
CSEP 517
Natural Language Processing

Neural Machine Translation

Luke Zettlemoyer

(Slides adapted from Karthik Narasimhan, Greg Durrett, Chris Manning, Dan Jurafsky)



• Statistical MT


• Word-based


• Phrase-based


• Syntactic

Last time



NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research 
activity in 2014 to the leading standard method in 2016 

• 2014: First seq2seq paper published 

• 2016: Google Translate switches from SMT to NMT 

• This is amazing! 
• SMT systems, built by hundreds of engineers over many 

years, outperformed by NMT systems trained by a handful 
of engineers in a few months

3



Neural Machine Translation

‣ A single neural network is used to translate from source 
to target


‣ Architecture: Encoder-Decoder


‣ Two main components:


‣ Encoder: Convert source sentence (input) into a 
vector/matrix


‣ Decoder: Convert encoding into a sentence in target 
language (output)



Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd



Sequence to Sequence learning 
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN)


• Decode one word at a time (again, using an RNN!)


• Beam search for better inference


• Learning is not trivial! (vanishing/exploding gradients)

(Sutskever et al., 2014)



En
co

de
r 

RN
N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

les    pauvres  sont   démunis

Target sentence (output)

D
ecoder RN

N

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source 
sentence. 

Provides initial hidden state  
for Decoder RNN.

 Decoder RNN is a Language Model that 
generates target sentence conditioned on 

encoding.

the

ar
gm

ax
the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior: 
decoder output is fed in --> as next step’s input

have  any    money  <END>

don’t    have any    money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax



Seq2seq training

‣ Similar to training a language model!


‣ Minimize cross-entropy loss:





‣ Back-propagate gradients through both decoder and encoder


‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo! 



Training a Neural Machine Translation system
En

co
de

r 
RN

N

Source sentence (from corpus)

<START>   the      poor    don’t   have   any  moneyles pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.  
Backpropagation operates “end to end”.

D
ecoder RN

N

�̂�1  �̂�2 
�̂�3  �̂�4  �̂�5  �̂�6  �̂�7

𝐽1  𝐽2  𝐽3  𝐽4  𝐽5  𝐽6  𝐽7 

= negative log  
prob of “the”

𝐽 =  
1
𝑇

𝑇

∑
𝑡=1

𝐽𝑡 =         +       +        +        +       +       +

= negative log  
prob of <END>

= negative log  
prob of “have”



Greedy decoding

‣ Compute argmax at every step of decoder to generate 
word


‣ What’s wrong?



Exhaustive search?

‣ Find 


‣ Requires computing all possible sequences 


‣  complexity!


‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)



A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most 
probable partial translations (hypotheses)


‣ Score of each hypothesis = log probability





‣ Not guaranteed to be optimal


‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



Beam decoding

(slide credit: Abigail See)



Beam decoding

(slide credit: Abigail See)



Beam decoding

(slide credit: Abigail See)



Beam decoding

‣ Different hypotheses may produce  (end) token at different time steps


‣ When a hypothesis produces , stop expanding it and place it aside


‣ Continue beam search until:


‣ All  hypotheses produce  OR


‣ Hit max decoding limit T


‣ Select top hypotheses using the normalized likelihood score





‣ Otherwise shorter hypotheses have higher scores

⟨e⟩

⟨e⟩

k ⟨e⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



NMT vs SMT

Pros


‣ Better performance


‣ Fluency


‣ Longer context


‣ Single NN optimized end-to-
end


‣ Less engineering


‣ Works out of the box for many 
language pairs

Cons


‣ Requires more data and compute


‣ Less interpretable


‣ Hard to debug


‣ Uncontrollable


‣ Heavily dependent on data - 
could lead to unwanted 
biases


‣ More parameters



How seq2seq changed the MT 
landscape



MT Progress

(source: Rico Sennrich)



Versatile seq2seq

‣ Seq2seq finds applications in many other tasks!


‣ Any task where inputs and outputs are sequences of words/
characters


‣ Summarization (input text  summary)


‣ Dialogue (previous utterance  reply)


‣ Parsing (sentence  parse tree in sequence form)


‣ Question answering (context+question  answer)

→

→

→

→



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the 
information about source sentence


‣ Longer sequences can lead to vanishing gradients


‣ Overfitting

henc

Bottleneck



Remember alignments?



Attention

‣ The neural MT equivalent of alignment models


‣ Key idea: At each time step during decoding, focus on a 
particular part of source sentence


‣ This depends on the decoder’s current hidden state 
(i.e. notion of what you are trying to decode)


‣ Usually implemented as a probability distribution over 
the hidden states of the encoder (  )henc

i



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es

dot product

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es

dot product

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es

dot product

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es

dot product

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”les”)

At
te

nt
io

n 
di

st
ri

bu
ti

on

Take softmax to turn the 
scores into a probability 

distribution

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

di
st

ri
bu

ti
on

At
te

nt
io

n 
sc

or
es

Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 
states. 

The attention output mostly contains 
information the hidden states that 
received high attention.

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

di
st

ri
bu

ti
on

At
te

nt
io

n 
sc

or
es

Attention 
output

Concatenate attention output 
with decoder hidden state, 
then use to compute as 
before

�̂�1 

�̂�1 

the

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es

the

At
te

nt
io

n 
di

st
ri

bu
ti

on

Attention 
output

�̂�2 

poor

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es
At

te
nt

io
n 

di
st

ri
bu

ti
on

Attention 
output

the poor

�̂�3 

don’t

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es
At

te
nt

io
n 

di
st

ri
bu

ti
on

Attention 
output

the poor don’t

�̂�4 

have

les    pauvres  sont   démunis

Sequence-to-sequence with attention



En
co

de
r 

 
RN

N

Source sentence (input)

<START>

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es
At

te
nt

io
n 

di
st

ri
bu

ti
on

Attention 
output

the poor have

�̂�5 

any

don’tles    pauvres  sont   démunis

Sequence-to-sequence with attention



Sequence-to-sequence with attention
En

co
de

r 
 

RN
N

Source sentence (input)

<START>les    pauvres  sont   démunis

D
ecoder RN

N
At

te
nt

io
n 

sc
or

es
At

te
nt

io
n 

di
st

ri
bu

ti
on

Attention 
output

the poor don’t have any

�̂�6 

money



Computing attention

‣ Encoder hidden states: 


‣ Decoder hidden state at time : 


‣ First, get attention scores for this time step (we will see what  is soon!): 
                                 


‣ Obtain the attention distribution using softmax: 
                                        


‣ Compute weighted sum of encoder hidden states: 

                                        


‣ Finally, concatenate with decoder state and pass on to output layer: 

henc
1 , . . . , henc

n

t hdec
t

g
et = [g(henc

1 , hdec
t ), . . . , g(henc

n , hdec
t )]

αt = softmax (et) ∈ ℝn

at =
n

∑
i=1

αt
i h

enc
i ∈ ℝh

[at; hdec
t ] ∈ ℝ2h



Types of attention

‣ Assume encoder hidden states  and decoder hidden 
state 


1. Dot-product attention (assumes equal dimensions for  and : 
                    


2. Multiplicative attention: 
             , where  is a weight matrix


3. Additive attention:  
                   
where  are weight matrices and  is a weight vector

h1, h2, . . . , hn

z

a b
ei = g(hi, z) = zThi ∈ ℝ

g(hi, z) = zTWhi ∈ ℝ W

g(hi, z) = vT tanh (W1hi + W2z) ∈ ℝ
W1, W2 v



Rare Words and 
Monolingual Text



Handling Rare Words
• Words are a difficult unit to work with, e.g. vocabularies get very large, 

how to handle OOV?

Sennrich et al. (2016)

• Character-level models are possible, but expensive

Input: _the _eco tax _port i co _in   _Po nt - de - Bu is …

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

• Compromise soluSon: use thousands of “word pieces” (which may be 
full words but may also be parts of words)

• Can do transliteraSon, model sub-word regulariSes, etc.



Byte Pair Encoding (BPE)

• Use large corpus of text for counSng

• Start with every individual byte (basically character) as its own 
symbol

• Count bigram character cooccurrences

• Merge the most frequent pair of 
adjacent characters

• 8k merges => vocabulary of around 8000 word pieces. Includes many 
whole words

• Most SOTA NMT systems use this on both source + target

Sennrich et al. (2016)



Backtranslation
• Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large 

monolingual corpus T’ to train a language model. Can neural MT do the same?

Sennrich et al. (2015)

s1, t1

[null], t’1

[null], t’2

s2, t2…

…

• Approach 1: force the system to 
generate T’ as targets from null inputs

• Approach 2: generate syntheSc 
sources with a T->S machine 
translaSon system (backtranslaSon)

s1, t1

MT(t’1), t’1

s2, t2…

…
MT(t’2), t’2



Backtranslation

• parallelsynth: backtranslate training data; makes addiSonal noisy 
source sentences which could be useful

• Gigaword: large monolingual English corpus

Sennrich et al. (2015)



Google’s NMT System

• 8-layer LSTM encoder-decoder with agenSon, word 
piece vocabulary of 8k-32k 

Wu et al. (2016)



(Wu et al., 2016)



Google’s NMT System

Gender is 
correct in 
GNMT but not 
in PBMT

“sled”
“walker”

Wu et al. (2016)



Transformers for MT



RNNs vs Transformers

the movie was terribly exciting !

Transformer layer 3

Transformer layer 2

Transformer layer 1



New Twist: Self-Attention

Vaswani et al. (2017)

the  movie was great

• Each word computes agenSon over every 
other word 

• MulSple “heads”: Use parameters Wk and Vk to get different agenSon 
values + transform vectors

x4

x0
4

scalar

vector = sum of      
scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj



• Transformers

Transformers



Transformers

• NIPS’17: Attention is All You Need 
• Key idea: Multi-head self-attention 
• No recurrence structure any more so it 

trains much faster 
• Originally proposed for NMT (encoder-

decoder framework) 
• Used as the base model for lots of 

follow up work



Transformers

• Each Transformer block has two sub-layers 
• Multi-head attention 
• 2-layer feedforward NN (with ReLU)

• Each sublayer has a residual 
connection and a layer normalization 

                LayerNorm(x + SubLayer(x))

(Ba et al, 2016): Layer Normalization

• Input layer has a positional encoding



Transformers and Word Order

the  movie  was   

• Augment word embedding with posiSon embeddings, each dim 
is a sine/cosine wave of a different frequency. Closer points = 
higher dot products

• Works essenSally as well as just encoding posiSon as a one-hot 
vector

the  movie  was   

em
b(

1)

em
b(

2)

em
b(

3)

em
b(

4)

Vaswani et al. (2017)



Transformers for MT

• Encoder and decoder are 
both transformers

• Decoder consumes the 
previous generated token 
(and agends to input), but 
has no recurrent state

Vaswani et al. (2017)



Transformers

• Big = 6 layers, 1000 
dim for each 
token, 16 heads, 
base = 6 layers + 
other params 
halved

Vaswani et al. (2017)



Visualization

Vaswani et al. (2017)



Visualization

Vaswani et al. (2017)



Useful Resources
nn.Transformer:

nn.TransformerEncoder:

The Annotated Transformer:
http://nlp.seas.harvard.edu/2018/04/03/attention.html 

A Jupyter notebook which explains how Transformer works line by line in PyTorch! 

http://nlp.seas.harvard.edu/2018/04/03/attention.html


So is Machine Translation solved?

• Nope! 
• Many difficulties remain: 
• Out-of-vocabulary words 
• Domain mismatch between train and test data 
• Maintaining context over longer text 
• Low-resource language pairs

58



So is Machine Translation solved?

• Nope! 
• Using common sense is still hard

59

?



So is Machine Translation solved?

• Nope! 
• NMT picks up biases in training data

60

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-
ce1f7c8c683c

Didn’t specify gender



So is Machine Translation solved?

• Nope! 
• Uninterpretable systems do strange things 

 
 
 
 

61

Source: http://languagelog.ldc.upenn.edu/nll/?p=35120#more-35120



Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with 
English (remember Interlingua?)


‣ Massive improvements on low-resource languages


