
CSEP 517
Natural Language Processing

Autumn 2018

Luke Zettlemoyer - University of Washington

[Many slides from Yejin Choi, Dan Klein]

Linear Sequence Models

Overview

§ Linear Language Model

§ Linear Tagging Techniques
§ MEMMs, Structured Perceptron, CRFs

§ Running Example: POS Tagging

§ Linear Parsing Model

Internals of probabilistic models:
nothing but adding log-prob

§ LM: … + log p(w7 | w5, w6) + log p(w8 | w6, w7) + …

§ PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

§ HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

§ Noisy channel: [log p(source)] + [log p(data | source)]
§ Naïve Bayes:

log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

Change log p(this | that) to Φ(this ; that)

arbitrary scores instead of log probs?

§ LM: … + Φ (w7 ; w5, w6) + Φ (w8 ; w6, w7) + …

§ PCFG: Φ (NP VP ; S) + Φ (Papa ; NP) + Φ (VP PP ; VP) …

§ HMM tagging: … + Φ (t7 ; t5, t6) + Φ (w7 ; t7) + …

§ Noisy channel: [Φ (source)] + [Φ (data ; source)]
§ Naïve Bayes:

Φ (Class) + Φ (feature1 ; Class) + Φ (feature2 ; Class) …

Change log p(this | that) to Φ(this ; that)

arbitrary scores instead of log probs?

§ LM: … + Φ (w7 ; w5, w6) + Φ (w8 ; w6, w7) + …

§ PCFG: Φ (NP VP ; S) + Φ (Papa ; NP) + Φ (VP PP ; VP) …

§ HMM tagging: … + Φ (t7 ; t5, t6) + Φ (w7 ; t7) + …

§ Noisy channel: [Φ (source)] + [Φ (data ; source)]
§ Naïve Bayes:

Φ (Class) + Φ (feature1 ; Class) + Φ (feature2 ; Class) …
logistic regression / max-ent

MEMM or CRF

Review: Language Modeling
§ Setup: Assume a (finite) vocabulary of words

§ We can construct an (infinite) set of strings

§ Data: given a training set of example sentences
§ Problem: estimate a probability distribution

§ Question: can we do better than n-grams, now that we have features?

V† = {the, a, the a, the fan, the man, the man with the telescope, ...}

x � V†

X

x�V†

p(x) = 1

and p(x) � 0 for all x ⇥ V†

p(the) = 10�12

p(a) = 10�13

p(the fan) = 10�12

p(the fan saw Beckham) = 2⇥ 10�8

p(the fan saw saw) = 10�15

. . .

Log-linear LMs
§ Law of conditional probability:

§ Approach: train q(xi|x1…xi-1) as a discrete log-linear (maxent)
model:

§ Can train with any techniques from before, e.g. maxent,
perceptron, etc.

§ Was SOTA before NN methods [e.g. Roark et al 2006]

Example: Trigger-based Linear Models

§ Features: carefully chosen word pairs (called triggers) that appear anywhere
before target word in sentence (or document)

[Rosenfeld, 1996]

§ Results:

Review: Pairs of Sequences
§ Consider the problem of jointly modeling a pair of strings

§ E.g.: part of speech tagging

§ We previously learn a joint distribution:

§ And then computed the most likely assignment:

§ Q: Can we do better, now that we have feature rich models?

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

p(x1 . . . xn, y1 . . . yn)

arg max
y1...yn

p(x1 . . . xn, y1 . . . yn)

Why POS Tagging?
§ Useful in and of itself (more than you’d think)

§ Text-to-speech: record, lead
§ Lemmatization: saw[v] ® see, saw[n] ® saw
§ Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

§ Useful as a pre-processing step for parsing
§ Less tag ambiguity means fewer parses
§ However, some tag choices are better decided by parsers

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

IN

VDN

CC conjunction, coordinating and both but either or
CD numeral, cardinal mid-1890 nine-thirty 0.5 one
DT determiner a all an every no that the
EX existential there there
FW foreign word gemeinschaft hund ich jeux
IN preposition or conjunction, subordinating among whether out on by if
JJ adjective or numeral, ordinal third ill-mannered regrettable

JJR adjective, comparative braver cheaper taller
JJS adjective, superlative bravest cheapest tallest
MD modal auxiliary can may might will would
NN noun, common, singular or mass cabbage thermostat investment subhumanity

NNP noun, proper, singular Motown Cougar Yvette Liverpool
NNPS noun, proper, plural Americans Materials States
NNS noun, common, plural undergraduates bric-a-brac averages
POS genitive marker ' 's
PRP pronoun, personal hers himself it we them
PRP$ pronoun, possessive her his mine my our ours their thy your

RB adverb occasionally maddeningly adventurously
RBR adverb, comparative further gloomier heavier less-perfectly
RBS adverb, superlative best biggest nearest worst
RP particle aboard away back by on open through
TO "to" as preposition or infinitive marker to
UH interjection huh howdy uh whammo shucks heck
VB verb, base form ask bring fire see take

VBD verb, past tense pleaded swiped registered saw
VBG verb, present participle or gerund stirring focusing approaching erasing
VBN verb, past participle dilapidated imitated reunifed unsettled
VBP verb, present tense, not 3rd person singular twist appear comprise mold postpone
VBZ verb, present tense, 3rd person singular bases reconstructs marks uses
WDT WH-determiner that what whatever which whichever
WP WH-pronoun that what whatever which who whom
WP$ WH-pronoun, possessive whose
WRB Wh-adverb however whenever where why

Baselines and Upper Bounds
§ Choose the most common tag

§ 90.3% with a bad unknown word model
§ 93.7% with a good one

§ Noise in the data
§ Many errors in the training and test

corpora
§ Probably about 2% guaranteed error

from noise (on this data) NN NN NN
chief executive officer

JJ NN NN
chief executive officer

JJ JJ NN
chief executive officer

NN JJ NN
chief executive officer

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%

§ Trigram HMM: ~95% / ~55%

§ TnT (Brants, 2000):
§ A carefully smoothed trigram tagger
§ Suffix trees for emissions
§ 96.7% on WSJ text (SOA is ~97.5%)

§ Upper bound: ~98%

Most errors
on unknown

words

Common Errors
§ Common errors [from Toutanova & Manning 00]

NN/JJ NN

official knowledge

VBD RP/IN DT NN

made up the story

RB VBD/VBN NNS

recently sold shares

What about better features?
§ Choose the most common tag

§ 90.3% with a bad unknown word model
§ 93.7% with a good one

§ What about looking at a word and its
environment, but no sequence information?
§ Add in previous / next word the __
§ Previous / next word shapes X __ X
§ Occurrence pattern features [X: x X occurs]
§ Crude entity detection __ ….. (Inc.|Co.)
§ Phrasal verb in sentence? put …… __
§ Conjunctions of these things

§ Uses lots of features: > 200K

s3

x3 x4x2

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%

§ Q: What does this say about sequence models?
§ Q: How do we add more features to our sequence

models?

§ Upper bound: ~98%

MEMM Taggers
§ One step up: also condition on previous tags

§ Train up p(si|si-1,x1...xm) as a discrete log-linear (maxent) model,
then use to score sequences

§ This is referred to as an MEMM tagger [Ratnaparkhi 96]
§ Beam search effective! (Why?)
§ What’s the advantage of beam size 1?

p(s1 . . . sm|x1 . . . xm) =
mY

i=1

p(si|s1 . . . si�1, x1 . . . xm)

=
mY

i=1

p(si|si�1, x1 . . . xm)

p(si|si�1, x1 . . . xm) =
exp (w · �(x1 . . . xm, i, si�1, si))P
s0 exp (w · �(x1 . . . xm, i, si�1, s0))

The HMM State Lattice / Trellis
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

q(N|^)

q(J|V)

e(Fed|N)

q(V|J)

q(V|N)
e(raises|V) e(interest|V)

e(rates|J)q(V|V)

e(STOP|V)

The MEMM State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

x = START Fed raises interest rates STOP

p(N|^,x)

p(J|V,x) p(V|J,x
)

p(V|N,x)
p(V|V,x)

Decoding
§ Decoding maxent taggers:

§ Just like decoding HMMs
§ Viterbi, beam search, posterior decoding

§ Viterbi algorithm (HMMs):
§ Define π(i,si) to be the max score of a sequence of length i ending in tag si

§ Viterbi algorithm (Maxent):
§ Can use same algorithm for MEMMs, just need to redefine π(i,si) !

�(i, si) = max
si�1

e(xi|si)q(si|si�1)�(i� 1, si�1)

�(i, si) = max
si�1

p(si|si�1, x1 . . . xm)�(i� 1, si�1)

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%
§ MEMM tagger: 96.9% / 86.9%

§ Upper bound: ~98%

Global Discriminative Taggers
§ Newer, higher-powered discriminative sequence models

§ CRFs (also perceptrons, M3Ns)
§ Do not decompose training into independent local regions
§ Can be deathly slow to train – require repeated inference on

training set

§ Differences can vary in importance, depending on task
§ However: one issue worth knowing about in local models

§ “Label bias” and other explaining away effects
§ MEMM taggers’ local scores can be near one without having both

good “transitions” and “emissions”
§ This means that often evidence doesn’t flow properly
§ Why isn’t this a big deal for POS tagging?
§ Also: in decoding, condition on predicted, not gold, histories

Review: Discrete Perceptron

§ The perceptron algorithm

§ Iteratively processes the training set, reacting to training errors

§ Can be thought of as trying to drive down training error

§ The (online) perceptron algorithm:

§ Start with zero weights

§ Visit training instances (xi,yi) one by one

§ Make a prediction

§ If correct (y*==yi): no change, goto next example!

§ If wrong: adjust weights

§ Question: What if y is a sequence instead?

w = w + �(xi, yi)� �(xi, y
⇤)

y⇤ = argmax
y

w · �(xi, y)

Previously assumed y

comes from a small set.

Structured Perceptron
§ The perceptron algorithm

§ Iteratively processes the training set, reacting to training errors
§ Can be thought of as trying to drive down training error

§ The (online) perceptron algorithm:
§ Start with zero weights
§ Visit training instances (xi,yi) one by one

§ Make a prediction

§ If correct (y*==yi): no change, goto next example!
§ If wrong: adjust weights

w = w + �(xi, yi)� �(xi, y
⇤)

y⇤ = argmax
y

w · �(xi, y)
Tag Sequence:
y=s1…sm

Sentence: x=x1…xm

Challenge: How to compute argmax efficiently?

[Collins 02]

Local Features
§ Linear Perceptron

§ Features must be local, for x=x1…xm, and s=s1…sm

§ Will be important for efficient inference, but lets look at some
examples first

s⇤ = argmax
s

w · �(x, s) · �

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

HMM Recap: Chunking

Germany/BL ’s/NA representative/NA to/NA the/NA European/BO

Union/CO ’s/NA veterinary/NA committee/NA Werner/BP Zwingman/CP

said/NA on/NA Wednesday/NA consumers/NA should/NA…

[Germany]
LOC

’s representative to the [European Union]
ORG

’s

veterinary committee [Werner Zwingman]
PER

said on Wednesday

consumers should…

§ HMM Model:

§ States Y = {NA,BL,CL,BO,CO,BP,CP} represent beginnings

(BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well

as other words (NA)

§ Observations X = V are words

§ Transition dist�n q(yi |yi -1) models the tag sequences

§ Emission dist�n e(xi |yi) models words given their type

Chunking Features

§ Can we mimic the parameters of HMM?
§ Transitions: ɸt1,t2(sj-1,sj)=1 if sj-1==t1 AND sj==t1, else 0

§ instantiate for all pairs of tags t1, t2

§ e.g. ɸCO,BO(sj-1,sj)=1 if sj-1==CO AND sj==BO, else 0

§ Emissions: ɸt,w(xj,sj)=1 if sj==t AND xj==w, else 0

§ instantiate for all pairs of word w and tag t

§ e.g. ɸBL,Seattle(xj,sj)=1 if sj==BL AND xj==Seattle, else 0

§ Can also have lots of other features, for example:

§ ɸ7(sj)=1 if j==3 AND sj ==NA, else 0 [this is not a good feature,

but allowed!]

§ ɸcap(xj,sj)=1 if xj is capitalized AND (sj == *L OR sj == *P), else 0

[probably a good feature, if you know those classes tend to be

capitalized. shared parameter across many words and tags]

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

Decoding
§ Linear Perceptron

§ Features must be local, for x=x1…xm, and s=s1…sm

§ Define π(i,si) to be the max score of a sequence of length i
ending in tag si

s⇤ = argmax
s

w · �(x, s) · �

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

Review: HMMs

§ Define π(i,yi) to be the max score of a sequence of
length i ending in tag yi

§ We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

⇡(i, yi) = max
y1...yi�1

p(x1 . . . xi, y1 . . . yi)

= max
yi�1

e(xi|yi)q(yi|yi�1) max
y1...yi�2

p(x1 . . . xi�1, y1 . . . yi�1)

= max
yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max
yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max
yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

= max
yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)= max
yi�1

e(xi|yi)q(yi|yi�1)⇡(i� 1, yi�1)

y⇤ = argmax
y1...yn

p(x1...xn, y1...yn+1)

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

Dynamic Program: Structured Perceptron

§ Define π(i,si) to be the max score of a sequence of
length i ending in tag si

§ We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

Decoding
§ Linear Perceptron

§ Features must be local, for x=x1…xm, and s=s1…sm

§ Define π(i,si) to be the max score of a sequence of length i
ending in tag si

§ Viterbi algorithm (HMMs):

§ Viterbi algorithm (Maxent):
�(i, si) = max

si�1

p(si|si�1, x1 . . . xm)�(i� 1, si�1)

⇡(i, si) = max
si�1

e(xi|si)q(si|si�1)⇡(i� 1, si�1)

s⇤ = argmax
s

w · �(x, s) · �

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%
§ MEMM tagger: 96.9% / 86.9%
§ Perceptron 96.7% / ??

§ Upper bound: ~98%

Review: Discrete Log-linear Models

n Maximum entropy (logistic regression)
n Model: use the scores as probabilities:

n Learning: maximize the (log) conditional likelihood of training
data

n Prediction: output argmaxy p(y|x;w)
n Question: What if y is a sequence instead?

p(y|x;w) = exp (w · �(x, y))P
y0 exp (w · �(x, y0))

{(xi, yi)}ni=1

L(w) =
nX

i=1

log p(yi|xi;w) w⇤ = argmax
w

L(w)

@

@wj
L(w) =

nX

i=1

�j(xi, yi)�

X

y

p(y|xi;w)�j(xi, y)

!
� �wj

Previously assumed y
comes from a small set.

Conditional Random Fields (CRFs)
§ Maximum entropy (logistic regression)

§ Learning: maximize the (log) conditional likelihood of training
data

§ Prediction: output argmaxy p(y|x;w)

§ Computational Challenges?
§ Most likely tag sequence, normalization constant, gradient

p(y|x;w) = exp (w · �(x, y))P
y0 exp (w · �(x, y0))

{(xi, yi)}ni=1

@

@wj
L(w) =

nX

i=1

�j(xi, yi)�

X

y

p(y|xi;w)�j(xi, y)

!
� �wj

Sentence: x=x1…xm

Tag Sequence: y=s1…sm

[Lafferty, McCallum, Pereira 01]

Decoding
§ CRFs

§ Features must be local, for x=x1…xm, and s=s1…sm

§ Same as Perceptron!!!
⇡(i, si) = max

si�1

�(x, i, si�i, si) + ⇡(i� 1, si�1)

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

s⇤ = argmax
s

p(s|x;w)

argmax
s

exp (w · �(x, s))P
s0 exp (w · �(x, s0))= argmax

s
exp (w · �(x, s))

= argmax
s

w · �(x, s)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

CRFs: Computing Normalization*

§ Forward Algorithm! Remember HMM case:

§ Could also use backward?

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

X

s0

exp
�
w ·�(x, s0)

�

�(i, yi) =
X

yi�1

e(xi|yi)q(yi|yi�1)�(i� 1, yi�1)

=
X

s0

Y

j

exp (w · �(x, j, sj�1, sj))

=
X

s0

exp

0

@
X

j

w · �(x, j, sj�1, sj)

1

A

Define norm(i,si) to sum of scores for sequences ending in position i

norm(i, yi) =
X

si�1

exp (w · �(x, i, si�1, si))norm(i� 1, si�1)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

CRFs: Computing Gradient*

§ Need forward and backward messages
See notes for full details!

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

@

@wj
L(w) =

nX

i=1

�j(xi, si)�

X

s

p(s|xi;w)�j(xi, s)

!
� �wj

X

s

p(s|xi;w)�j(xi, s) =
X

s

p(s|xi;w)
mX

j=1

�k(xi, j, sj�1, sj)

=
mX

j=1

X

a,b

X

s:sj�1=a,sb=b

p(s|xi;w)�k(xi, j, sj�1, sj)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%
§ MEMM tagger: 96.9% / 86.9%
§ Perceptron 96.7% / ??
§ CRF (untuned) 95.7% / 76.2%

§ Upper bound: ~98%

Cyclic Network
§ Train two MEMMs,

multiple together to
score

§ And be very careful
• Tune regularization
• Try lots of different

features
• See paper for full

details

[Toutanova et al 03]

Cyclic Tagging
[Toutanova et al 03]

 Another idea: train a bi-directional MEMM

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

 And be careful
experimentally!
 Try lots of features on

dev. set
 Use L2 regularization
 see paper...

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%
§ MEMM tagger: 96.9% / 86.9%
§ Perceptron 96.7% / ??
§ CRF (untuned) 95.7% / 76.2%
§ Cyclic tagger: 97.2% / 89.0%
§ Upper bound: ~98%

Domain Effects
§ Accuracies degrade outside of domain

§ Up to triple error rate
§ Usually make the most errors on the things you care

about in the domain (e.g. protein names)

§ Open questions
§ How to effectively exploit unlabeled data from a new

domain (what could we gain?)
§ How to best incorporate domain lexica in a principled

way (e.g. UMLS specialist lexicon, ontologies)

Review PCFGs
§ Model

§ The probability of a tree t with n rules αi à βi, i = 1..n

§ Learning
§ Read the rules off of labeled sentences, use ML estimates for

probabilities

§ and use all of our standard smoothing tricks!

§ Inference
§ For input sentence s, define T(s) to be the set of trees whole yield is s

(whole leaves, read left to right, match the words in s)

p(t) =
nY

i=1

q(�i ! ⇥i)

qML(� ! ⇥) =
Count(� ! ⇥)

Count(�)

t�(s) = arg max
t⇥T (s)

p(t)

Review: PCFG Example
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.

44

Linear CFG

§ Key Assumption
§ Features for a tree t with n rules αi à βi, i = 1..n

§ Model and Learning
§ Can define log=linear model, perceptron score, etc.

§ Inference
§ Can adapt CKY and Inside-Outside algorithms, as long as feature

assumption (above) is true

Log-Linear CFG [Finkel et al 2008]

§ Features

§ Results

Final Results

F1
≤ 40 words

F1
all wordsParser

Klein & Manning ’03 86.3 85.7

Matsuzaki et al. ’05 86.7 86.1

Collins ’99 88.6 88.2

Charniak & Johnson ’05 90.1 89.6

Petrov et. al. 06 90.2 89.7

Finkel et. al. 08 89 88

