
CSEP 517: Natural Language
Processing

Recurrent Neural Networks
Autumn 2018

Luke Zettlemoyer
University of Washington

[most slides from Yejin Choi]

RECURRENT NEURAL
NETWORKS

!" !# !$!%

ℎ" ℎ# ℎ$ ℎ%

Recurrent Neural Networks (RNNs)

• Each input “word” is a vector
• Each RNN unit computes a new hidden state using the previous

state and a new input
• Each RNN unit (optionally) makes an output using the current

hidden state
• Hidden states are continuous vectors

– Can represent very rich information, function of entire history

• Parameters are shared (tied) across all RNN units (unlike
feedforward NNs)

ht = f(xt, ht�1)

ht 2 RD

yt = softmax(V ht)

Softmax

• Turn a vector of real numbers x into a probability
distribution

• We have seen this trick before!
– log-linear models…

4

Recurrent Neural Networks (RNNs)

• Generic RNNs:

• Vanilla RNN:

ht = f(xt, ht�1)

yt = softmax(V ht)

yt = softmax(V ht)

ht = tanh(Uxt +Wht�1 + b)

!" !# !$!%

ℎ" ℎ# ℎ$ ℎ%

Sigmoid

• Often used for gates
• Pro: neuron-like,

differentiable
• Con: gradients saturate to

zero almost everywhere
except x near zero =>
vanishing gradients

• Batch normalization helps

6

�(x) =
1

1 + e�x

�0(x) = �(x)(1� �(x))

Non-Linear Functions: Sigmoid

Logistic sigmoid function:

s(t) =
1

1+ exp(�t)

I s((xW1 + b1)i)

I Intuition: Each hidden dimension (“neuron”) is result of logistic

regression.

Tanh

• Often used for
hidden states & cells
in RNNs, LSTMs

• Pro: differentiable,
often converges
faster than sigmoid

• Con: gradients easily
saturate to zero =>
vanishing gradients

7

tanh(x) = 2�(2x)� 1

tanh(x) =
ex � e�x

ex + e�x

tanh’(x) = 1� tanh2(x)

Other Non-Linearities: Tanh

Hyperbolic Tangeant:

tanh(t) =
exp(t)� exp(�t)
exp(t) + exp(�t)

I Intuition: Similar to sigmoid, but range between 0 and -1.

Many uses of RNNs

• Input: a sequence
• Output: one label (classification)
• Example: sentiment classification

ht = f(xt, ht�1)

!" !# !$!%

ℎ" ℎ# ℎ$

ℎ%
y = softmax(V hn)

1. Classification (seq to one)

2. one to seq

• Input: one item
• Output: a sequence
• Example: Image captioning

ht = f(xt, ht�1)

yt = softmax(V ht)

!"

ℎ" ℎ$ ℎ%

ℎ&ℎ%ℎ$ℎ"
Cat sitting on top of ….

Many uses of RNNs

3. sequence tagging

• Input: a sequence
• Output: a sequence (of the same length)
• Example: POS tagging, Named Entity Recognition
• How about Language Models?

– Yes! RNNs can be used as LMs!
– RNNs make markov assumption: T/F? ht = f(xt, ht�1)

yt = softmax(V ht)

!" !# !$!%

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"

Many uses of RNNs

4. Language models

• Input: a sequence of words
• Output: next word

– (or sequence of next words, if repeated)

• During training, xt and yt-1 are the same word.
• During testing, xt is sampled from softmax in yt-1.
• Does RNN LMs make Markov assumption?

– i.e., the next word depends only on the previous N words

!" !# !$!%

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"

Many uses of RNNs

ht = f(xt, ht�1)

yt = softmax(V ht)

5. seq2seq (aka “encoder-decoder”)

• Input: a sequence
• Output: a sequence (of different length)
• Examples?

ht = f(xt, ht�1)

yt = softmax(V ht)

!" !# !$

ℎ" ℎ# ℎ$

ℎ&

ℎ& ℎ' ℎ(

ℎ)ℎ(ℎ'

Many uses of RNNs

Many uses of RNNs
4. seq2seq (aka “encoder-decoder”)

John has a dog

!" !# !$

ℎ" ℎ# ℎ$

ℎ&

ℎ& ℎ' ℎ(

ℎ)ℎ(ℎ'

Parsing!
- “Grammar as Foreign Language” (Vinyals et al., 2015)

Recurrent Neural Networks (RNNs)

• Generic RNNs:

• Vanilla RNN:

ht = f(xt, ht�1)

yt = softmax(V ht)

yt = softmax(V ht)

ht = tanh(Uxt +Wht�1 + b)

!" !# !$!%

ℎ" ℎ# ℎ$ ℎ%

vanishing gradient problem for
RNNs.

• The shading of the nodes in the unfolded network indicates their
sensitivity to the inputs at time one (the darker the shade, the greater
the sensitivity).

• The sensitivity decays over time as new inputs overwrite the activations
of the hidden layer, and the network ‘forgets’ the first inputs.

Example from Graves 2012

Recurrent Neural Networks (RNNs)

• Generic RNNs:
• Vanilla RNNs:
• LSTMs (Long Short-term Memory Networks):

ht = f(xt, ht�1)

!" !# !$!%

ℎ" ℎ# ℎ$ ℎ%

ot = �(U (o)xt +W (o)ht�1 + b(o))

ft = �(U (f)xt +W (f)ht�1 + b(f))

it = �(U (i)xt +W (i)ht�1 + b(i))

c̃t = tanh(U (c)xt +W (c)ht�1 + b(c))

ct = ft � ct�1 + it � c̃t
ht = ot � tanh(ct)

There are many
known variations
to this set of
equations!

ht = tanh(Uxt +Wht�1 + b)

'" '# '$ '% '(: cell state

ℎ(: hidden state

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

!"#$

ℎ"#$

!"

ℎ"

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

sigmoid:
[0,1]

ft = �(U (f)xt +W (f)ht�1 + b(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

sigmoid:
[0,1]

tanh:
[-1,1] it = �(U (i)xt +W (i)ht�1 + b(i))

c̃t = tanh(U (c)xt +W (c)ht�1 + b(c))

Input gate: use the input or not

New cell content (temp):

ft = �(U (f)xt +W (f)ht�1 + b(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

sigmoid:
[0,1]

tanh:
[-1,1]

ct = ft � ct�1 + it � c̃t

New cell content:
- mix old cell with the new temp cell

it = �(U (i)xt +W (i)ht�1 + b(i))

c̃t = tanh(U (c)xt +W (c)ht�1 + b(c))

Input gate: use the input or not

New cell content (temp):

ft = �(U (f)xt +W (f)ht�1 + b(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

ct = ft � ct�1 + it � c̃t

New cell content:
- mix old cell with the new temp cell

it = �(U (i)xt +W (i)ht�1 + b(i))

c̃t = tanh(U (c)xt +W (c)ht�1 + b(c))

Input gate: use the input or not

New cell content (temp):

ft = �(U (f)xt +W (f)ht�1 + b(f))

Forget gate: forget the past or notOutput gate: output from the
new cell or not

ot = �(U (o)xt +W (o)ht�1 + b(o))

ht = ot � tanh(ct)
Hidden state:

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

it = �(U (i)xt +W (i)ht�1 + b(i))Input gate: use the input or not
ft = �(U (f)xt +W (f)ht�1 + b(f))Forget gate: forget the past or not

Output gate: output from the new
cell or not

ot = �(U (o)xt +W (o)ht�1 + b(o))

ct = ft � ct�1 + it � c̃tNew cell content:
- mix old cell with the new temp cell

c̃t = tanh(U (c)xt +W (c)ht�1 + b(c))New cell content (temp):

ht = ot � tanh(ct)
Hidden state:

!"#$

ℎ"#$

!"

ℎ"

Preservation of gradient information by
LSTM

• For simplicity, all gates are either entirely open (‘O’) or closed (‘—’).
• The memory cell ‘remembers’ the first input as long as the forget gate is

open and the input gate is closed.
• The sensitivity of the output layer can be switched on and off by the output

gate without affecting the cell.

Forget gate

Input gate

Output
gate

Example from Graves 2012

Gates

• Gates contextually control information
flow

• Open/close with sigmoid
• In LSTMs, they are used to (contextually)

maintain longer term history

27

RNN Learning: Backprop Through Time
(BPTT)

• Similar to backprop with non-recurrent NNs
• But unlike feedforward (non-recurrent) NNs, each unit in

the computation graph repeats the exact same
parameters…

• Backprop gradients of the parameters of each unit as if
they are different parameters

• When updating the parameters using the gradients, use
the average gradients throughout the entire chain of
units.

!" !# !$!%

ℎ" ℎ# ℎ$ ℎ%

Vanishing / exploding Gradients

• Deep networks are hard to train
• Gradients go through multiple layers
• The multiplicative effect tends to lead to
exploding or vanishing gradients

• Practical solutions w.r.t.
– network architecture
– numerical operations

29

Vanishing / exploding Gradients

• Practical solutions w.r.t. numerical operations
– Gradient Clipping: bound gradients by a max

value
– Gradient Normalization: renormalize gradients

when they are above a fixed norm
– Careful initialization, smaller learning rates
– Avoid saturating nonlinearities (like tanh, sigmoid)

• ReLU or hard-tanh instead

– Batch Normalization: add intermediate input
normalization layers

30

Sneak peak: Bi-directional RNNs

31

• Can incorporate context from both directions
• Generally improves over uni-directional RNNs

RNNs make great LMs!

32

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

