CSEP 517 Natural Language Processing

Machine Translation

Luke Zettlemoyer

(Slides adapted from Karthik Narasimhan, Chris Manning, Dan Jurafsky)

Translation

- One of the "holy grail" problems in artificial intelligence
- Practical use case: Facilitate communication between people in the world
- Extremely challenging (especially for low-resource languages)

Easy and not so easy translations

- Easy:
 - I like apples \leftrightarrow ich mag Äpfel (German)
- Not so easy:
 - I like apples \leftrightarrow J'aime les pommes (French)
 - I like red apples ↔ J'aime les pommes rouges (French)
 - les \leftrightarrow the but les pommes \leftrightarrow apples

MT basics

- Goal: Translate a sentence w^(s) in a source language (input) to a sentence in the target language (output)
- Can be formulated as an optimization problem:

•
$$\hat{w}^{(t)} = \arg \max_{w^{(t)}} \psi(w^{(s)}, w^{(t)})$$

- where ψ is a scoring function over source and target sentences
- Requires two components:
 - Learning algorithm to compute parameters of ψ
 - Decoding algorithm for computing the best translation $\hat{w}^{(t)}$

Why is MT challenging?

- Single words may be replaced with multi-word phrases
 - I like apples \leftrightarrow J'aime les pommes
- Reordering of phrases
 - I like red apples ↔ J'aime les pommes rouges
- Contextual dependence
 - les \leftrightarrow the but les pommes \leftrightarrow apples

Extremely large output space \implies Decoding is NP-hard

Vauquois Pyramid

- Hierarchy of concepts and distances between them in different languages
- Lowest level: individual words/characters
- Higher levels: syntax, semantics
- Interlingua: Generic language-agnostic representation of meaning

Evaluating translation quality

- Two main criteria:
 - Adequacy: Translation $w^{(t)}$ should adequately reflect the linguistic content of $w^{(s)}$
 - Fluency: Translation $w^{(t)}$ should be fluent text in the target language

	Adequate?	Fluent?
To Vinay it like Python	yes	no
Vinay debugs memory leaks	no	yes
Vinay likes Python	yes	yes

Different translations of A Vinay le gusta Python

Evaluation metrics

- Manual evaluation is most accurate, but expensive
- Automated evaluation metrics:
 - Compare system hypothesis with reference translations
 - BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002):
 - Modified n-gram precision

 $p_n = \frac{\text{number of } n \text{-grams appearing in both reference and hypothesis translations}}{\text{number of } n \text{-grams appearing in the hypothesis translation}}$

BLEU

$$\mathsf{BLEU} = \exp\frac{1}{N}\sum_{n=1}^{N}\log p_n$$

Two modifications:

- To avoid log 0, all p_i are smoothed
- Each n-gram in reference can be used at most once
 - Ex. Hypothesis: to to to to to vs Reference: to be or not to be should not get a unigram precision of 1

Precision-based metrics favor short translations

• Solution: Multiply score with a brevity penalty for translations shorter than reference, $e^{1-r/h}$

BLEU

• Correlates somewhat well with human judgements

(G. Doddington, NIST)

BLEU scores

	Translation	p_1	p_2	p_3	p_4	BP	BLEU
Reference	Vinay likes programming in Python						
Sys1	To Vinay it like to program Python	$\frac{2}{7}$	0	0	0	1	.21
Sys2	Vinay likes Python	$\frac{3}{3}$	$\frac{1}{2}$	0	0	.51	.33
Sys3	Vinay likes programming in his pajamas	$\frac{4}{6}$	$\frac{3}{5}$	$\frac{2}{4}$	$\frac{1}{3}$	1	.76

Sample BLEU scores for various system outputs

• Alternatives have been proposed:

Issues?

- METEOR: weighted F-measure
- Translation Error Rate (TER): Edit distance between hypothesis and reference

Data

• Statistical MT relies requires parallel corpora

1. Chapter 4, Koch (DE)	de	es
context We would like to ensure that there is a reference to this as early as the recitals and that the period within which the Council has to make a decision - which is not clearly worded - is set at a maximum of three months .	Wir möchten sicherstellen , daß hierauf bereits in den Erwägungsgründen hingewiesen wird und die uneindeutig formulierte Frist , innerhalb der der Rat eine Entscheidung treffen muß , auf maximal drei Monate fixiert wird .	Quisiéramos asegurar que se aluda ya a esto en los considerandos y que el plazo , imprecisamente formulado , dentro del cual el Consejo ha de adoptar una decisión , se fije en tres meses como máximo .
2. Chapter 3, Färm (SV)	de	es
context Our experience of modern administration tells us that openness, decentralisation of responsibility and qualified evaluation are often as effective as detailed bureaucratic supervision.	Unsere Erfahrungen mit moderner Verwaltung besagen , daß Transparenz , Dezentralisation der Verantwortlichkeiten und eine qualifizierte Auswertung oft ebenso effektiv sind wie bürokratische Detailkontrolle .	Nuestras experiencias en materia de administración moderna nos señalan que la apertura , la descentralización de las responsabilidades y las evaluaciones bien hechas son a menudo tan eficaces como los controles burocráticos detallados .

(Europarl, Koehn, 2005)

- And lots of it!
- Not available for many low-resource languages in the world

Statistical MT

$$\hat{w}^{(t)} = \arg\max_{w^{(t)}} \psi (w^{(s)}, w^{(t)})$$

- Scoring function ψ can be broken down as follows: $\psi(w^{(s)}, w^{(t)}) = \psi_A(w^{(s)}, w^{(t)}) + \psi_F(w^{(t)})$ (adequacy) (fluency)
- Allows us to estimate parameters of ψ on separate data
 - ψ_A from aligned corpora
 - ψ_F from monolingual corpora

Noisy channel model

$$\begin{split} \Psi_A(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) &\triangleq \log \mathsf{p}_{S|T}(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}) \\ \Psi_F(\boldsymbol{w}^{(t)}) &\triangleq \log \mathsf{p}_T(\boldsymbol{w}^{(t)}) \\ \Psi(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) &= \log \mathsf{p}_{S|T}(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}) + \log \mathsf{p}_T(\boldsymbol{w}^{(t)}) = \log \mathsf{p}_{S,T}(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}). \end{split}$$

- Generative process for source sentence
- Use Bayes rule to recover $w^{(t)}$ that is maximally likely under the conditional distribution $p_{T|S}$ (which is what we want)

Noisy channel model

Allows us to use a language model p_T to improve fluency

$$\begin{split} \Psi_F(\boldsymbol{w}^{(t)}) &\triangleq \log \mathsf{p}_T(\boldsymbol{w}^{(t)}) \\ \Psi(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) &= \log \mathsf{p}_{S|T}(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}) + \log \mathsf{p}_T(\boldsymbol{w}^{(t)}) = \log \mathsf{p}_{S,T}(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}). \end{split}$$

- Generative process for source sentence
- Use Bayes rule to recover $w^{(t)}$ that is maximally likely under the conditional distribution $p_{T|S}$ (which is what we want)

IBM Models

- Early approaches to statistical MT
- How can we define the translation model $p_{S|T}$?
- How can we estimate the parameters of the translation model from parallel training examples?
- Make use of the idea of alignments

The Mathematics of Statistical Machine Translation: Parameter Estimation

Peter F. Brown* IBM T.J. Watson Research Center

Vincent J. Della Pietra* IBM T.J. Watson Research Center Stephen A. Della Pietra* IBM T.J. Watson Research Center

Robert L. Mercer* IBM T.J. Watson Research Center

We describe a series of five statistical models of the translation process and give algorithms for estimating the parameters of these models given a set of pairs of sentences that are translations of one another. We define a concept of word-by-word alignment between such pairs of sentences. For any given pair of such sentences each of our models assigns a probability to each of the possible word-by-word alignments. We give an algorithm for seeking the most probable of these alignments. Although the algorithm is suboptimal, the alignment thus obtained accounts well for the word-by-word relationships in the pair of sentences. We have a great deal of data in French and English from the proceedings of the Canadian Parliament. Accordingly, we have restricted our work to these two languages; but we feel that because our algorithms have minimal linguistic content of our algorithms, that it is reasonable to argue that word-by-word alignments are inherent in any sufficiently large bilingual corpus.

1. Introduction

The growing availability of bilingual, machine-readable texts has stimulated interest in methods for extracting linguistically valuable information from such texts. For example, a number of recent papers deal with the problem of automatically obtaining pairs of aligned sentences from parallel corpora (Warwick and Russell 1990; Brown,

Alignments

 Key question: How should we align words in source to words in target?

Incorporating alignments

• Joint probability of alignment and translation can be defined as:

$$egin{aligned} \mathsf{p}(m{w}^{(s)}, \mathcal{A} \mid m{w}^{(t)}) &= \prod_{m=1}^{M^{(s)}} \mathsf{p}(w_m^{(s)}, a_m \mid w_{a_m}^{(t)}, m, M^{(s)}, M^{(t)}) \ &= \prod_{m=1}^{M^{(s)}} \mathsf{p}(a_m \mid m, M^{(s)}, M^{(t)}) imes \mathsf{p}(w_m^{(s)} \mid w_{a_m}^{(t)}). \end{aligned}$$

- $M^{(s)}, M^{(t)}$ are the number of words in source and target sentences
- a_m is the alignment of the m^{th} word in the source sentence, i.e. it specifies that the m^{th} word is aligned to the a_m^{th} word in target

Is this sufficient?

Incorporating alignments

$$a_1 = 2, a_2 = 3, a_3 = 4, \dots$$

Multiple source words may align to the same target word!

Reordering and word insertion

$$\mathbf{a} = (3, 4, 2, 1)^{\mathsf{T}}$$

 $\mathbf{a} = (1, 2, 3, 0, 4)^{\top}$

Assume extra NULL token

(Slide credit: Brendan O'Connor)

Independence assumptions

$$p(\boldsymbol{w}^{(s)}, \mathcal{A} \mid \boldsymbol{w}^{(t)}) = \prod_{m=1}^{M^{(s)}} p(w_m^{(s)}, a_m \mid w_{a_m}^{(t)}, m, M^{(s)}, M^{(t)})$$
$$= \prod_{m=1}^{M^{(s)}} p(a_m \mid m, M^{(s)}, M^{(t)}) \times p(w_m^{(s)} \mid w_{a_m}^{(t)}).$$

- Two independence assumptions:
 - Alignment probability factors across tokens:

$$p(\mathcal{A} \mid \boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) = \prod_{m=1}^{M^{(s)}} p(a_m \mid m, M^{(s)}, M^{(t)}).$$

• Translation probability factors across tokens:

$$p(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A}) = \prod_{m=1}^{M^{(s)}} p(w_m^{(s)} \mid w_{a_m}^{(t)}),$$

How do we translate?

• We want:
$$\arg\max_{w^{(t)}} p(w^{(t)} | w^{(s)}) = \arg\max_{w^{(t)}} \frac{p(w^{(s)}, w^{(t)})}{p(w^{(s)})}$$

• Sum over all possible alignments:

$$p(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) = \sum_{\mathcal{A}} p(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}, \mathcal{A})$$
$$= p(\boldsymbol{w}^{(t)}) \sum_{\mathcal{A}} p(\mathcal{A}) \times p(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A})$$

- Alternatively, take the max over alignments
- Decoding: Greedy/beam search

IBM Model I

• Assume
$$p(a_m | m, M^{(s)}, M^{(t)}) = \frac{1}{M^{(t)}}$$

• Is this a good assumption?

Every alignment is equally likely!

IBM Model I

• Each source word is aligned to at most one target word

• Further, assume
$$p(a_m | m, M^{(s)}, M^{(t)}) = \frac{1}{M^{(t)}}$$

• We then have:

$$p(w^{(s)}, w^{(t)}) = p(w^{(t)}) \sum_{A} \left(\frac{1}{M^{(t)}}\right)^{M^{(s)}} p(w^{(s)} | w^{(t)})$$

• How do we estimate
$$p(w^{(s)} = v | w^{(t)} = u)$$
?

IBM Model I

 If we had word-to-word alignments, we could compute the probabilities using the MLE:

•
$$p(v | u) = \frac{count(u, v)}{count(u)}$$

- where *count*(*u*, *v*) = #instances where word *u* was aligned to word *v* in the training set
- However, word-to-word alignments are often hard to come by

EM for Model I* (advanced topic)

 (E-Step) If we had an accurate translation model, we can estimate likelihood of each alignment as:

 $q_m(a_m \mid \boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) \propto p(a_m \mid m, M^{(s)}, M^{(t)}) \times p(w_m^{(s)} \mid w_{a_m}^{(t)}),$

 (M Step) Use expected count to re-estimate translation parameters:

$$p(v \mid u) = \frac{E_q[count(u, v)]}{count(u)}$$

$$E_q\left[\operatorname{count}(u,v)\right] = \sum_m q_m(a_m \mid \boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) \times \delta(w_m^{(s)} = v) \times \delta(w_{a_m}^{(t)} = u).$$

IBM Model I - EM intuition

Example from Philipp Koehn

IBM Model 2

- Slightly relaxed assumption:
 - $p(a_m | m, M^{(s)}, M^{(t)})$ is also estimated, not set to constant
- Original independence assumptions still required:
 - Alignment probability factors across tokens:

$$p(\mathcal{A} \mid \boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) = \prod_{m=1}^{M^{(s)}} p(a_m \mid m, M^{(s)}, M^{(t)}).$$

• Translation probability factors across tokens:

$$p(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A}) = \prod_{m=1}^{M^{(s)}} p(w_m^{(s)} \mid w_{a_m}^{(t)}),$$

Other IBM models

Model 1: lexical translation Model 2: additional absolute alignment model Model 3: extra fertility model Model 4: added relative alignment model Model 5: fixed deficiency problem. Model 6: Model 4 combined with a HMM alignment model in a log linear way

- Models 3 6 make successively weaker assumptions
 - But get progressively harder to optimize
- Simpler models are often used to 'initialize' complex ones
 - e.g train Model 1 and use it to initialize Model 2 parameters

Phrase-based MT

• Word-by-word translation is not sufficient in many cases

	Nous	allons	prendre	un	verre
(literal)	We	will	take	а	glass
(actual)	We'll	have	a drink		

 Solution: build alignments and translation tables between multiword spans or "phrases"

Phrase-based MT

- Solution: build alignments and translation tables between multiword spans or "phrases"
- Translations condition on multi-word units and assign probabilities to multi-word units
- Alignments map from spans to spans

$$\mathbf{p}(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A}) = \prod_{\substack{((i,j), (k,\ell)) \in \mathcal{A}}} \mathbf{p}_{w^{(s)} \mid w^{(t)}}(\{w_{i+1}^{(s)}, w_{i+2}^{(s)}, \dots, w_{j}^{(s)}\} \mid \{w_{k+1}^{(t)}, w_{k+2}^{(t)}, \dots, w_{\ell}^{(t)}\})$$

Phrase lattices are big!

这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	炅	
the	7 people	including	by some		and	the russian	the	the astronauts		,
it	7 people incl	uded	by france		and the	the russian		international astronautical	of rapporteur .	ň.
this	7 out	including the	from	the french	and the 1	russian	the fiftl	h	· ·	
these	7 among	including from		the french a	and	of the russian	of	space	members	
that	7 persons	including from	the	of france	and to	russian	of the	aerospace members .		
	7 include		from the	of france an	ıd	russian	3	astronauts		. the
	7 numbers in	nclude	from france		and russi	an	of astro	ronauts who		. "
	7 population	s include	those from france	ce	and russi	an		astronauts .		
:	7 deportees i	included	come from	france	and rus	ssia	in	astronautical personnel		;
	7 philtrum	including those	e from	france an	d	russia	a space	æ member		
i i		including repre	esentatives from	france and t	the	russia	1. 	astronaut	N 8	
1		include	came from	france an	d russia	25 S.	by cosn	nonauts		
1 1		include represe	entatives from	french	and rus	ssia	6 26	cosmonauts cosmonauts . cosmonaut		
1		include	came from franc	æ	and russi	a 's				
		includes	coming from	french and		russia 's	y			
			5	french and	and russian 's astronavigation mem and russia and russia 's speci		member .			
			8	french						
			5	S			7A. 6	special rapporteur		
					, and	russia			rapporteur	
				8	, and rus	sia			rapporteur .	
		Ĵ.			, and rus	sia	0		C states i	
		1			or	russia 's		5		

Slide credit: Dan Klein

Vauquois Pyramid

- Hierarchy of concepts and distances between them in different languages
- Lowest level: individual words/characters
- Higher levels: syntax, semantics
- Interlingua: Generic language-agnostic representation of meaning

Syntactic MT

Rather than use phrases, use a synchronous context-free grammar: constructs "parallel" trees in two languages simultaneously

Assumes parallel syntax up to reordering

Translation = parse the input with "half" the grammar, read off other half

(Slide credit: Greg Durrett)

Syntactic MT

Grammar

- Relax this by using lexicalized rules, like "syntactic phrases"
- Leads to HUGE grammars, parsing is slow

 $s \rightarrow \langle VP .; I VP . \rangle$ **OR** $s \rightarrow \langle VP .; you VP . \rangle$ $VP \rightarrow \langle \text{ lo haré ADV }; \text{ will do it ADV } \rangle$ $s \rightarrow \langle \text{ lo haré ADV } ; I \text{ will do it ADV } \rangle$ $ADV \rightarrow \langle \text{ de muy buen grado }; \text{ gladly } \rangle$ Slide credit: Dan Klein

Next time: Neural machine translation