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Topics

= Parse Trees
= (Probabilistic) Context Free Grammars

= Supervised learning

= Parsing: most likely tree, marginal
distributions

= Treebank Parsing (English, edited text)



Parse Trees

ROOT
I
S
NP VP
ﬂ
DT NN VED NP , S
I I I —_— T —_ | I
The move followed NP PP , VP
DT NN IN NP VEBG NP
I I I — T —_ I — T —
a round of NP PP reflecting NP PP
1) NNS IN NP DT VBG NN IN NP
I I I T I | |
similar increases by | NNS a continuing decline in DT NN
I I
other lenders that market

The move followed a round of similar increases
by other lenders, reflecting a continuing decline
In that market



Parts-of-Speech (English)

= One basic kind of linguistic structure: syntactic word classes

Open class (lexical) words

Nouns Verbs Adjectives  yellow
Proper Common Main Adverbs slowly
IBM cat / cats see
ltaly snow registered Numbers  more

122,312
. one
Closed class (functional
( ) Modals

Determiners the some can Prepositions to with

had

Conjunctions and or Particles off up

Pronouns

he its

... more




Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

ADIJP Adjective phrase

ADVP Adverb phrase

NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Subordinate clause

SBARQ Direct question introduced by wh-element
SINV Declarative sentence with subject-aux inversion
SQ Yes/no questions and subconstituent of SBARQ excluding wh-element
VP Verb phrase

WHADVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

* “Understood” subject of infinitive or imperative
0 Zero variant of that in subordinate clauses

T Trace of wh-Constituent




The Penn Treebank: Size

» Penn WSJ Treebank = 50,000 sentences with associated trees

» Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:
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Phrase Structure Parsing

Phrase structure
parsing organizes
syntax into
constituents or
brackets

In general, this
Involves nested trees

Linguists can, and do,
argue about details

Lots of ambiguity

Not the only kind of
syntax...

NPgg VP
——— T —
DT NN PP rises to ...
I | — T
The velocity IN NPy

I
of the seismic waves

new art critics write reviews with computers



Constituency Tests

= How do we know what nodes go in the tree?

= Classic constituency tests: |
= Substitution by proform _

NP VP
" he, she, it, they, ... m./\NNS \.P/\PP
= Question / answer T,‘,e Ch,-,L,en Vi Np ,N/\N,,
= Deletion a‘te D'I‘/\NN w,lm m-/\NN
» Movement / dislocation f'le Ca‘ke | P|

= Conjunction / coordination

= Cross-linguistic arguments, too



Conflicting Tests

= Constituency isn't always clear

= Units of transfer:
= think about ~ penser a
= talk about ~ hablar de

NPgg
. . DT NN PP
* Phonological reduction: | Jo
e ve oc:ty 1

= | will go — I'll go | —

of the seismic waves
= | wantto go — | wanna go \/
= ale centre — au centre

La vélocité des ondes sismiques

= Coordination
= He went to and came from the store.



Classical NLP: Parsing in 70s/80s

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT — S NP — NP PP NN — interest
S —> NP VP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ — raises

= Use deduction systems to prove parses from words
» Simple 10-rule grammar: 592 parses
» Real-size grammar: many millions of parses

= This scaled very badly, but was a popular approach in the 70’s and
80’s before corpora were available.

= Didn't yield broad-coverage tools.



| shot [an elephant] [in my pajamas]

S

| /\ NP VP

Pronoun Verb NP ‘ |
| | Pronoun
TN VP PP

I |

shot Det Nominal I P
| /\ Verb NP 1N My pajamas
A Nominal PP | s
| T~ shot Det Nominal
Nolllll 1N My pajamas a|11 Nolun
elephant |
elephant

Examples from J&M




Attachment Ambiguity

eaned the dishes from dinner
eaned the dishes with detergent
eaned the dishes in my pajamas
eaned the dishes in the sink

N

The board approved [its acquisition] [by Royal Trustco Ltd.
\, [of Toronto]

[for $27 a share]
[at its monthly meeting].

N
O O O O




Syntactic Ambiguities |

= Prepositional phrases:
They cooked the beans in the pot on the stove with

handles.

= Particle vs. preposition:
The puppy tore up the staircase.

= Complement structures
The tourists objected to the guide that they couldn'’t hear.
She knows you like the back of her hand.

= Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.



Syntactic Ambiguities ||

= Modifier scope within NPs
impractical design requirements
plastic cup holder

= Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

= Coordination scope:
Small rats and mice can squeeze into holes or cracks in

the wall.



Dark Ambiguities

» Dark ambiguities: most analyses are shockingly bad
(meaning, they don't have an interpretation you can

get your mind around) ROOT
|
S
/7\
“ NP VP L
This analysis corresponds T ||
“ DT VBZ VP I
to the correct parse of L PN

‘“ . . . ’y This s VB NP
This will panic buyers ! | |

panic ~ NN
|
= Unknown words and new usages buying

= Solution: We need mechanisms to focus attention on
the best ones, probabilistic techniques do this




Context-Free Grammars

= A context-free grammar is a tuple <N, 2 , S, R>

N : the set of non-terminals
* Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
2 : the set of terminals (the words)
S : the start symbol
= Often written as ROOT or TOP
= Not usually the sentence non-terminal S
R : the set of rules
= Oftheform X —> Y, Y, ... Y, with X €N, n20, Y, e (NU %)
= Examples: S — NP VP, VP — VP CC VP
= Also called rewrites, productions, or local trees



Example Grammar

N ={S,NP, VP, PP, DT, Vi, Vt, NN, IN}

S =S
>, = {sleeps, saw, man, woman, telescope, the, with, in}
RS = NP VP Vi = sleeps
: Vt = saw
Vb= Vi NN = man
vb = Vit NP NN = woman
Vb = VP PP NN = telescope
NP = DT NN S—— P
NP = NP PP ~— ih
PP — IN NP W
IN = 1

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition



R=S = NP VP
VP = Vi
VP = Vt NP
VP = VP PP
NP = DT NN
NP = NP PP
PP = 1IN NP
Vi = sleeps
Vt = saw
NN = man
NN = woman
NN = telescope
DT = the
IN = with
IN = 1in

Example Parses

S
/\

NP VP
PN I

DIT I\{N \I/i
The man sleeps

S
VP
/\
VP PP
-\ PN
NP Vi NP IN NP
PN PN PN
DIT l\{N DIT l\{N DIT l\{N

The man saw the woman with the telescope

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,
DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition



Probabilistic Context-Free Grammars

= A context-free grammar is a tuple <N, 2 ,S, R>

= N :the set of non-terminals

* Phrasal categories: S, NP, VP, ADJP, etc.

= Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
= 2 :the set of terminals (the words)
» S :the start symbol

= Often written as ROOT or TOP

= Not usually the sentence non-terminal S

= R :the set of rules
= Of the form X — Y; Y, ... Y, with X € N, n20, Y; € (N U )

= Examples: S —- NP VP, VP — VP CC VP

= APCFG adds a distribution q:
» Probability q(r) for each r € R, such that for all X € N:

Y qla—=p)=1

a—PBeR:a=X



PCFG Example

S —~ NP VP 0 Vi = sleeps 1.0
. Vt = saw 1.0
VP = Vi 04 NN = man 07
VP = Vt NP 04 '
NN = woman 0.2
ve = V¥ PP 0.2 NN = telescope | 0.1
NP = DI NN |03 pe | -
DT = the 1.0

NP = NP PP 0.7 :
PP = P NP 0 IN = with 0.5
: IN = 1n 0.5

e Probability of a tree ¢ with rules
7 —>617062 %62,...70471 —>6n
1S
H q\&; — 6@

where q(a — () is the probablhty for rule o — [3.




PCFG Example

S = NP VP 1.0 S, 4
VP = Vi 0.4 NP/\
— VP
VP = Vt NP |04 b= _~gs o4
VP = VP PP 0.2 Dﬂ-.o l\{(g\_g \I/i1_0
NP = DT NN 0.3 The man sleeps
NP = NP PP 0.7 p(t;)=1.0%0.3*1.0*0.7*0.4*1.0
PP = P NP 1.0 S, 4
Vi = sleeps 1.0 VP
0.2
Vt = saw 1.0 { = — T~
NN = man 0.7 ? ALY PPus
NN = woman 0.2 NP Vi NP IN
0.3 0.3
NN = telescope | 0.1 AN 1o AN \0.5
DT = the 1.0 I:)I-1r.o I\{I(;IJ Dh-l.-o [\{[81.2 DhTo [\{y1
IN —  with 05 The man saw the woman with the telescope
IN — 1n 0.5 p(ts)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1




PCFGs: Learning and Inference

= Model
= The probability of a tree t with n rules a; 2 B, i = 1..n

p(t) = HQ(%‘ — B4)

= | earning
= Read the rules off of labeled sentences, use ML estimates for
probabilities

Count(a — )
Count(a)

= and use all of our standard smoothing tricks!

qur(a — B) =

= |nference

= Forinput sentence s, define T(s) to be the set of trees whole yield is s
(whole leaves, read left to right, match the words in s)

t* = arg max p(t
(5) = arg max p()



Chomsky Normal Form

= Chomsky normal form:
= Allrules ofthe form X - Y Zor X - w

= |n principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP

///;ii\\\ [VP — VBD NP PP ¢|
j‘> [VP — VBD NP ¢] \

VBD NP PP PP iy
VBD NP PP PP

= Unaries / empties are “promoted”
= |n practice it's kind of a pain:

= Reconstructing n-aries is easy

= Reconstructing unaries is trickier

= The straightforward transformations don’t preserve tree scores
= Makes parsing algorithms simpler!



Original Grammar

S > NPVP 0.8
S — Aux NP VP 0.1
S > VP 0.1
NP — Pronoun 0.2
NP — Proper-Noun 0.2
NP — Det Nominal 0.6
Nominal — Noun 0.3

Nominal — Nominal Noun 0.2
Nominal — Nominal PP 0.5
VP — Verb 0.2

VP — Verb NP 0.5
VP — VP PP 0.3
PP — Prep NP 1.0

CNF Conversion
Example

Lexicon:

Noun — book | flight | meal | money
01 05 02 0.2

Verb — book | include | prefer
0.5 0.2 0.3

Det — the | a | that | this
0.6 0.2 0.1 0.1
Pronoun — | | he | she | me
050101 0.3
Proper-Noun — Houston | NWA
0.8 0.2
Aux — does
1.0
Prep — from [ to | on | near | through
0.25 0.25 0.1 0.2 0.2




Original Grammar Chomsky Normal Form

S —-NPVP 0.8 S - NP VP 0.8

S — Aux NP VP 0.1 S - X1VP 0.1
X1 — Aux NP 1.0

S > VP 0.1

NP — Pronoun 0.2

NP — Proper-Noun 0.2

NP — Det Nominal 0.6

Nominal — Noun 0.3

Nominal — Nominal Noun 0.2

Nominal — Nominal PP 0.5
VP — Verb 0.2
VP — Verb NP 0.5
VP — VP PP 0.3
PP — Prep NP 1.0

Lexicon (See previous slide for full list) :
Noun — book | flight | meal | money

04 05 02 0.2
Verb — book | include | prefer

0.5 0.2 0.3




Original Grammar Chomsky Normal Form
S —- NP VP 0.8 S - NP VP 0.8
S — Aux NP VP 0.1 S - X1VP 0.1
X1 — Aux NP 1.0
S > VP 0.1 S — book | include | prefer
S — Verb NP
S—>VPPP
NP — Pronoun 0.2
NP — Proper-Noun 0.2
NP — Det Nominal 0.6
Nominal — Noun 0.3

Nominal — Nominal Noun 0.2

Nominal — Nominal PP 0.5
VP — Verb 0.2
VP — Verb NP 0.5
VP — VP PP 0.3
PP — Prep NP 1.0

Lexicon (See previous slide for full list) :

Noun — book | flight | meal | money
01 05 02 0.2

Verb — book | include | prefer
0.5 0.2 0.3




Original Grammar Chomsky Normal Form
S —->NPVP 0.8 S —- NP VP 0.8
S — Aux NP VP 0.1 S—>X1VP 0.1
X1 — Aux NP 1.0
S —->VP 0.1 S — book | include | prefer
0.01 0.004 0.006
S — Verb NP 0.05
S - VP PP 0.03
NP — Pronoun 0.2 NP — | | he | she| me
0.1 0.02 0.02 0.06
NP — Proper-Noun 0.2 NP — Houston | NWA
0.16 .04
NP — Det Nominal 0.6 NP — Det Nominal 0.6
Nominal — Noun 0.3 Nominal — book | flight | meal | money
0.03 0.15 0.06 0.06
Nominal — Nominal Noun 0.2 Nominal — Nominal Noun 0.2
Nominal — Nominal PP 0.5 Nominal — Nominal PP 0.5
VP — Verb 0.2 VP — book | include | prefer
0.1 0.04 0.06
VP — Verb NP 0.5 VP — Verb NP 0.5
VP — VP PP 0.3 VP — VP PP 0.3
PP — Prep NP 1.0 PP — Prep NP 1.0

Lexicon (See previous slide for full list) :

Noun — book | flight | meal | money
04 05 02 0.2

Verb — book | include | prefer
0.5 0.2 0.3




The Parsing Problem

S
/,,ﬁ ~~~~~~~
.- ~» VP
- PV -~
- - -
,/ ”/// \\ ?\IP
NP+ R N
-~ VP /// ’v:\
-,
NP 427 <> NP ~ SRR
r>7 RPN N s
;/ \\ />\ \ /// \\ // P/P\
X Sax” A » NV - S o

new ® art ® critics ® write ‘reviews ® with ® computers ®
1 2 3 4 ) 6 !



A Recursive Parser

bestScore (1, j,X)
if (jJ == 1)
return g(X->s[1i])
else
return max q(X->YZ) *
k,X->YZ :
bestScore(i,k,Y) *
bestScore (k+1,3,2)

= Will this parser work?
= Why or why not?
= Memory/time requirements?

* Q: Remind you of anything”? Can we adapt this to other
models / inference tasks?



Dynamic Programming

= We will store: score of the max parse of x; to x; with root
non-terminal X o
(i, 5, X)

= S0 we can compute the most likely parse:
w(1,n,S5) = max p(t)

tETg(S)
= Via the recursion:
(i,5,X) = max (q(X - YZ)x7(i,5,Y) x (s +1,5,2))
X—=YZeR,

sefi...(j—1)}
= With base case: |

r(iyi,X) = | dX—@) IX=aieR

0 otherwise



The CKY Algorithm

= |nput: asentences=x;..x,andaPCFG=<N, 2,5, R, g>
= |nitialization: Fori=1...nand all Xin N

. B g X —-x;) ifX -z, €R
m(i i, X) = { 0 otherwise
= Forl=1...(n-1) iterate all phrase lengths]
» Fori=1...(nl)and =i+l iterate all phrases of length ]
= Forall Xin N iterate all non-terminals]
m(i,5,X) = max  (¢(X = YZ)x7(i,sY)x7(s+1,j,7))
s€{i...(j—1)}

= also, store back pointers
bpli,j, X) =arg _max  (q(X —YZ) xw(i,s,Y) x7(s+1,j,2))

XY ZER,

se{i...(j—1)}



Probabilistic CKY Parser

S — NPVP 0.8
S—X1VP 0.1
X1 — Aux NP 1.0
S — book | include | prefer
0.01 0.004 0.006
S — Verb NP
S — VPPP
NP — I | he | she| me
0.1 0.02 0.02 0.06
NP — Houston | NWA
0.16 .04
Det— the| a | an
0.6 0.1 0.05
NP — Det Nominal 0.6
Nominal — book | flight | meal | money
0.03 0.15 0.06 0.06
Nominal — Nominal Nominal 0.2
Nominal — Nominal PP 0.5
Verb— book | include | prefer
0.5 0.04 0.06
VP — Verb NP
VP — VP PP
Prep — through | to | from
0.2 0.3 0.3
PP — Prep NP

oo
w O

1.0

Book  the flight through Houston
S :.01, /-S:.OS*.S*.054 / +.03*%.0135*.032
Verb:.5 q==—] =.0013 00001296
. ﬁr +.05*.5*
Nominal:: mvﬁ.s*.s*.om None 000864
=.0135 0000216
1.6%.6%
Rﬁ'ﬂﬂs— _— ||| .0024
Det:.6 . €—T=054 None =.000864
\i, Nominal:
L— |[l5+.15%.032
Nominal:.15 | None =.0024
PP:1.0%.2*.16
Prep:.2
P € ’I =.032
INP:.16




Probabilistic CKY Parser

Book the flicht through Houston
Parse
S :.01, S:.05%.5%.054 / Tree
;erb.:.s ﬁ);; HH3= S:.0000216 #1
ominail..
None VP:.SO*I.35;‘.054 None l
' Pick most
P:.6%.6*
=.054 None =.000864 :
pet:§ | parse, i.e. take
Voo max to
4— Nominal: )
Nominal:.15 None '_5;-;3;-032 Comblne
' probabilities
é/Igpn.o*.z*.m of rpult.lple
Prep:. \ =.032 derivations
U of each
constituent in
NP:.16 each cell.




Probabilistic CKY Parser

Book  the flight through Houston Parse
o Tree
.01, S:.05%.5%.054 . €000T79%
Verb:.5 < =.00135 | |3 H#2
Nominal:.03 1 </ rs°'0000216
None VP:L.S*.S*.054 None
= 0135 ]
Pick most
£.6%.6%
ﬁ:.6*.6*.15 .0024 prObabIe
pes— | 054 | Nore =000864 parse, i.e. take
ominal: max tO
Nominal:.15 None . 3332-032 Combln.e. .
probabilities

Prep: &—1—V = 032 derivations
of each
constituent in
NP:.16 each cell.

IP%:/1.0*.2*.16 of mUItlple
I




Memory

= How much memory does this require?
= Have to store the score cache

= Cache size: [symbols|*n? doubles

= Pruning: Beam Search
= score[X][i][j] can get too large (when?)

» Can keep beams (truncated maps scorefi][j]) which only
store the best K scores for the span [i,j]

* Pruning: Coarse-to-Fine
» Use a smaller grammar to rule out most X{[i,j]
* Much more on this later...



Time: Theory

= How much time will it take to parse?

» Foreach diff (=] —1) (<=n)
* Foreachi (<=n)
» Foreachrule X -YZ

= For each split point k
Do constant work

= Total time: |rules|*n?®

» Something like 5 sec for an unoptimized parse
of a 20-word sentences



Time: Practice

= Parsing with the vanilla treebank grammar:

360

300

N
S
o

180

120

Avg. Time (seconds)

(=]
(]

0

0 10 20 30 40 50

Sentence Length

= \WWhy' s it worse in practice?
= Longer sentences “unlock”™ more of the grammar
= All kinds of systems issues don’ t scale

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6



Other Dynamic Programs

Can also compute other quantities:

» Best Inside: score of the max parse X
of w; to w; with root non-terminal X i

= Best QOutside: score of the max
parse of wy to w, with a gap from w;,
to w; rooted with non-terminal X

= see notes for derivation, it is a bit more
complicated

= Sum Inside/Outside: Do sums
instead of maxes



Why Chomsky Normal Form?

Book  the flight through Houston
e T B | PRI
N"mi“al:ﬁrmv 5+.5%.054| None oo
=.0135 0000216
N&. — :1.6%.6%
. 6% 6% 0024
Inference: Det:.6k44%’l§— None =.000864
*Can we keep N-ary (N > 2) rules v | ——peminar
and still do dynamic programming? Nominal:.15 | None —fli=.0024
=Can we keep unary rules and still do | PP:1.0*.2 16
_ : Prep:.2 - 032
dynamic programming? —| |
Learning: V
[NP:.16

=Can we reconstruct the original
trees?




CNF + Unary Closure

We need unaries to be non-cyclic

= Calculate closure Close(R) for unary rules in R
= Add XY if there exists a rule chain X—Z2,, Z,—2,,..., Z, —Y with
qQ(X—Y) = q(X—=2Z4)*q(£1—2Z,)"...7a(Z —Y)
= If no unary rule exist for X, add X—X with g(X—X)=1 for all X in N

WARNING: Watch out
for unary cycles!

VP

VP — SBAR
— VBD NP
|
VBD NP | o SBAR
o~ NP I:> VFl’
DT NN ~ VF')
DT NN

» Rather than zero or more unaries, always exactly one
» Alternate unary and binary layers
» What about X—Y with different unary paths (and scores)?



The CKY Algorithm

= |nput: asentences=x;..x,andaPCFG=<N, 2,5, R, g>
= |nitialization: Fori=1...nand all Xin N

. B g X —-x;) ifX -z, €R
m(i i, X) = { 0 otherwise
= Forl=1...(n-1) iterate all phrase lengths]
» Fori=1...(nl)and =i+l iterate all phrases of length ]
= Forall Xin N iterate all non-terminals]
m(i,5,X) = max  (¢(X = YZ)x7(i,sY)x7(s+1,j,7))
s€{i...(j—1)}

= also, store back pointers
bpli,j, X) =arg _max  (q(X —YZ) xw(i,s,Y) x7(s+1,j,2))

XY ZER,

se{i...(j—1)}



CKY with Unary Closure

= |nput: asentences=x,..x,andaPCFG=<N, 2,5, R, g>
= |nitialization: Fori=1 ... n:

Step 1: fo;(a;!;f;?)N.: { g<X ) gté;r\;s? c R

= Step 2: for all X in N:

(i, i, X) = X_}yrgglﬁse(R)(q(X —Y) xn(i,i,Y))
= Forl=1...(n-1) [iterate all phrase lengths]
* Fori=1...(n-l)andj =i+l [iterate all phrases of length |]
= Step 1: (Binary)
» Forall Xin N [iterate all non-terminals]

w5(1,7,X) = max (¢(X = YZ) xny(i,8,Y) xmy(s+ 1,5, 2)

X—YZER,se{i...(j—1)}

= Step 2: (Unary)
» Forall Xin N [iterate all non-terminals]

), 7, X ) = X =Y .7, Y
7TU(7’7.]7 ) X—)Y@C’alése(R)(Q( ) X 7TB(7’7.77 ))



Treebank Sentences

( (S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other lenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC 1n

(NP that market))))))
)



Treebank Grammars

= Need a PCFG for broad coverage parsing.
= Can take a grammar right off the trees (doesn’t work well):

ROOT
| ROOT — S
S
NP VP .
FOR ‘ NP > PRP
PRP VBD ADJP .
| | | VP — VBD ADJP
He was J]
ri;lht

= Better results by enriching the grammar (e.g., lexicalization).
= Can also get reasonable parsers without lexicalization.



NN

DT . NNS
1 . NN
NP . CC . NP
@

PP

PRP SBAR

QP NNS

TRIE

NNS

Min FSA

Grammar encodings: Non-black states are active, non-white states are
accepting, and bold transitions are phrasal. FSAs for a subset of the

rules for the category NP.



Treebank Grammar Scale

= Treebank grammars can be enormous

= As FSAs, the raw grammar has ~10K states, excluding the
lexicon

= Better parsers usually make the grammars larger, not smaller

NP: \m

1]
NNP

)U

T

VBN e

g{ P

NNS
JJ )

ﬁ\




Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections 02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.
» Here: also size — number of symbols in grammar.

= Passive / complete symbols: NP, NPAS
= Active / incomplete symbols: NP — NP CC -



How to Evaluate?

Correct Tree T Computed Tree P
Py VP
Verb B

book )Det WI VT{LP\}IK\PP
the Nominal P i
e Ng /P\ book }Det l\}omlnal/\

NPU” P|rep '|\“3 the NT)un Prep NP
flight through Houston flight through Prolper-Noun
Houston



PARSEVAL Example

Correct Tree T Computed Tree P
7 /
V/LR%]P\ v
’
onk )Det/ ominal V?{L/P\
the N})min /d book }D}e% minal

Nf)ur/ Prepy/ NF\/ e NPUI/ Prép\/\NP/
flight through Houston flight through Prolper Noun
Houston
# Constituents: 11 # Constituents: 12

# Correct Constituents: 10

Recall = 10/11=90.9% Precision = 10/12=83.3% F,=87.4%



Evaluation Metric

PARSEVAL metrics measure the fraction of the
constituents that match between the computed and
human parse trees. If P is the system’s parse tree and
T is the human parse tree (the “gold standard”):

» Recall = (# correct constituents in P) / (# constituents in T)

» Precision = (# correct constituents in P) / (# constituents in P)
Labeled Precision and labeled recall require getting the
non-terminal label on the constituent node correct to
count as correct.

F1 is the harmonic mean of precision and recall.
= F1=(2 * Precision * Recall) / (Precision + Recall)



Performance with Vanilla PCFGs

- Use PCFGs for broad coverage parsing @ik 6]
= Take the grammar right off the trees
ROOT
| ROOT — S 1
T~ S—NPVP. 1
NP VP .
e ‘ NP —» PRP 1
PRP VBD ADJP .
Lo VP — VBD ADJP 1
He  was ]]
riglht
Model F1

Baseline 72.0




Conditional Independence?

S
-
NP VP
| ——
PRP VBD NP
| /\

|
She heard DT NN
| |
the noise

= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won't be context-free
= Statistically, conditional independence too strong



Non-Independence

* |Independence assumptions are often too strong.

All NPs NPs under S NPs under VP
23%
1% I I
NP PP DT NN NP PP DTNN NP PP DTNN

= Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).

» Also: the subject and object expansions are correlated!



Grammar Refinement

S
NP-dhe VP
| —
PRP VBD NP-Adkse
| | —

She heard DT NN
| |
the noise

= Structure Annotation [Johnson 98, Klein&Manning 03]
= | exicalization [Collins '99, Charniak '00]
= |atent Variables [Matsuzaki et al. 05, Petrov et al. '06]



The Game of Designing a Grammar

NP”S VP
| —
PRP VBD NP"VP
| | B

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation



Vertical Markovization

. Order 2
= Vertical Markov Order 1
order: rewrites SROOT
depend on past &k /N /I\
. NP'S
n r nodes.
ancesto | /\ | | /\ |
(cf. parent PTP Vl|3D ADJP . PRP VBD ADVP'VP .
' AN | /\
annOtat|On) He was right He  was right
79% 25000

78%
7%
76%
75%

18750
: 12500
' 6250 -
73% -
2% 0 - . . v '
1 2v 2 3v 3

74%
1 2v 2 3v 3
Vertical Markov Order Vertical Markov Order

Symbols




Horizontal Markovization

Order 1 Order
- NP NP
/\
/I\ NNP/NP\—> NNP e NNP NP—NNPe
NNP NNP NNP /\ o~
NNP NP-—... NNPe NNP NP—>N1\|IPNNP.
Nll\IP NNP
74% 12000
3% w 9000
O
3% £ 6000
- N
"M% - 0 | . . _ i
0 1 2v 2 inf 0 1 o 92 inf

Horizontal Markov Orde

Horizontal Markov Order



Vertical and Horizontal

—

80% | ’ 25000

78%
76% 20000
74%

®
S 15000
72% 3 E. 10000 |
5000
0

70%
68% 2 Vertical
66% 4 Order

4 Vertical
Order

RNV

Horizontal Order Horizontal Order

= Raw treebank: v=1, h=e
= Johnson 98: v=2, h=w

= Collins 99: v=2, h=2 Model F1 Size
= BestF1: v=3, h=2v v=h=2v /7.8 |7.5K




Unlexicalized PCFG Grammar Size

Horizontal Markov Order

Vertical Order h=0 h=1 h<2 h=2 h=o

v =1 No annotation | 71.27 72.5 7346 7296 72.62
(854)  (3119)  (3863)  (6207)  (9657)

v <2 Sel. Parents 7475 7742  77.77  77.50 7691
(2285)  (6564)  (7619) (11398)  (14247)

v =2 All Parents 74.68 7742 7781  77.50 76.81
(2984)  (7312)  (8367) (12132)  (14666)

v <3 Sel. GParents | 76.50 78.59 79.07 78.97 78.54
(4943)  (12374) (13627) (19545)  (20123)

v =3 All GParents 76.74  79.18  79.74  79.07 78.72
(7797)  (15740)  (16994) (22886)  (22002)

Figure 2: Markovizations: F; and grammar sizgcg.




Tag Splits

[ . VP
![Droblem.tTreebank TO/\W
ags are too coarse.
to VB SBAR
E le: Sentential | INSNT/\S
" EXample: sententia
p ’ .| N
PP, and other if Nlp le
prepositions are all NN VBZ
marked IN ] ﬂdverltising wolrks
= Partial Solution: Annotation | F1 Size
» Subdivide the IN tag. v=h=2v 78.3 |8.0K
SPLIT-IN 80.3 |8.1K




Other Tag Splits

F1 Size
UNARY-DT: mark demonstratives as DT*U
(“the X" vs. “those") 80.4 |8.1K

UNARY-RB: mark phrasal adverbs as RB*AU 305 181K
(“quickly” vs. “very”) . _

TAG-PA: mark tags with non-canonical 12
parents ("not” is an RBAVP) 81.2 |8.5K

SPLIT-AUX: mark auxiliary verbs with —-AUX 816 |9 0K
[cf. Charniak 97]

SPLIT-CC: separate “but” and “&” from other [81.7 |9.1K
conjunctions

SPLIT-%: "% gets its own tag. 81.8 |9.3K




A Fully Annotated (Unlex) Tree

ROOT
|
S"ROOT-v
_— \ T
“S  NP°S-B VP"S-VBE-v S 7S
“  DT-U'NP VBZBEVP NP*VP-B ! "
| | N
This IS NN'NP NN'NP

panic ~ buying



Some Test Set Results

Parser LP LR F1

Magerman 95 |[84.9 [84.6 |84.7
Collins 96 86.3 [85.8 |86.0
Unlexicalized |86.9 |[85.7 [86.3
Charniak 97 |87.4 |87.5 |87.4
Collins 99 88.7 |88.6 |88.6

= Beats “first generation” lexicalized parsers.
» Lots of room to improve — more complex models next.




The Game of Designing a Grammar

S

NP-she VP
| —
PRP VBD NP-noise
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation [Johnson ’ 98, Klein and Manning
03]

= Head lexicalization [Collins " 99, Charniak " 00]



Problems with PCFGs

5 S
/\ f///’\
NP VP NP VP
/\ /\ 1)1'/}.\1,\' \ ufyrﬂ, \—‘-\r\\r
DT NNS VP PP | | | o~
TLe chHLren \lﬁg//\\\7GP lﬁ///A\\7GP The children ate hi; i“’
Y NN % N W e
ate DT NN with DT NN /\
| | | | the cake with DT NN
the cake a spoon

a spoon

= |f we do no annotation, these trees differ only in one rule:
= VP - VP PP
= NP > NP PP

= Parse will go one way or the other, regardless of words
= We addressed this in one way with unlexicalized grammars (how?)

= Lexicalization allows us to be sensitive to specific words



Problems with PCFGs

NP P
/\
NP CC NP NIl\IS
NP/\PP a1|1d NIl\IS dolgs Hl\T /NIP\
K K Xp cz!ts ™ % cc Ne
dolgs ill NIl\IS NlI\TS a1|1d NIl\IS
hollses hOlllSGS cz!ts

» \What's different between basic PCFG scores here?
= What (lexical) correlations need to be scored?



Add “headwords” to

each phrasal node /\
» Headship not in (most) N W
treebanks DIT/\L;N N
= Usually use R s oF W
(handwritten) head rules, de wides
e.g.: Y
= NP: S(questioned)
= Take leftmost NP
» Take rightmost N*
: 12&2 :g:’;rgﬁl?; JJ NP(lawyer) VP(questioned)
= VP: DT(the) NN(lawyer) /\
= Take leftmost VB* | | Vt(questioned) NP(witness)
= Take leftmost VP the lawyer questlioned

« Take left child DT(Ithe) NN(Wllrness)

the witness



Lexicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

VP (gaw) VP (saw) VP (saw) VP (saw)

— — el T

VBD (saw) VBD (saw) {wp-cC ( )} VBD (saw) NP-C( ) NP ( ) VBD (saw) NP-C(her) NP (today)



[Collins 99]

Lexical Derivation Steps

= Main idea: define a linguistically-motivated Markov
process for generating children given the parent

VP (saw)

/

VBD (saw)
VP (saw)

/

VED (saw) {NP-C( )}

VP (saw)

v

VBD (saw) NP-C( ) NP ( )

VP (saw)

v

VBD (saw) NP-C(her) NP (today)

Step 1: Choose a head tag
and word

Step 2: Choose a complement bag

Step 3: Generate children
(incl. adjuncts)

Step 4: Recursively derive children



Lexicalized CKY

(VP->VBD...NP *)[saw]

/\
(VP->VBD °)[saw] NP[her]

bestScore(i,j,X, h)

if (j = i+1) ;
return tagScore (X,s[1i]) ,/

else }/// H
return

- ’ *

L LS D (il cubio tme?
x->¥z bestScore(k+1,j,Z, h’) -
max score(X[h]->Y[h'] Z[h]) *

k,n", bestScore(i,k,Y, h’) *

X->Yz bestScore(k+1,j,Z, h)




Pruning with Beams

= The Collins parser prunes with
per-cell beams [Collins 99]
= Essentially, run the O(n°) CKY

* |f we keep K hypotheses at each
span, then we do at most O(nK?)
work per span (why?)

= Keeps things more or less cubic

= Also: certain spans are
forbidden entirely on the basis
of punctuation (crucial for
speed)

Model F1
Naive Treebank | 72.6
Grammar

Klein & 86.3
Manning '03

Collins 99 88.6




The Game of Designing a Grammar

NP-1 VP
| ——
PRP VBD NP-2
| | — T

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Parent annotation [Johnson * 98]

= Head lexicalization [Collins " 99, Charniak " 00]
= Automatic Grammar Refinement?



Manual Annotation

S
. . — N —
= Manually split categories NP VP
» NP: subject vs object PRP VBD ADIP |
= DT: determiners vs demonstratives | =
_ . He was right
* [N: sentential vs prepositional
= Advantages: l
= Fairly compact grammar S*ROOT
= Linguistic motivations NPS_PRP VPS.BE P
. . | — |
* Disadvantages: PRP-Z VBD-BE ADJP'VP .
= Performance leveled out | | _
He was right

= Manually annotated



Learning Latent Annotations

Latent Annotations: Forward/Outside
= Brackets are known / \
= Base categories are known

* Hidden variables for
subcategories

S[X]
-~
NP[X5] VP[X4] [X7]

| _ |
PRP[X3] VBD[X5] ADJP[X¢s] . -
| | —
He was right

Can learn with EM: like Forward-
Backward for HMMs.

Backward/Inside



Automatic Annotation Induction

S
= Advantages: NP vp
u l . | T~ |
Automatically learned: PRP VBD ADIP
Label all nodes with latent variables. | |~

i H ght
Same number k of subcategories € was ns

for all categories.

» Disadvantages:
» Grammar gets too large

» Most categories are Model F1

oversplit while others Klein & Manning '03 |86.3

are undersplit. Matsuzaki et al. '05 |86.7




Adaptive Splitting Results

91.0000

Parsing accuracy (F1)

74.0000

86.7500 -

82.5000 -

78.2500

<+ 50% Merging
4 Hierarchical Training
<4 Flat Training

100

Model

F1

500 900 .
Previous

38.4

Total Number of gran

With 50% Merging

89.5




Final Results

F1 F1
Parser <40 words | all words
Klein & Manning '03 86.3 85.7
Matsuzaki et al. '05 86.7 86.1
Collins '99 88.6 88.2
Charniak & Johnson 05 90.1 89.6
Petrov et. al. 06 90.2 89.7




“Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

John has a dog = ?
NP //VP\\ .
|

NNP VBZ NP
~ N
DT NN

John has a dog =
(S (NP NNP )xp (VP VBZ (NP DT NN )xp )vp - )s

= Linearize a tree into a sequence

= Then parsing problem becomes similar to machine translation
* Input: sequence
= Qutput: sequence (of different length)

= Encoder-decoder LSTMs (Long short-term memory networks)



“Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

John has a dog = ?
NP //VP\\ .
|

NNP VBZ NP
~ N
DT NN

John has a dog =
(S (NP NNP )xp (VP VBZ (NP DT NN )xp )vp - )s

= Penn treebank (~40K sentences) is too small to train LSTMs

= Create a larger training set with 11M sentences automatically parsed
by two state-of-the-art parsers (and keep only those sentences for
which two parsers agreed)



“Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

Parser Training Set WSJ 22 | WSJ 23
baseline LSTM+D WSJ only <70 <70
LSTM+A+D WSJ only 88.7 88.3
LSTM+A+D ensemble WSJ only 90.7 90.5
baseline LSTM BerkeleyParser corpus 91.0 90.5
LSTM+A high-confidence corpus 93.3 92.5
LSTM+A ensemble high-confidence corpus 93.5 92.8
Petrov et al. (2006) [12] WSJ only 91.1 90.4
Zhu et al. (2013) [13] WSJ only N/A 90.4
Petrov et al. (2010) ensemble [14] WSIJ only 92.5 91.8
Zhu et al. (2013) [13] semi-supervised N/A 91.3
Huang & Harper (2009) [15] semi-supervised N/A 91.3
McClosky et al. (2006) [16] semi-supervised 92.4 92.1
Huang & Harper (2010) ensemble [17] semi-supervised 92.8 92.4




