, marginal distributions
- Treebank Parsing (English, edited text)

Parse Trees

The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Parts-of-Speech (English)

• One basic kind of linguistic structure: syntactic word classes

Penn Treebank Non-terminals

Table 1.2.	The Penn Treebank syntactic tagset			
ADJP	Adjective phrase			
ADVP	Adverb phrase			
NP	Noun phrase			
PP	Prepositional phrase			
S	Simple declarative clause			
SBAR	Subordinate clause			
SBARQ	Direct question introduced	by <i>wh</i> -element		
SINV	Declarative sentence with s	Declarative sentence with subject-aux inversion		
SQ	Yes/no questions and subco	onstituent of SBARQ excluding <i>wh</i> -element		
VP	Verb phrase			
WHADVP	Wh-adverb phrase			
WHNP	Wh-noun phrase			
WHPP	Wh-prepositional phrase			
Х	Constituent of unknown or	uncertain category		
*	"Understood" subject of in	"Understood" subject of infinitive or imperative		
0	Zero variant of <i>that</i> in subo	Zero variant of <i>that</i> in subordinate clauses		
Т	Trace of wh-Constituent			

The Penn Treebank: Size

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...

new art critics write reviews with computers

Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - he, she, it, they, ...
 - Question / answer
 - Deletion
 - Movement / dislocation
 - Conjunction / coordination
- Cross-linguistic arguments, too

Conflicting Tests

- Constituency isn't always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I'll go
 - I want to $go \rightarrow I$ wanna go
 - a le centre \rightarrow au centre

La vélocité des ondes sismiques

- Coordination
 - He went to and came from the store.

Classical NLP: Parsing in 70s/80s

• Write symbolic or logical rules:

Grammar (CFG)

Lexicon

. . .

$ROOT \rightarrow S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \to NP VP$	$VP \rightarrow VBP NP$	$NNS \to raises$
$NP \to DT NN$	$VP \rightarrow VBP NP PP$	$VBP \rightarrow interest$
$NP \rightarrow NN NNS$	$PP \rightarrow IN NP$	$VBZ \rightarrow raises$

- Use deduction systems to prove parses from words
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, but was a popular approach in the 70's and 80's before corpora were available.
- Didn't yield broad-coverage tools.

I shot [an elephant] [in my pajamas]

Examples from J&M

Attachment Ambiguity

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

The board approved [its acquisition] [by Royal Trustco Ltd.]

___[for \$27 a share]

[at its monthly meeting].

Syntactic Ambiguities I

- Prepositional phrases: They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition: The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective Visiting relatives can be boring. Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.
- Coordination scope: Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This will panic buyers ! "

- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Context-Free Grammars

A context-free grammar is a tuple <N, Σ, S, R>

- N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- Σ : the set of terminals (the words)
- S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R : the set of rules
 - Of the form $X \to Y_1 Y_2 \dots Y_n$, with $X \in N$, $n \ge 0$, $Y_i \in (N \cup \Sigma)$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
 - Also called rewrites, productions, or local trees

Example Grammar

- $N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$ S = S
- $\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in} \}$

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

, i	·	·)
Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <N, Σ ,S, R>
 - N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
 - Σ : the set of terminals (the words)
 - S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R : the set of rules
 - Of the form $X \to Y_1 Y_2 \dots Y_n$, with $X \in N$, $n \ge 0$, $Y_i \in (N \cup \Sigma)$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
- A PCFG adds a distribution q:
 - Probability q(r) for each $r \in R$, such that for all $X \in N$:

$$\sum_{\alpha \to \beta \in R: \alpha = X} q(\alpha \to \beta) = 1$$

PCFG Example

		(1
$S \rightarrow ND VD$	1.0	Vi	\Rightarrow	sleeps	1.0
$3 \Rightarrow NP VP$	1.0	Vt	\Rightarrow	saw	1.0
$ VP \Rightarrow V_1 $	0.4	NN	\Rightarrow	man	07
$ VP \Rightarrow Vt NP $	0.4	NINI		Womon	0.7
$VP \Rightarrow VP PP$	0.2		\rightarrow	woman	0.2
$NP \rightarrow DT NN$	03	NN	\Rightarrow	telescope	0.1
$ \begin{array}{c} \mathbf{N}\mathbf{I} \mathbf{D}\mathbf{I} \\ \mathbf{N}\mathbf{D} \mathbf{N}\mathbf{D} \\ \mathbf{D} \end{array} $	0.5	DT	\Rightarrow	the	1.0
$NP \Rightarrow NP PP$	0.7	IN	\Rightarrow	with	0.5
$ PP \Rightarrow P NP $	1.0	IN	, 	in	0.5
			-	111	I U.J

• Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is

Г

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.

PCFG Example

S	\Rightarrow	NP	VP		1.0
VP	\Rightarrow	Vi			0.4
VP	\Rightarrow	Vt	NP		0.4
VP	\Rightarrow	VP	PP		0.2
NP	\Rightarrow	DT	NN		0.3
NP	\Rightarrow	NP	PP		0.7
PP	\Rightarrow	Р	NP		1.0
Vi	\Rightarrow	slee	ps	1	0.
Vi Vt	$\Rightarrow \\ \Rightarrow$	slee saw	ps	1 1	0. .0
Vi Vt NN	$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \hline \end{array}$	slee saw mar	ps 1	1 1 C	.0 .0 0.7
Vi Vt NN NN	$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{array}$	slee saw man won	ps n nan	1 1 C C	.0 .0 0.7 0.2
Vi Vt NN NN NN	$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	slee saw man won teles	ps n nan scope	1 1 C C C	.0 .0 0.7 0.2 0.1
Vi Vt NN NN DT	$\begin{array}{c} \Rightarrow \\ \end{array}$	slee saw man wor teles the	ps n nan scope	1 1 C C C 1	.0 .0 0.7 0.2 0.1 .0

in

 \Rightarrow

0.5

IN

PCFGs: Learning and Inference

Model

• The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, i = 1..n

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

Learning

 Read the rules off of labeled sentences, use ML estimates for probabilities

$$q_{ML}(\alpha \to \beta) = \frac{\operatorname{Count}(\alpha \to \beta)}{\operatorname{Count}(\alpha)}$$

and use all of our standard smoothing tricks!

Inference

 For input sentence s, define T(s) to be the set of trees whole *yield* is s (whole leaves, read left to right, match the words in s)

$$t^*(s) = \arg \max_{t \in \mathcal{T}(s)} p(t)$$

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \to Y Z$ or $X \to w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

Original Grammar

$\begin{array}{l} S \to NP \; VP \\ S \to Aux \; NP \; VP \end{array}$	0.8 0.1
$\textbf{S} \rightarrow \textbf{VP}$	0.1
$NP \rightarrow Pronoun$	0.2
$NP \rightarrow Proper-Noun$	0.2
$NP \rightarrow Det Nominal Nominal \rightarrow Noun$	0.6 0.3
Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP VP \rightarrow Verb	0.2 0.5 0.2
$VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$	0.5 0.3 1.0
Lexicon: Noun \rightarrow book flight meal n 0.1 0.5 0.2 Verb \rightarrow book include pref 0.5 0.2 0.3	noney 0.2 er

CNF Conversion Example

Det \rightarrow the a that this
0.6 0.2 0.1 0.1
Pronoun \rightarrow I he she me
0.5 0.1 0.1 0.3
Proper-Noun → Houston NWA
0.8 0.2
$Aux \rightarrow does$
1.0
Prep \rightarrow from to on near through
0.25 0.25 0.1 0.2 0.2

Original Grammar		Chomsky Normal Form	
$\begin{array}{l} S \rightarrow NP \; VP \\ S \rightarrow Aux \; NP \; VP \end{array}$	0.8 0.1	$S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$	0.8 0.1 1.0
$S \to VP$	0.1		1.0
$NP \rightarrow Pronoun$	0.2		
$NP \rightarrow Proper-Noun$	0.2		
NP \rightarrow Det Nominal Nominal \rightarrow Noun	0.6 0.3		
Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP VP \rightarrow Verb	0.2 0.5 0.2		
$VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$	0.5 0.3 1.0		
Lexicon (See previous slide for Noun \rightarrow book flight meal 1 0.1 0.5 0.2 Verb \rightarrow book include prefer 0.5 0.2 0.3	or full list) money 0.2 r	:	

Original Grammar

Chomsky Normal Form

$S \rightarrow NP VP$	0.8	$S \rightarrow NP VP$	0.8
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1
		$X1 \rightarrow Aux NP$	1.0
$S \rightarrow VP$	0.1	$S \rightarrow book \mid include \mid prefer$	
		$S \rightarrow Verb NP$	
		$S \rightarrow VP PP$	<u> </u>
$NP \rightarrow Pronoun$	0.2		
$NP \rightarrow Proper-Noun$	0.2		
$NP \rightarrow Det Nominal$	0.6		
Nominal → Noun	0.3		
Nominal \rightarrow Nominal Noun	0.2		
Nominal \rightarrow Nominal PP	0.5		
$VP \rightarrow Verb$	0.2		
$VP \rightarrow Verb NP$	0.5		
$VP \rightarrow VP PP$	0.3		
$PP \to Prep \ NP$	1.0		
Levicen (See provious alide	for full lie	+) -	
Lexicon (See previous side		().	
Noun \rightarrow DOOK Tilght meal	money		
0.1 0.5 0.2	0.2		
Verb \rightarrow book include pre	efer		
0.5 0.2 0.3			

Original Grammar

Chomsky Normal Form

$S \rightarrow NP VP$	0.8	$S \rightarrow NP VP$	0.8	
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1	
		$X1 \rightarrow Aux NP$	1.0	
$S \rightarrow VP$	0.1	$S \rightarrow book \mid include \mid prefer$		
		0.01 0.004 0.006		
		$S \rightarrow Verb NP$	0.05	
		$S \rightarrow VP PP$	0.03	
$NP \rightarrow Pronoun$	0.2	$NP \rightarrow I$ he she me		
		0.1 0.02 0.02 0.06		
$NP \rightarrow Proper-Noun$	0.2	$NP \rightarrow Houston \mid NWA$		
·		0.16 .04		
$NP \rightarrow Det Nominal$	0.6	$NP \rightarrow Det Nominal$	0.6	
Nominal \rightarrow Noun	0.3	Nominal \rightarrow book flight meal money		
		0.03 0.15 0.06 0.06		
Nominal \rightarrow Nominal Noun	0.2	Nominal → Nominal Noun	0.2	
Nominal \rightarrow Nominal PP	0.5	Nominal \rightarrow Nominal PP	0.5	
$VP \rightarrow Verb$	0.2	$VP \rightarrow book \mid include \mid prefer$		
		0.1 0.04 0.06		
$VP \rightarrow Verb NP$	0.5	$VP \rightarrow Verb NP$	0.5	
$VP \rightarrow VP PP$	0.3	$VP \rightarrow VP PP$	0.3	
$PP \rightarrow Prep NP$	1.0	$PP \rightarrow Prep NP$	1.0	
Lexicon (See previous slide	for full list	t) :		
Noun \rightarrow book flight meal	monev			
	0.2			
$verb \rightarrow book include pre$				
0.5 0.2 0.3				

The Parsing Problem

A Recursive Parser

- Will this parser work?
- Why or why not?
- Memory/time requirements?
- Q: Remind you of anything? Can we adapt this to other models / inference tasks?

Dynamic Programming

 We will store: score of the max parse of x_i to x_j with root non-terminal X

 $\pi(i, j, X)$

So we can compute the most likely parse:

$$\pi(1, n, S) = \max_{t \in \mathcal{T}_G(s)} p(t)$$

• Via the recursion:

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z) \right)$$

• With base case:

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

The CKY Algorithm

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - For all X in N

[iterate all phrase lengths] [iterate all phrases of length I] [iterate all non-terminals]

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

also, store back pointers

$$bp(i,j,X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

Probabilistic CKY Parser

0.8 $S \rightarrow NP VP$ 0.1 $S \rightarrow X1 VP$ 1.0 $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ 0.01 0.004 0.006 $S \rightarrow Verb NP$ 0.05 0.03 $S \rightarrow VP PP$ $NP \rightarrow I$ | he | she | me 0.1 0.02 0.02 0.06 $NP \rightarrow Houston \mid NWA$ 0.16 .04 $Det \rightarrow the \mid a \mid an$ 0.6 0.1 0.05 $NP \rightarrow Det Nominal$ 0.6 Nominal \rightarrow book | flight | meal | money 0.03 0.15 0.06 0.06 0.2 Nominal \rightarrow Nominal Nominal 0.5 Nominal \rightarrow Nominal PP Verb \rightarrow book | include | prefer 0.5 0.04 0.06 0.5 $VP \rightarrow Verb NP$ 0.3 $VP \rightarrow VP PP$ **Prep** \rightarrow through | to | from 0.2 0.3 0.3 1.0 $PP \rightarrow Prep NP$

Probabilistic CKY Parser

Probabilistic CKY Parser

Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n² doubles
- Pruning: Beam Search
 - score[X][i][j] can get too large (when?)
 - Can keep beams (truncated maps score[i][j]) which only store the best K scores for the span [i,j]
- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most X[i,j]
 - Much more on this later...

Time: Theory

How much time will it take to parse?

- For each diff (:= j i) (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work

- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentences
Time: Practice

Parsing with the vanilla treebank grammar:

- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

Other Dynamic Programs

Can also compute other quantities:

- Best Inside: score of the max parse of w_i to w_i with root non-terminal X
- Best Outside: score of the max parse of w₀ to w_n with a gap from w_i to w_i rooted with non-terminal X
 - see notes for derivation, it is a bit more complicated
- Sum Inside/Outside: Do sums instead of maxes

Why Chomsky Normal Form?

CNF + Unary Closure

We need unaries to be non-cyclic

- Calculate closure Close(R) for unary rules in R
 - Add X \rightarrow Y if there exists a rule chain X \rightarrow Z₁, Z₁ \rightarrow Z₂,..., Z_k \rightarrow Y with $q(X\rightarrow Y) = q(X\rightarrow Z_1)^*q(Z_1\rightarrow Z_2)^*...^*q(Z_k\rightarrow Y)$
 - If no unary rule exist for X, add $X \rightarrow X$ with $q(X \rightarrow X)=1$ for all X in N

- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about $X \rightarrow Y$ with different unary paths (and scores)?

The CKY Algorithm

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-I) and j = i+I
 - For all X in N

[iterate all phrase lengths] [iterate all phrases of length I] [iterate all non-terminals]

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

also, store back pointers

$$bp(i,j,X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

CKY with Unary Closure

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n:
 - Step 1: for all X in N: $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$
 - Step 2: for all X in N:

$$\pi_U(i, i, X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi(i, i, Y))$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - Step 1: (Binary)
 - For all X in N [iterate all non-terminals]

 $\pi_B(i,j,X) = \max_{X \to YZ \in R, s \in \{i...(j-1)\}} (q(X \to YZ) \times \pi_U(i,s,Y) \times \pi_U(s+1,j,Z))$

[iterate all phrase lengths]

[iterate all phrases of length I]

Step 2: (Unary)

• For all X in N [iterate all non-terminals] $\pi_U(i, j, X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi_B(i, j, Y))$

Treebank Sentences

```
( (S (NP-SBJ The move)
 (VP followed
     (NP (NP a round)
         (PP of
             (NP (NP similar increases)
                  (PP by
                      (NP other lenders))
                  (PP against
                      (NP Arizona real estate loans))))
     (S-ADV (NP-SBJ *)
            (VP reflecting
                 (NP (NP a continuing decline)
                     (PP-LOC in
                             (NP that market))))))
 .))
```

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.

Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller

Typical Experimental Setup

Corpus: Penn Treebank, WSJ

Training:	sections	02-21
Development:	section	22 (here, first 20 files)
Test:	section	23

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP \rightarrow NP CC •

How to Evaluate?

PARSEVAL Example

Recall = 10/11 = 90.9% Precision = 10/12 = 83.3% F₁ = 87.4%

Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system's parse tree and T is the human parse tree (the "gold standard"):
 - Recall = (# correct constituents in P) / (# constituents in T)
 - Precision = (# correct constituents in P) / (# constituents in P)
- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.
- F1 is the harmonic mean of precision and recall.
 - F1= (2 * Precision * Recall) / (Precision + Recall)

Performance with Vanilla PCFGs

- Use PCFGs for broad coverage parsing
- Take the grammar right off the trees

Model	• •
Baseline	72.0

[Charniak 96]

Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
(cf. parent annotation)

Horizontal Markovization

Vertical and Horizontal

- Raw treebank: v=1, h=∞
- Johnson 98: v=2, h=∞
- Collins 99: v=2, h=2
- Best F1: v=3, h=2v

Model	F1	Size
v=h=2v	77.8	7.5K

Unlexicalized PCFG Grammar Size

		Horizontal Markov Order				
Ve	rtical Order	h = 0	h = 1	$h \leq 2$	h = 2	$h = \infty$
v = 1	No annotation	71.27	72.5	73.46	72.96	72.62
		(854)	(3119)	(3863)	(6207)	(9657)
$v \leq 2$	Sel. Parents	74.75	77.42	77.77	77.50	76.91
		(2285)	(6564)	(7619)	(11398)	(14247)
v = 2	All Parents	74.68	77.42	77.81	77.50	76.81
		(2984)	(7312)	(8367)	(12132)	(14666)
$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
		(4943)	(12374)	(13627)	(19545)	(20123)
v = 3	All GParents	76.74	79.18	79.74	79.07	78.72
		(7797)	(15740)	(16994)	(22886)	(22002)

Figure 2: Markovizations: F_1 and grammar size.

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.

Subdivide the IN tag.

Annotation	F1	Size	
v=h=2v	78.3	8.0K	
SPLIT-IN	80.3	8.1K	

Other Tag Splits

UNARY-DT: mark demonstratives as DT [^] U
("the X" vs. "those")

- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K

A Fully Annotated (Unlex) Tree

Some Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Unlexicalized	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation [Johnson '98, Klein and Manning 03]
- Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - $VP \rightarrow VP PP$
 - $NP \rightarrow NP PP$
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalize Trees!

- Add "headwords" to each phrasal node
 - Headship not in (most) treebanks
 - Usually use (handwritten) head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

[Collins 99] Lexical Derivation Steps

 Main idea: define a linguistically-motivated Markov process for generating children given the parent

Step 1: Choose a head tag and word

Step 2: Choose a complement bag

Step 3: Generate children (incl. adjuncts)

Step 4: Recursively derive children

Lexicalized CKY


```
bestScore(i,j,X, h)
```

```
if (j = i+1)
```

```
return tagScore(X,s[i])
```

else

return

max	max	$score(X[h] \rightarrow Y[h] Z[h'])$	*
k,	h′,	<pre>bestScore(i,k,Y, h) *</pre>	
X-	>YZ	<pre>bestScore(k+1,j,Z, h')</pre>	
	max	$score(X[h] \rightarrow Y[h'] Z[h])$	*
k,	h′,	<pre>bestScore(i,k,Y, h') *</pre>	
Х-	>YZ	<pre>bestScore(k+1,j,Z, h)</pre>	

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic
- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Model	F1
Naïve Treebank	72.6
Grammar	
Klein &	86.3
Manning '03	
Collins 99	88.6

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Parent annotation [Johnson '98]
- Head lexicalization [Collins '99, Charniak '00]
- Automatic Grammar Refinement?
Manual Annotation

Learning Latent Annotations

Latent Annotations:

- Brackets are known
- Base categories are known
- Hidden variables for subcategories

Can learn with EM: like Forward-Backward for HMMs.

Backward/Inside

Automatic Annotation Induction

Advantages:

Automatically learned:

Label all nodes with latent variables. Same number \boldsymbol{k} of subcategories for all categories.

Disadvantages:

- Grammar gets too large
- Most categories are oversplit while others are undersplit.

Model	F1
Klein & Manning '03	86.3
Matsuzaki et al. '05	86.7

Adaptive Splitting Results

Final Results

Parser	F1 ≤ 40 words	F1 all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
Collins '99	88.6	88.2
Charniak & Johnson '05	90.1	89.6
Petrov et. al. 06	90.2	89.7

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015

John has a dog →

(S (NP NNP)_{\rm NP} (VP VBZ (NP DT NN)_{\rm NP})_{\rm VP} .)_S

- Linearize a tree into a sequence
- Then parsing problem becomes similar to machine translation
 - Input: sequence
 - Output: sequence (of different length)
- Encoder-decoder LSTMs (Long short-term memory networks)

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015

John has a dog →

(S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_S

- Penn treebank (~40K sentences) is too small to train LSTMs
- Create a larger training set with 11M sentences automatically parsed by two state-of-the-art parsers (and keep only those sentences for which two parsers agreed)

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015

Parser	Training Set	WSJ 22	WSJ 23
baseline LSTM+D	WSJ only	< 70	< 70
LSTM+A+D	WSJ only	88.7	88.3
LSTM+A+D ensemble	WSJ only	90.7	90.5
baseline LSTM	BerkeleyParser corpus	91.0	90.5
LSTM+A	high-confidence corpus	93.3	92.5
LSTM+A ensemble	high-confidence corpus	93.5	92.8
Petrov et al. (2006) [12]	WSJ only	91.1	90.4
Zhu et al. (2013) [13]	WSJ only	N/A	90.4
Petrov et al. (2010) ensemble [14]	WSJ only	92.5	91.8
Zhu et al. (2013) [13]	semi-supervised	N/A	91.3
Huang & Harper (2009) [15]	semi-supervised	N/A	91.3
McClosky et al. (2006) [16]	semi-supervised	92.4	92.1
Huang & Harper (2010) ensemble [17]	semi-supervised	92.8	92.4