CSEP 517: Natural Language

Processing
Recurrent Neural Networks

Autumn 2018

Luke Zettlemoyer
University of Washington

[most slides from Yejin Chol]



RECURRENT NEURAL
NETWORKS



Recurrent Neural Networks (RNNs)

. 1 "o ) N
Each input “word” is a vector #: € R’

Each RNN unit computes a new hidden state using the previous
state and a new input hy = f(x4, he1)

Each RNN unit (optionally) makes an output using the current
hidden state Y, = softmax(V hy)

Hidden states h; € RY  are continuous vectors
— Can represent very rich information, function of entire history

Parameters are shared (tied) across all RNN units (unlike
feedforward NNs)




Softmax

« Turn a vector of real numbers x into a probability
distribution

exp ( I ) exXp ( Ln )

Sooexp(x;) 7> exp(wi)

softmax(x) = [

« We have seen this trick before!
— log-linear models...



Recurrent Neural Networks (RNNs)

« Generic RNNs:  hy = f(xe, he—1)
y; = softmax(V h;)

« Vanilla RNN: hy = tanh(Uzy + Why_1 + b)
y; = softmax(V h;)



Sigmoid

Often used for gates 1
o(z) =

Pro: neuron-like,
differentiable

Con: gradients saturate to
zero almost everywhere
except X near zero =>
vanishing gradients

l+e 7

o'(x) = o(z)(1 - o(x))

Batch normalization helps



Tanh

tanh(r) = ———
« Often used for © e
hidden states & cells tanh’(x) = 1 — tanh?(z)

in RNNs, LSTMs

* Pro: differentiable, tanh(z) = 20(2z) — 1
often converges
faster than sigmoid

et —e %

« Con: gradients easily
saturate to zero =>
vanishing gradients



Many uses of RNNs

1. Classitication (seq to one)

* |nput: a sequence
« Qutput: one label (classification)

« Example: sentiment classification

he = f(zg, hi—1)
y = softmax(V h,,)



Many uses of RNNs
2. one to seq

* |nput: one item

 Qutput: a sequence
P . hy = f(xtv ht—l)

» Example: Image captioning y; = softmax(V h;)

Cat sitting on top of ....
h1 hz h3 h4~
f f | |




Many uses of RNNs
3. sequence tagging

Input: a sequence
Output: a sequence (of the same length)
Example: POS tagging, Named Entity Recognition

How about Language Models?
— Yes! RNNs can be used as LMs!
— RNNs make markov assumption: T/F? he = f(xr, hi—1)
y; = softmax(V h;)



Many uses of RNNs
4. Language models

Input: a sequence of words
hy = f(fL’u ht—l)

Output: next word
y; = softmax(V h;)

— (or sequence of next words, if repeated)
During training, x, and y, ; are the same word.
During testing, x; is sampled from softmax in y, ;.

Does RNN LMs make Markov assumption?
— i.e., the next word depends only on the previous N words




Many uses of RNNs
5. segZseq (aka “encoder-decoder”)

* Input: a sequence
« Qutput: a sequence (of different length)
« Examples?

he = f(xt, he—1)
y: = softmax(V hy)




Many uses of RNNs
4. segZseq (aka "encoder-decoder”)

Parsing!
- "Grammar as Foreign Language” (Vinyals et al., 2015)

S

|

| - ™~
NNP VBZ NP
PN
DT NN

(S (NP NNP )xp (VP VBZ (NP DT NN )xp )vp - )s

John has a dog



Recurrent Neural Networks (RNNs)

« Generic RNNs:  hy = f(xe, he—1)
y; = softmax(V h;)

« Vanilla RNN: hy = tanh(Uzy + Why_1 + b)
y; = softmax(V h;)



vanishing gradient problem for

RNNSs.
®@ O OO O

Hidden
Layer

puts O O O O O O
2 3 4 5 6 7

Time 1

« The shading of the nodes in the unfolded network indicates their
sensitivity to the inputs at time one (the darker the shade, the greater
the sensitivity).

« The sensitivity decays over time as new inputs overwrite the activations
of the hidden layer, and the network ‘forgets’ the first inputs.

Example from Graves 2012



Recurrent Neural Networks (RNNs)

e Generic RNNs:
* Vanilla RNNs:

« LSTMs (Long Short-term Memory Networks):

he = f(xe, he1)
ht = tanh(U:Ut + Wht_l + b)

it

fy = U(U(f)a:t +WHh, |+ b(f))

op = o(Uzy + W hy_y + b))

Cy tanh(U(c)a;t + W1 + b(c))

_ - ~ There are many
c=Jroc1Fiod \ known variations
ht = o o tanh(c¢;) to this set of

equations!
Cq Cy | C3 , Ca Ct : cell state
hq h, hs hy h;: hidden state
X2 X3 X4



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

5(391m01d3 Forget gate: forget the past or not
[0,1] fi = oUWz, + WOh, | + b))

fi

Tt

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

s(i)g1moid: Forget gate: forget the past or not
[0,1] fi = oUWz, + WOh, | + b))
tanh: . Input gate: use the input or not
[-1,1] ] LTI, e U(U(i)xt +WDh, |+ b(i))

New cell content (temp):
¢ = tanh(U @z, + WO hy_q + b))

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

sigmoid: Forget gate: forget the past or not
[0,1] fi = oUWz, + WOh, | + b))
tanh: k) Input gate: use the input or not
[‘1:1] — — it = O'(U(Z)Sljt + W(i)ht_l + b(z))
New cell content (temp):
Cp = tanh(U(C)ajt + Wh,_q + b(c))
C
CL@—@—‘ New cell content:

% - mix old cell with the new temp cell
t

ct = froci_1+1it0¢

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY

Output gate: output from the Forget gate: forget the past or not
new cell or not fr=c(UD gz + WOhy_y + )

Ot = O'(U(O).flft + W(O) ht_l + b(o))
|nput gate: use the input or not

Hidden state: i = o(UDz, + WOh, | 4 @)
ht = ot o tanh(cy)
New cell content (temp):
Cp = tanh(U(C)ajt + Wh,_q + b(c))

htT
New cell content:

- mix old cell with the new temp cell

ct = froci—1 +1i40¢

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY

Forget gate: forget the past or not fio=o(UWDz, + W hy_q + b))
Input gate: use the input or not ir = o(UDzy + WOhy_y + )
Output gate: output from the new oy = o(Uz, + WOh,_; + )
cell or not

New cell content (temp): ¢ = tanh(U(C)xt T WOR, |+ b(c))

New cell content:

. . ct = Jftoci1+1it0¢
- mix old cell with the new temp cell

D,

A
Hidden state:
hs = o o tanh(cy) ‘. 1_’fm R ) .
_ ® o ;
A Ganh>
X X
0]
he—q —PT - » h;

®_



Preservation of gradient information by
LSTM

e ZTTTOT 0T

Hidden
/y&&&&&@o
Forget gate

“Tebdbodid

Time

For simplicity, all gates are either entlrely open ('O’ ) or closed (— ).

The memory cell ‘remembers’ the first input as long as the forget gate is
open and the input gate is closed.

The sensitivity of the output layer can be switched on and off by the output
gate without affecting the cell.

Example from Graves 2012



Gates

» Gates contextually control information
flow

* Open/close with sigmoid

* In LSTMs, they are used to (contextually)
maintain longer term history



RNN Learning: Backprop Through Time
(BPTT)

Similar to backprop with non-recurrent NNs

But unlike feedforward (non-recurrent) NNs, each unit in
the computation graph repeats the exact same
parameters...

Backprop gradients of the parameters of each unit as if
they are different parameters

When updating the parameters using the gradients, use
the average gradients throughout the entire chain of
units. I 1



Vanishing / exploding Gradients

* Deep networks are hard to train
» Gradients go through multiple layers

* The multiplicative effect tends to lead to
exploding or vanishing gradients

e Practical solutions w.r.t.
— network architecture
— numerical operations



Vanishing / exploding Gradients

 Practical solutions w.r.t. numerical operations

— Gradient Clipping: bound gradients by a max
value

— Gradient Normalization: renormalize gradients
when they are above a fixed norm

— Careful initialization, smaller learning rates

— Avoid saturating nonlinearities (like tanh, sigmoid)
e RelLU or hard-tanh instead

— Batch Normalization: add intermediate input
normalization layers

30



Sneak peak: Bi-directional RNNs

Outputs e Yt—1 Yt+1

Yt
Backward Layer <«—— Tt:/} %t > (Et.—{-l

W 7 - — |57
Forward Layer h 1 \ h, Kh ¢l —>
[nputs e Tt—1 Xy Tt41 .

« Can incorporate context from both directions
* Generally improves over uni-directional RNNs

31



RNNs make great LMs!

Model Perplexity

Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxeEnt 9-gram (Chelba et al., 2013) 3
RNN-2048 + BlackOut sampling (J1 et al., 2015) 68.3
Sparse Non-negative Matrix factorization (Shazeer et 52 9
al., 2015)

LSTM-2048 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
Ours large (2-layer LSTM-2048) 39.8

Table 2. Comparison on 1B word in perplexity (lower the better). Note that Jozefowicz et al.,

uses 32 GPUs for training. We only use 1 GPU.

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

32



