CSEP 517
Natural Language Processing
Autumn 2018

Linear Sequence Models

Luke Zettlemoyer - University of Washington

[Many slides from Yejin Choi, Dan Klein]

Overview

= Linear Language Model

= Linear Tagging Techniques
» MEMMSs, Structured Perceptron, CRFs
= Running Example: POS Tagging

= Linear Parsing Model

Internals of probabilistic models:
nothing but adding log-prob

= L M: .. +logp(w7 | w5, w6) + log p(w8 | w6, w7) + ...
= PCFGQG: 1og p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
= HMM tagging: ... +log p(t7 | t5, t6) + log p(w7 | t7) + ...

- NOiSY channel: [Iog p(source)] + [Iog p(data | source)]
= Naive Bayes:

log p(Class) + log p(featurel | Class) + log p(feature2 | Class) ...

arbitrary scores instead of log probs?

Change log p(this | that) to ®(this ; that)

s [M: .+ ow7;ws we)+ (W8 w6, W) + ...
= PCFG: o(NPVP:S)+ ®(Papa:NP)+ © (VPPP:VP) ..
= HMM tagging: ... + o @7;t5,t6) + © (W7;t7) + ..

= Noisy channel: [o (ource)] +[@ (data ; source)]

= Naive Bayes:
® (Class) + @ (featurel ; Class) + @ (feature2 ; Class) ...

arbitrary scores instead of log probs?

Change log p(this | that) to ®(this ; that)

s [M: .+ ow7;ws we)+ (W8 w6, W) + ...
= PCFG: o(NPVP:S)+ ®(Papa:NP)+ © (VPPP:VP) ..

= HMM tagging: ... + o @7;t5,t6) + © (W7 ; t7) + ..
MEMM or CRF

= Noisy channel: [o (ource)] +[@ (data ; source)]

= Naive bayes:

® (Class) + @ (featurel ; Class) + @ (feature2 ; Class) ...
logistic regression / max-ent

Review: Language Modeling

Setup: Assume a (finite) vocabulary of words

V = {the, a, man, telescope, Beckham, two, Madrid, ...}
We can construct an (infinite) set of strings
Vi {the, a, the a, the fan, the man, the man with the telescope, ...

Data: given a training set of example sentences = € V'
Problem: estimate a probability distribution

> pr) = i

e YT p(the fan) = 10712
p(the fan saw Beckham) =2 x 107%
and p(.fE) > 0 for all x € VT p(the fan saw saw) = 107 1°

Question: can we do better than n-grams, now that we have features?

Log-linear LMs

= |Law of conditional probability:
plry...x,) = H q(zilzy...xi1)
1=1

= Approach: train q(x;|x4...X.1) as a discrete log-linear (maxent)
model:

eXp(w . qb(l’l ... CL’Z)>
sexp(w-o(xy...xi-1,2")))

q(xzilry...xi_1) = >

= Can train with any techniques from before, e.g. maxent,
perceptron, etc.

» Was SOTA before NN methods [e.g. Roark et al 2006]

Example: Trigger-based Linear Models
[Rosenfeld, 1996]

= Features: carefully chosen word pairs (called triggers) that appear anywhere
before target word in sentence (or document)

HARVEST < CROP HARVEST CORN SOYBEAN SOYBEANS AGRICULTURE GRAIN DROUGHT GRAINS

BUSHELS
HAVANA < CUBAN CUBA CASTRO HAVANA FIDEL CASTRO’S CUBA’S CUBANS COMMUNIST MIAMI
REVOLUTION
= Results:

vocabulary top 20,000 words of WSJ corpus

training set SMW (WSJ)

test set 325KW (WS))

trigram perplexity (baseline) 173 173

ME experiment top 3 top 6

ME constraints:
unigrams 18400 18400
bigrams 240000 240000
trigrams 414000 414000
triggers 36000 65000

ME perplexity 134 130
perplexity reduction 23% 25%

0.75-ME + 0.25-trigram perplexity 129 127
perplexity reduction 25% 27%

Table 8: Maximum Entropy models incorporating N-gram and trigger constraints.

Review: Pairs of Sequences

= Consider the problem of jointly modeling a pair of strings
» E.g.: part of speech tagging

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

= We previously learn a joint distribution:

p(T1-- - TnsY1---Yn)

= And then computed the most likely assignment:

arg max p(x1...Tn,Y1---Yn)
Y1.--Yn

= (Q: Can we do better, now that we have feature rich models?

Why POS Tagging?

= Useful in and of itself (more than you'd think)
» Text-to-speech: record, lead

» [emmatization: saw[v] - see, saw[n] —» saw
» Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

= Useful as a pre-processing step for parsing
» |ess tag ambiguity means fewer parses
= However, some tag choices are better decided by parsers

IN

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...

VDN
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

CcC
CcDh
DT
EX
FW

JJ
JJR
JJS
MD

NN
NNP

NNPS
NNS
POS
PRP

PRP$

RB
RBR
RBS

RP
TO
UH
VB

VBD

VBG
VBN
VBP
vBZ

WDT
WP
WP$

WRB

conjunction, coordinating
numeral, cardinal
determiner
existential there
foreign word
preposition or conjunction, subordinating
adjective or numeral, ordinal
adjective, comparative
adjective, superlative
modal auxiliary
noun, common, singular or mass
noun, proper, singular
noun, proper, plural
noun, common, plural
genitive marker
pronoun, personal
pronoun, possessive
adverb
adverb, comparative
adverb, superlative
particle
"to" as preposition or infinitive marker
interjection
verb, base form
verb, past tense
verb, present participle or gerund
verb, past participle
verb, present tense, not 3rd person singular
verb, present tense, 3rd person singular
WH-determiner
WH-pronoun
WH-pronoun, possessive
Wh-adverb

and both but either or
mid-1890 nine-thirty 0.5 one
a all an every no that the
there
gemeinschaft hund ich jeux
among whether out on by if
third ill-mannered regrettable
braver cheaper taller
bravest cheapest tallest
can may might will would
cabbage thermostat investment subhumanity
Motown Cougar Yvette Liverpool
Americans Materials States
undergraduates bric-a-brac averages
''s
hers himself it we them
her his mine my our ours their thy your
occasionally maddeningly adventurously
further gloomier heavier less-perfectly
best biggest nearest worst
aboard away back by on open through
to
huh howdy uh whammo shucks heck
ask bring fire see take
pleaded swiped registered saw
stirring focusing approaching erasing
dilapidated imitated reunifed unsettled
twist appear comprise mold postpone
bases reconstructs marks uses
that what whatever which whichever
that what whatever which who whom
whose
however whenever where why

Baselines and Upper Bounds

» Choose the most common tag

= 90.3% with a bad unknown word model
= 93.7% with a good one

Noise in the data

= Many errors in the training and test
corpora

= Probably about 2% guaranteed error
from noise (on this data)

JJ JJ NN
chief executive officer

NN JJ NN
chief executive officer

JJ NN NN
chief executive officer

NN NN NN
chief executive officer

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
* Trigram HMM: ~95% / \
M
= TnT (Brants, 2000): onoj,t]gg,(,?\
= A carefully smoothed trigram tagger words

= Suffix trees for emissions
= 96.7% on WSJ text (SOA is ~97.5%)

= Upper bound: ~98%

Common Errors

= Common errors [from Toutanova & Manning 00]

NN NNP NNPS RB RP IN VB VBD VBN VBP Total
1] 177 56 0 61 2 5 10 15 108 0 488
NN 0 103 0 12 1 I 29 5 6 19 525
NNP 106 o 132 5 0 7 5 I 0 427
NNPS 0 110 o 0 0 0 0 0 0 142
RB 21 7 0 0 16 138 1 0 0 295
RP 0 0 0 39 0 65 0 0 0 104
IN 0 I 0 A69) 103 0 I 0 0 323
VB 64 9 o 2 0 1 0 4 5 189
VBD 5 3 o b o0 0 3 0 2 166
VBN 3 3 o & 0o 0 3 108 1 221
VBP 34 3 1 N0 2 49 6 x 0 104
Total 536 348 144 317\ 122 279 102 140 g 8 3651

NN/JJ NN VBD RP/IN DT NN RB VBD/VBN NNS

official knowledge made up the story recently sold shares

What about better features?

» Choose the most common tag

= 90.3% with a bad unknown word model @
= 93.7% with a good one

= What about looking at a word and its @ @ @
environment, but no sequence information?
» Add in previous / next word the
= Previous / next word shapes X X
= QOccurrence pattern features [X: x X occurs]
» Crude entity detection oo (Inc.|Co0.)
» Phrasal verb in sentence? put L

= Conjunctions of these things

= Uses lots of features: > 200K

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
*= Trigram HMM: ~95% [~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%

Q: What does this say about sequence models?

* Q: How do we add more features to our sequence
models?

= Upper bound: ~98%

MEMM Taggers

= One step up: also condition on previous tags

m
p(s1...8m|T1. . Tm) = Hp(sq;|31 81,1 .. L)
i=1

m
= Hp(silsi_l, ri1... CL‘m>
=1

= Train up p(si|si.1,X1 ..Xy) @s a discrete log-linear (maxent) model,
then use to score sequences

exp(w - @(z1...Tm, % Si—1,Si))

p(silsici, 1 ... Tm) = :
e " Yooexp(w-o(xy...xm,1,8i-1,5"))

» This is referred to as an MEMM tagger [Ratnaparkhi 96]

= Beam search effective! (Why?)

= What's the advantage of beam size 17?

The HMM State Lattice / Trellis

076, 2..2.,0 .8
Q/P/@ (raises|V) g(interest|V) e(STOP|V)
VIV 0,

Q@Pe(ratesU) 4\5\

O OSNO
©® © O

START Fed raises interest rates STOP

The MEMM State Lattice / Trellis

® > @\g ® ® ©
@ @ b//l/"y P(VIV,x) 00 @ A
© © © OO
® ® ® ® ©® ©

x = START Fed raises interest rates STOP

Decoding

= Decoding maxent taggers:
= Just like decoding HMMs
= Viterbi, beam search, posterior decoding
= Viterbi algorithm (HMMs):
= Define 11(i,s;) to be the max score of a sequence of length i ending in tag s;

(i, 8;) = max e(xi|s;)q(si|si—1)m(t —1,8;,-1)
1—1

= Viterbi algorithm (Maxent):

» Can use same algorithm for MEMMs, just need to redefine 1r(i,s;) !

7T(i, 87;) — ISIlaXp(Si’SZ'_l, L1CL‘m)ﬂ'(i — 1, 87;_1)
i—1

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

Most freq tag:

Trigram HMM:
TnT (HMM++):
Maxent P(sj|x):
MEMM tagger:

Upper bound:

~90% / ~50%
~95% [/ ~55%
96.2% / 86.0%
96.8% / 86.8%
96.9% / 86.9%

~98%

Global Discriminative Taggers

= Newer, higher-powered discriminative sequence models
» CREFs (also perceptrons, M3Ns)
= Do not decompose training into independent local regions
= Can be deathly slow to train — require repeated inference on
training set
= Differences can vary in importance, depending on task

= However: one issue worth knowing about in local models
= “Label bias” and other explaining away effects

MEMM taggers’ local scores can be near one without having both
good “transitions” and “emissions”

This means that often evidence doesn't flow properly

Why isn't this a big deal for POS tagging?
Also: in decoding, condition on predicted, not gold, histories

Review: Discrete Perceptron

= The perceptron algorithm
= |teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

* The (online) perceptron algorithm:

= Start with zero weights |
= Visit training instances (x;y;) one by one if;'g:igrisjir:nzﬂ -

= Make a prediction /

y* = argmaxw - ¢(z;, y)
Y

= |f correct (y*==y;): no change, goto next example!
= |f wrong: adjust weights

W =W + ¢($z,yz) — ¢(33z7 y*)

= Question: What if y is a sequence instead?

[Collins 02]

Structured Perceptron

= The perceptron algorithm
= |teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:
= Start with zero weights Sentence: X=X1...Xm

= Visit training instances (x;,y;) one by one
= Make a prediction
y* = argmaxw - ¢(x;, K
Y Tag Sequence:

= |f correct (y*==y;): no change, goto next example! Y=S1...Sn
= |f wrong: adjust weights

W =W + ¢($z,yz) — ¢(33z7 y*)

Challenge: How to compute argmax efficiently?

Local Features
= Linear Perceptron s = argmaxw - ®(z,s)

» Features must be local, for x=x,...Xx,, and s=s,...s,

™m

(I)(SC, S) — Z¢(x7]7 Sj—17 Sj)

j=1

= Will be important for efficient inference, but lets look at some
examples first

HMM Recap: Chunking

[Germany], oc ’s representative to the [European Union]grg 'S
veterinary committee [Werner Zwingman]pcg said on Wednesday
consumers should...

— =

Germany/BL 's/NA representative/NA to/NA the/NA European/BO
Union/CO 's/NA veterinary/NA committee/NA Werner/BP Zwingman/CP
said/NA on/NA Wednesday/NA consumers/NA should/NA...

= HMM Model:
= States Y = {NA,BL,CL,BO,CO,BP,CP} represent beginnings
(BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well
as other words (NA)

» Observations X =V are words
= Transition dist’ n q(yi|yi-1) models the tag sequences
= Emission dist’ n e(xi|yi) models words given their type

Chunking Features s, ZMM L s;)

= Can we mimic the parameters of HMI\/I?
= Transitions: ¢q5(S;.1,8;)=1 if 5;.4==t1 AND s;==t1, else 0

= instantiate for all pairs of tags t1, t2
= e.d. ¢CO,BO(Sj-1aSj)=1 if Sj_1==CO AND Sj==BO, else 0

= Emissions: ¢;,,(x;,s;))=1 if s==t AND x;==w, else 0
= instantiate for all pairs of word w and tag t
= e.d. ¢BL,SeattIe(stSj)=1 if Sj==BL AND Xj==Seatt|e, else 0

= Can also have lots of other features, for example:

= ¢,(s;)=11if j==3 AND s; ==NA, else 0 [this is not a good feature,
but allowed!]
= {eap(X;;S))=1if x;is capitalized AND (s; ==*L OR s;=="*P), else 0

[probably a good feature, if you know those classes tend to be
capitalized. shared parameter across many words and tags]

Decoding

= Linear Perceptron s = argmaxw - ®(z,s)
» Features must be local, for x=x,...Xx,, and s=s,...s,

™m

(I)(SC, S) — Z¢($7]7 Sj—17 Sj)

j=1

= Define 11(i,s;) to be the max score of a sequence of length |
ending in tag s

Review: HMMs

mn

P(Z1..-Tn, Y1---Ynt1) = ¢(STOP|yy) Hq(yi!yi_l)e(xi\yi

=1

yx = argmax p(Ti...Tn, Y1---Yni1)

Y1.--Yn

= Define 11(i,y;) to be the max score of a sequence of

length i ending in tag v,

w(t,y;) = max p(x1...T;5Y1...Y;)

Yi...Yi—1

— max e(xi‘yi)Q(yi|yi—1) max p(:Cl e Lg—1,Y7 .. yi—l)

Yi—1

Yi...Y;—2

— max e(z;|yi)q(yilyi-1) w(t—1,y;_1)

Yi—1

= We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

Dynamic Program: Structured Perceptron
w-P(r1...2,,81...8,) = Zw-gb(x,j,sj_l,sj)
j=1

= Define 11(i,S;) to be the max score of a sequence of
length i ending in tag s;

m(i,s;) = max w- O(xy...2581...5;)

= maxw - ¢(x,1,8;_1,8;) + max w-P(xy...x;_1,81...5i_1)
S;_1 $1...85;—2

— IglaX’lU) qb(iL’,'i, Si—15 Si) + 7T(’L o 17 Si—l)
1—1

= We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

Decoding

= Linear Perceptron § = argmaxw - ®(z, s)

= Features must be local, for x=x,...x,, and s=s,...s,
m
O(x,s) = E ¢(x,7,8i-1,5;)
J=1

= Define 11(i,s;) to be the max score of a sequence of length |
ending in tag s

m(1,8;) = mMaxw - oz, 0, 8i-1,8:) + (i —1,8;-1)
1—1

= Viterbi algorithm (HMMs):

(1, 8;) = max e(xilsi)q(s;|s;—1)m(i —1,5;_1)
1—1

= Viterbi algorithm ﬁMaxent):

(i, 8;) = S'aicp(si Si—1,T1 .- Tm)T(1 —1,8;_1)
i

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

Most freq tag:

Trigram HMM:
TnT (HMM++):
Maxent P(sj|x):
MEMM tagger:

Perceptron

Upper bound:

~90% / ~50%
~95% [/ ~55%
96.2% / 86.0%
96.8% / 86.8%
96.9% / 86.9%
96.7% [?7?

~98%

Review: Discrete Log-linear Models

= Maximum entropy (logistic regression) Previously assumed y

= Model: use the scores as probabilities: — comes from a small set.

e exp (w - o(z,y))
p(l; w) > exp (w- (z,y))

» Learning: maximize the (log) conditional likelihood of training
data {(wi,yi) }ieq

L(w) = Y logp(ylasiw) " =argmax L(w)
1=1

%L(w) = Z <¢j($iayi) - Zp(yﬂfi;w)(bj(xivy)) — Aw;

=1 Y

= Prediction: output argmax, p(y[x;w)
« Question: What if y is a sequence instead?

Conditional Random Fields (CRFs)

_ o _ [Lafferty, McCallum, Pereira 01]
= Maximum entropy (logistic regression)

Sentence: Xx=X1...Xm

— sy &P (w- (1))
D) Dy X (w - P(z,y'))

Tag Sequence: y=s;...Sn

= |Learning: maximize the (log) conditional likelihood of training
data {(z;, y;)}i,

a n
87[’() Z <§b] :Czayz Zp ’33@, ¢J Lis Y)> _)\wj
J

1=1

= Prediction: output argmax, p(y|x;w)

= Computational Challenges?
= Most likely tag sequence, normalization constant, gradient

Decoding .

S = argmaxpls|r;w
= CRFs 8 max p{sf; w)
» Features must be local, for x=x,...Xx,, and s=s,...s,
exp (w - O(z, s)) . .
p(SQZ’,’UJ): yS) = Qbﬂ?,],S'_,S'
‘ Soexp (w- ®(x,8)) (:2) j:zl (& 83-1,%)

— exp (w - ®(x,s))
s 2y exp(w- P(z, "))

= arg max exp (w - ®(z, s))

= argmaxw - ®(z, s)

= Same as Perceptron!!!

(1, 8;) = max d(x,1,8_4,8)+m(t—1,8_1)
1—1

CRFs: Computing Normalization®

slziw) = exp (w - (2, 5)) d(x,s) = Y T,7,8i_1, S
Pl) = = ey) = L0l ns)

Z exp (w - P(x,5"))=3 exp (Zw - ¢(w, 7, 3j173j))

— Z Hexp (w-¢(x,7,85-1,55))
s’ g

Define norm(i,s;) to sum of scores for sequences ending in position i

norm(i,y;) = Z exp (w - ¢(x,1,8;_1,8;))norm(i —1,8;_1)

= Forward Algorithm! Remember HMM case:
(i, y;) = Z e(zilyi)q(yilyi—1)a(i — 1,yi-1)

Yi—1
= Could also use backward?

CRFs: Computing Gradient™

slziw) = exp (w - (2, 5)) d(x,s) = Y T,7,8i_1, S
plalri) = <D T Bl ;qx Grsie18)

n

a;ijll(w) = Z((i, s;) Zp (s|xi;w)) — Aw;

1=1

Y p(slziw)®;(ws,) =D plslzi; w) Z(bk(ﬂ?z‘,j, Sj-1,5;)
S S 71=1
= ZZ Z p(s|zi; w)or(wi, J, sj-1, S5)

J=1 a,b s:sj_1=a,sp=b

= Need forward and backward messages

See notes for full details!

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%
= Perceptron 96.7% [?7?

= CRF (untuned) 95.7% 1 76.2%

= Upper bound: ~98%

CyCI IC N etWO rk [Toutanova et al 03]

. Train two MEMMs. (= (@—=() >@
multiple together to é
score @ @ @

(a) Left-to-Right CMM
= And be very careful

 Tune regularization ("""""""" @
* Try lots of different
features @ @ @ é

. See paper for full (b) Right-to-Lett CMM

details e @ (.............. @

(¢) Bidirectional Dependency Network

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%
= Perceptron 96.7% [?7?

= CRF (untuned) 95.7% 1 76.2%
= Cyclic tagger: 97.2% / 89.0%

= Upper bound: ~98%

Domain Effects

= Accuracies degrade outside of domain

= Up to triple error rate

= Usually make the most errors on the things you care
about in the domain (e.g. protein names)

= Open questions
= How to effectively exploit unlabeled data from a new
domain (what could we gain?)

= How to best incorporate domain lexica in a principled
way (e.g. UMLS specialist lexicon, ontologies)

Review PCFGs

= Model
= The probability of a tree t with n rules o; > B;, i = 1..n

p(t) = HC](% — B:)

= |earning
= Read the rules off of labeled sentences, use ML estimates for
probabilities

Count(a —)
Count(a)

= and use all of our standard smoothing tricks!

qur(a — B) =

* |nference
= Forinput sentence s, define T(s) to be the set of trees whole yield is s
(whole leaves, read left to right, match the words in s)

t*(s) = arg max »p(t
(5) = arg max p(1)

Review: PCFG Example

S = NP VP 1.0
VP = Wi 04
VP = Vt NP 04
VP = VP PP 0.2
NP = DT NN 0.3
NP = NP PP 0.7
PP = P NP 1.0

e Probability of a tree ¢ with rules

1S

041—>517042—>527---7

Vi = sleeps 1.0
Vt = saw 1.0
NN = man 0.7
NN = woman 0.2
NN = telescope | 0.1
DT = the 1.0
IN = with 0.5
IN = 1in 0.5
a, — Oy
;T 6@

where q(a — () is the probablhty for rule a« — (3.

Linear CFG

= Key Assumption
= Features for a tree t with n rules o, = B;, i = 1..n

O(t,s) =Y ¢la; — Bis)
1=1

= Model and Learning
= Can define log=linear model, perceptron score, etc.

score(t,s) = w - ®(t, s) p(tls) = S itp)(;iq.)zbu(ft-’ ;))()t’ s))

= |nference

= Can adapt CKY and Inside-Outside algorithms, as long as feature
assumption (above) is true

Log-Linear CFG [Finkel et al 2008]

= Features

Table 1: Lexicon and grammar features. w is the word and ¢ the tag. r represents a particular rule along with span/split
information; p is the rule itself, 7, is the parent of the rule; wp, ws, and w, are the first, first after the split (for binary
rules) and last word that a rule spans in a particular context. All states, including the POS tags, are annotated with
parent information; b(s) represents the base label for a state s and p(s) represents the parent annotation on state s.
ds(w) represents the distributional similarity cluster, and /c(w) the lower cased version of the word, and unk(w) the

unknown word class.

Lexicon Features

Grammar Features

t

b(2)

{t,w)

{t,lc(w))
(b(2),w)
(b(t),lc(w))
(t,ds(w))
(t,dS(W_l))
(t,dS(W.H))
(b(t),ds(w))
(b(2),ds(w-1))
(b(t)) dS(W.H))
(p(t),w)
(t,unk(w))
(b(2),unk(w))

p
(b(p(rp)),ds(ws))
(b(p(rp)),ds(we))

unary?

simplified rule:

base labels of states

dist sim bigrams:

all dist. sim. bigrams below
rule, and base parent state

dist sim bigrams:

same as above, but trigrams
heavy feature:

whether the constituent is “big”
as described in (Johnson, 2001)

Binary-specific features

(b(p(rp))vds(ws—l ,dSWs)>

PP feature:

if right child is a PP then (r,w;)

VP features:

if some child is a verb tag, then rule,
with that child replaced by the word

Unaries which span one word:

Final Results

F1 F1
Parser <40 words | all words
Klein & Manning '03 86.3 85.7
Matsuzaki et al. '05 86.7 86.1
Collins '99 88.6 88.2
Charniak & Johnson '05 90.1 89.6
Petrov et. al. 06 90.2 89.7
Finkel et. al. 08 89 38

