CSEP 517 Natural Language Processing Autumn 2018

Hidden Markov Models

Luke Zettlemoyer
University of Washington

[Many slides from Dan Klein, Michael Collins, Yejin Choi]

Overview

- Hidden Markov Models
- Learning
 - Supervised: Maximum Likelihood
- Inference (or Decoding)
 - Viterbi
 - Forward Backward
- Unsupervised Learning

Pairs of Sequences

- Consider the problem of jointly modeling a pair of strings
 - E.g.: part of speech tagging

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

- Q: How do we map each word in the input sentence onto the appropriate label?
- A: We can learn a joint distribution:

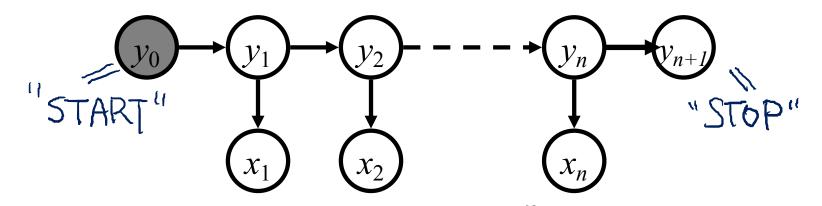
$$p(x_1 \dots x_n, y_1 \dots y_n)$$

And then compute the most likely assignment:

$$\arg\max_{y_1...y_n} p(x_1...x_n, y_1...y_n)$$

Classic Solution: HMMs

We want a model of sequences y and observations x



$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^{n} q(y_i|y_{i-1}) e(x_i|y_i)$$

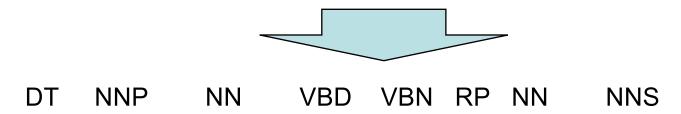
where $y_0 = START$ and we call q(y'|y) the transition distribution and e(x|y) the emission (or observation) distribution.

Assumptions:

- Tag/state sequence is generated by a markov model
- Words are chosen independently, conditioned only on the tag/state
- These are totally broken assumptions: why?

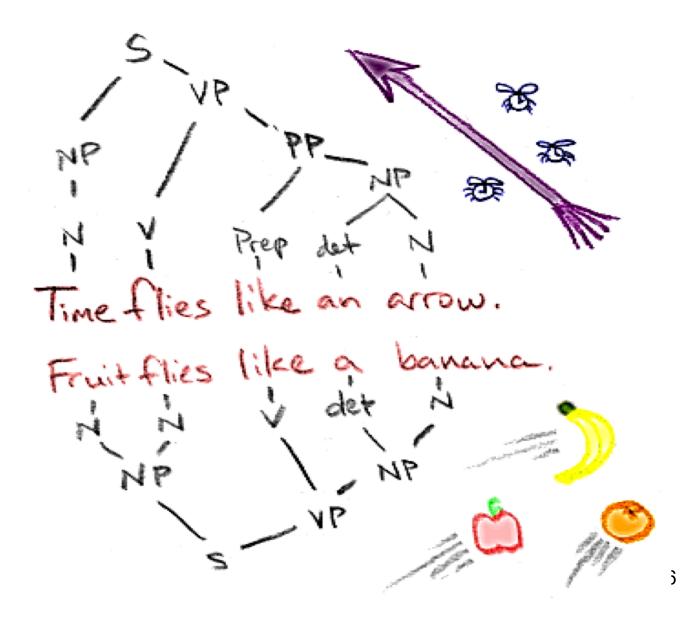
Example: POS Tagging

The Georgia branch had taken on loan commitments ...



- HMM Model:
 - States Y = {DT, NNP, NN, ... } are the POS tags
 - Observations X = V are words
 - Transition dist' n q(y_i | y_{i-1}) models the tag sequences
 - Emission dist' n e(xi | yi) models words given their POS
- Q: How to we represent n-gram POS taggers?

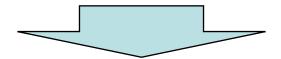
Time flies like an arrow; Fruit flies like a banana



Example: Chunking

- Goal: Segment text into spans with certain properties
- For example, named entities: PER, ORG, and LOC

Germany 's representative to the European Union 's veterinary committee Werner Zwingman said on Wednesday consumers should...



[Germany]_{LOC} 's representative to the [European Union]_{ORG} 's veterinary committee [Werner Zwingman]_{PER} said on Wednesday consumers should...

Q: Is this a tagging problem?

Example: Chunking

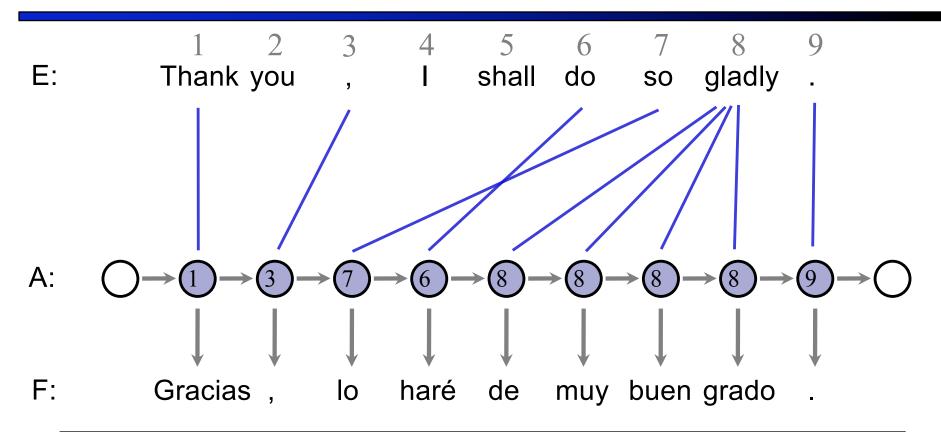
[Germany]_{LOC} 's representative to the [European Union]_{ORG} 's veterinary committee [Werner Zwingman]_{PER} said on Wednesday consumers should...

Germany/BL 's/NA representative/NA to/NA the/NA European/BO Union/CO 's/NA veterinary/NA committee/NA Werner/BP Zwingman/CP said/NA on/NA Wednesday/NA consumers/NA should/NA...

HMM Model:

- States Y = {NA,BL,CL,BO,CO,BP,CP} represent beginnings (BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well as other words (NA)
- Observations X = V are words
- Transition dist' n q(y_i |y_{i-1}) models the tag sequences
- Emission dist' n e(xi | yi) models words given their type

Example: HMM Translation Model



Model Parameters

Emissions: e($F_1 = Gracias \mid E_{A_1} = Thank$) Transitions: p($A_2 = 3 \mid A_1 = 1$)

HMM Inference and Learning

Learning

Maximum likelihood: transitions q and emissions e

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^{n} q(y_i|y_{i-1})e(x_i|y_i)$$

• Inference (linear time in sentence length!)

• Viterbi:
$$y* = \operatorname*{argmax} p(x_1...x_n, y_1...y_{n+1})$$
 where $y_{n+1} = \operatorname{STOP}$

Forward Backward:

$$p(x_1 ... x_n, y_i) = \sum_{y_1 ... y_{i-1}} \sum_{y_{i+1} ... y_n} p(x_1 ... x_n, y_1 ... y_n)$$

Learning: Maximum Likelihood

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Learning (Supervised Learning)
 - Assume *m* fully labeled training examples:

$$\{(x^{(i)}, y^{(i)}) \mid i = 1 \dots m\}$$

where $x^{(i)} = x_1 \dots x_n$ and $y^{(i)} = y_1 \dots y_n$

What distributions do we need to estimate?

$$q_{ML}(y_i|y_{i-1}) \qquad e_{ML}(x|y)$$

What is the maximum likelihood estimate?

Learning: Maximum Likelihood

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Learning (Supervised Learning)
 - Maximum likelihood methods for estimating transitions q and emissions e

$$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})}$$
 $e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$

- Will these estimates be high quality?
 - Which is likely to be more sparse, q or e?
- Can use all of the same smoothing tricks we saw for language models!

Learning: Low Frequency Words

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

lacktriangle Typically, linear interpolation works well for transitions

$$q(y_i|y_{i-1}) = \lambda_1 q_{ML}(y_i|y_{i-1}) + \lambda_2 q_{ML}(y_i)$$

- However, other approaches used for emissions
 - Step 1: Split the vocabulary
 - Frequent words: appear more than M (often 5) times
 - Low frequency: everything else
 - Step 2: Map each low frequency word to one of a small, finite set of possibilities
 - For example, based on prefixes, suffixes, etc.
 - Step 3: Learn model for this new space of possible word sequences

Low Frequency Words: An Example

Named Entity Recognition [Bickel et. al, 1999]

Used the following word classes for infrequent words:

Word class	Example	Intuition
twoDigitNum	90	Two digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of sentence	no useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Low Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity

SC = Start Company

CC = Continue Company

SL = Start Location

CL = Continue Location

...

Inference (Decoding)

Problem: find the most likely (Viterbi) sequence under the model

$$y* = \underset{y_1...y_n}{\operatorname{argmax}} p(x_1...x_n, y_1...y_{n+1})$$

Given model parameters, we can score any sequence pair

NNP VBZ NN NNS CD NN .

Fed raises interest rates 0.5 percent .

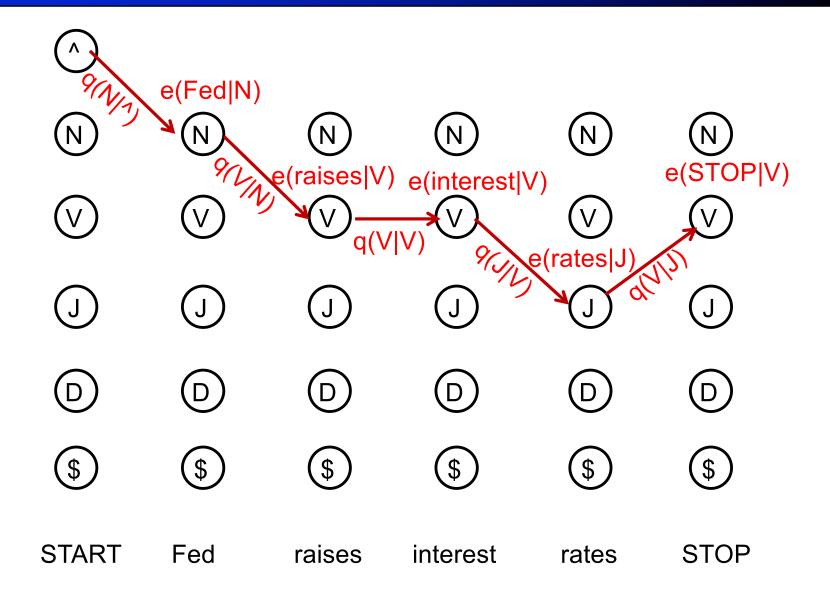
q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....

 In principle, we're done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

NNP VBZ NN NNS CD NN \implies logP = -23 NNP NNS NN NNS CD NN \implies logP = -29

NNP VBZ VB NNS CD NN \implies logP = -27

The State Lattice / Trellis: Viterbi



Dynamic Programming!
$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) e(x_i|y_i)$$

Focus on max, consider special case of n=2

$$\max_{y_1,y_2} q(STOP|y_2)q(y_2|y_1)e(x_2|y_2)q(y_1|START)e(x_1|y_1)$$

$$= \max_{y_2} q(STOP|y_2)e(x_2|y_2) \max_{y_1} q(y_1|START)q(y_2|y_1)e(x_1|y_1)$$

Define $\pi(i,y_i)$ to be the max score of a sequence of length i ending in tag yi

$$= \max_{y_2} q(STOP|y_2) e(x_2|y_2) \pi(2,y_2)$$
 given that $\pi(2,y_2) = \max_{y_1} q(y_1|START) q(y_2|y_1) e(x_1|y_1)$

What about the general case? (consider n=3, etc...)

Dynamic Programming!
$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) e(x_i|y_i)$$

$$y* = \underset{y_1...y_n}{\operatorname{argmax}} p(x_1...x_n, y_1...y_{n+1})$$

Define $\pi(i,y_i)$ to be the max score of a sequence of length i ending in tag yi

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \max_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

$$= \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \quad \pi(i-1, y_{i-1})$$

We now have an efficient algorithm. Start with i=0 and work your way to the end of the sentence!

Fruit

Flies

Like

Bananas

 $\pi(1,N)$

 $\pi(2,N)$

 $\pi(3,N)$

 $\pi(4,N)$

START

 $\pi(1,V)$

 $\pi(2,V)$

 $\pi(3,V)$

 $\pi(4,V)$

 $\pi(1, IN)$

 $\pi(2,IN)$

 $\pi(3, IN)$

 $\pi(4, IN)$

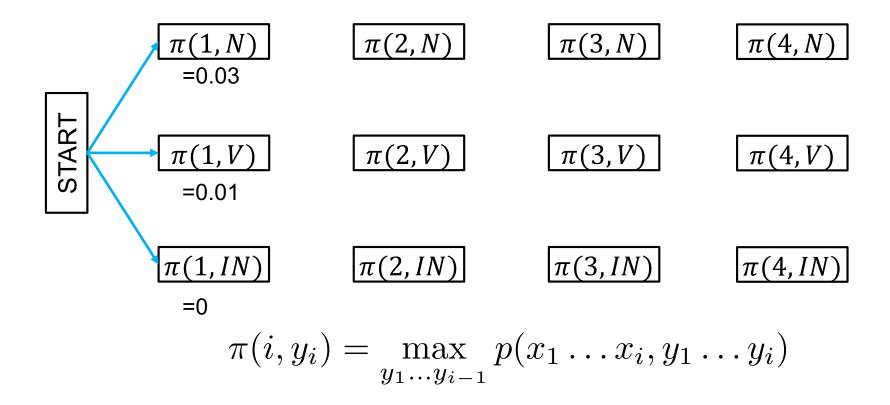
 $\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$

Fruit

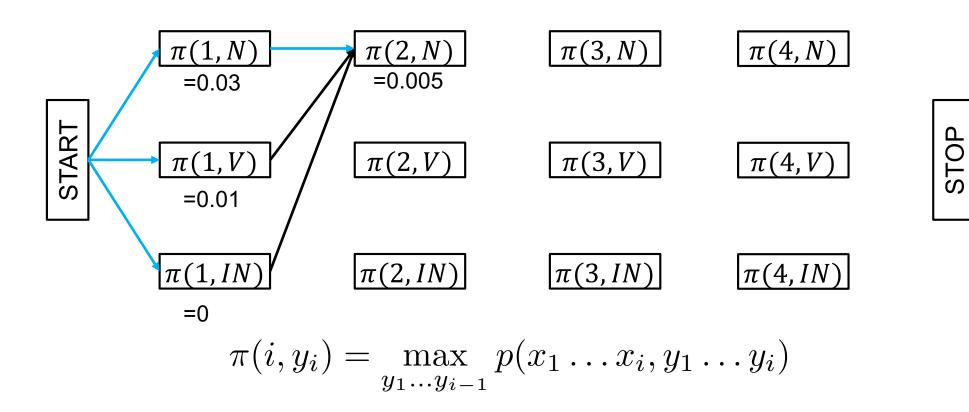
Flies

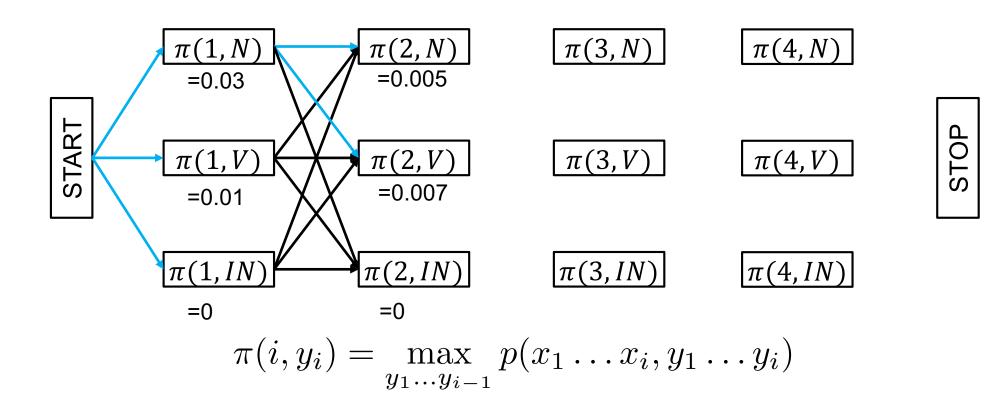
Like

Bananas



STOP



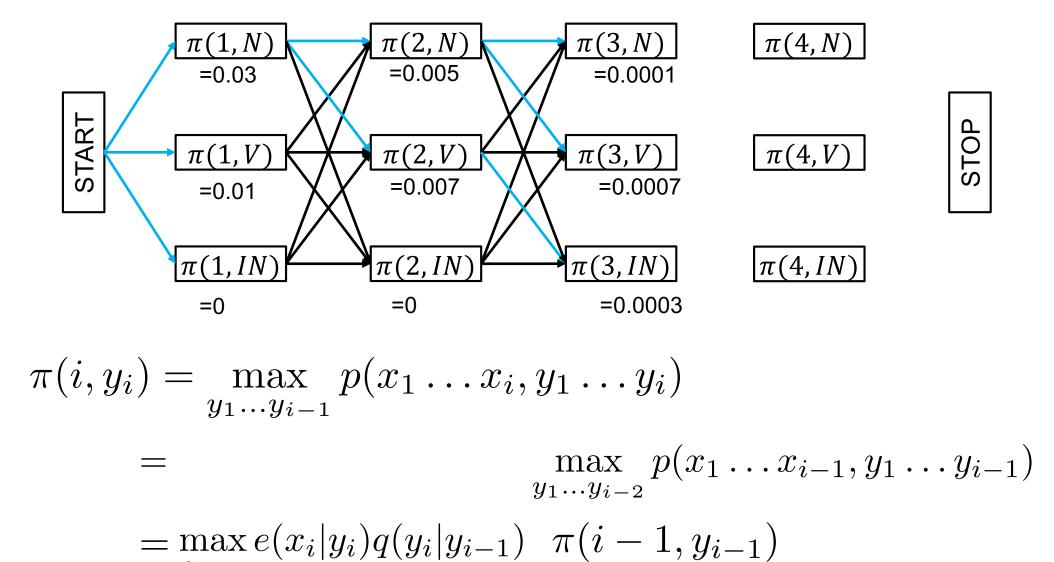


$$\pi(1,N) = 0.03 = 0.005 = 0.0001$$

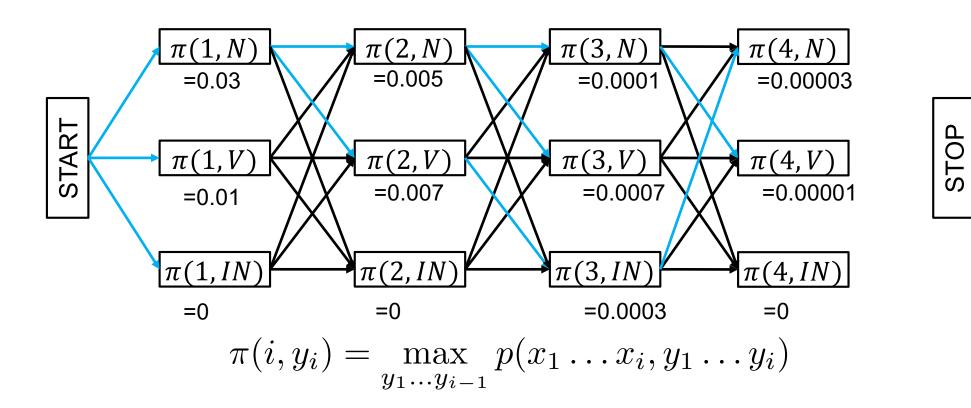
$$\pi(1,V) = 0.007 = 0.0007$$

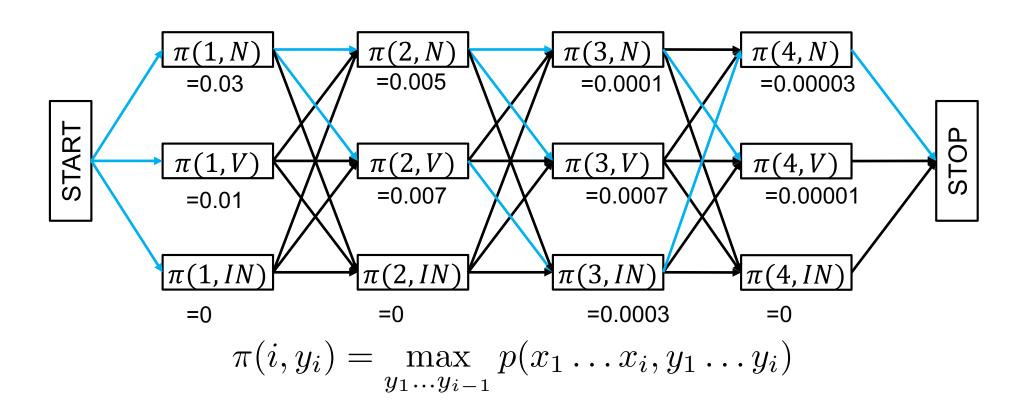
$$\pi(1,IN) = 0 = 0.0003$$

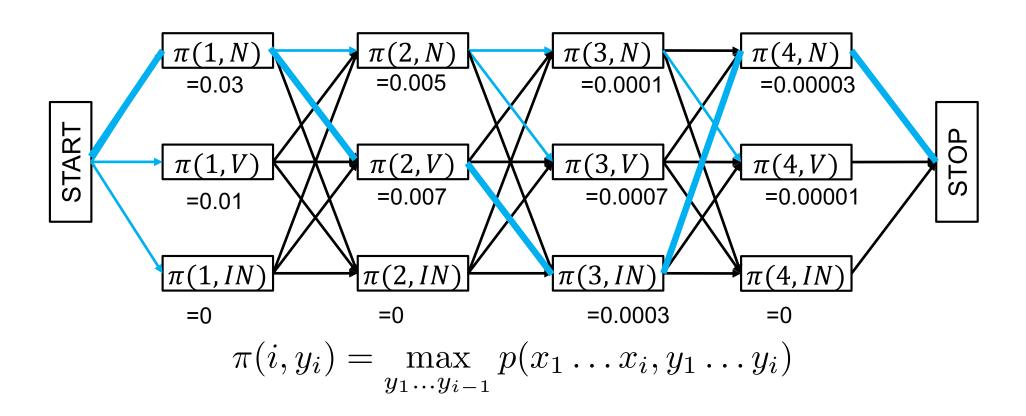
$$\pi(i,y_i) = \max_{y_1...y_{i-1}} p(x_1...x_i,y_1...y_i)$$



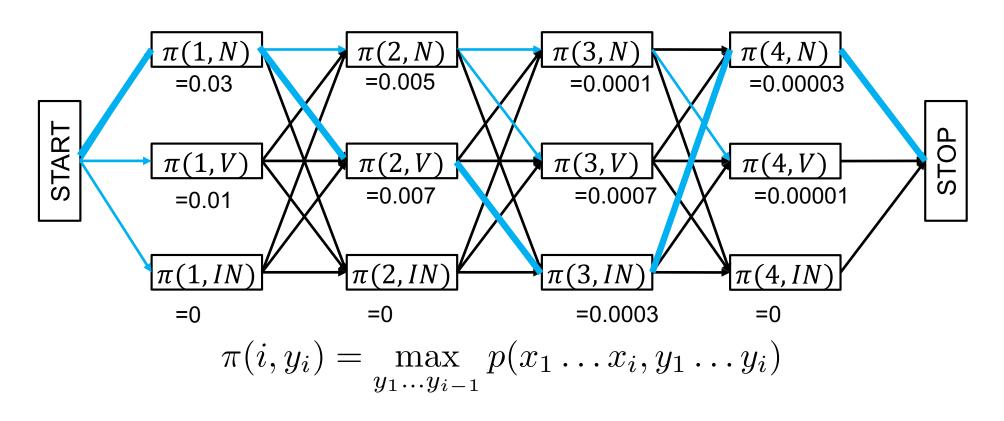
 y_{i-1}







Why is this not a greedy algorithm? Why does this find the max p(.)? What is the runtime?



Dynamic Programming!
$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) e(x_i|y_i)$$

$$y* = \underset{y_1...y_n}{\operatorname{argmax}} p(x_1...x_n, y_1...y_{n+1})$$

Define $\pi(i,y_i)$ to be the max score of a sequence of length i ending in tag yi

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \max_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

$$= \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \quad \pi(i-1, y_{i-1})$$

We now have an efficient algorithm. Start with i=0 and work your way to the end of the sentence!

Viterbi Algorithm

Dynamic program for computing (for all i)

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

Iterative computation

$$\pi(0, y_0) = \begin{cases} 1 & \text{if } y_0 == START \\ 0 & \text{otherwise} \end{cases}$$

For i = 1 ... n:

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i|y_i) q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

Also, store back pointers

$$bp(i, y_i) = \arg\max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

• What is the final solution to $y* = \underset{y_1...y_n}{\operatorname{argmax}} p(x_1...x_n, y_1...y_{n+1})$?

Viterbi!

The Viterbi Algorithm: Runtime

- Linear in sentence length n
- Polynomial in the number of possible tags |K|

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

Specifically:

$$O(n|\mathcal{K}|)$$
 entries in $\pi(i,y_i)$

$$O(|\mathcal{K}|)$$
 time to compute each $\pi(i, y_i)$

- Total runtime: $O(n|\mathcal{K}|^2)$
- Q: Is this a practical algorithm?
- A: depends on |K|....

Broader Context

- Beam Search: Viterbi decoding with K best subsolutions (beam size = K)
- Viterbi algorithm a special case of max-product algorithm
- Forward-backward a special case of sum-product algorithm (belief propagation algorithm)
- Viterbi decoding can be also used with general graphical models (factor graphs, Markov Random Fields, Conditional Random Fields, ...) with non-probabilistic scoring functions (potential functions).

Reflection

Viterbi: why argmax over joint distribution?

$$y^* = \arg \max_{y_1...y_n} p(x_1...x_n, y_1...y_n)$$

Why not this:

$$y^* = \arg \max_{y_1...y_n} p(y_1...y_n|x_1...x_n)$$

$$= \arg \max_{y_1...y_n} \frac{p(y_1...y_n, x_1...x_n)}{p(x_1...x_n)}$$

Same thing!

$$= \underset{y_1...y_n}{\operatorname{arg max}} p(x_1...x_n, y_1...y_n)$$

Marginal Inference

Problem: find the marginal probability of each tag for y_i

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

Given model parameters, we can score any sequence pair

NNP VBZ NN NNS CD NN .

Fed raises interest rates 0.5 percent .

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....

 In principle, we're done – list all possible tag sequences, score each one, sum over all of the possible values for y_i

NNP VBZ NN NNS CD NN \implies logP = -23

NNP NNS NN NNS CD NN \implies logP = -29

NNP VBZ VB NNS CD NN 🖒 logP = -27

Marginal Inference

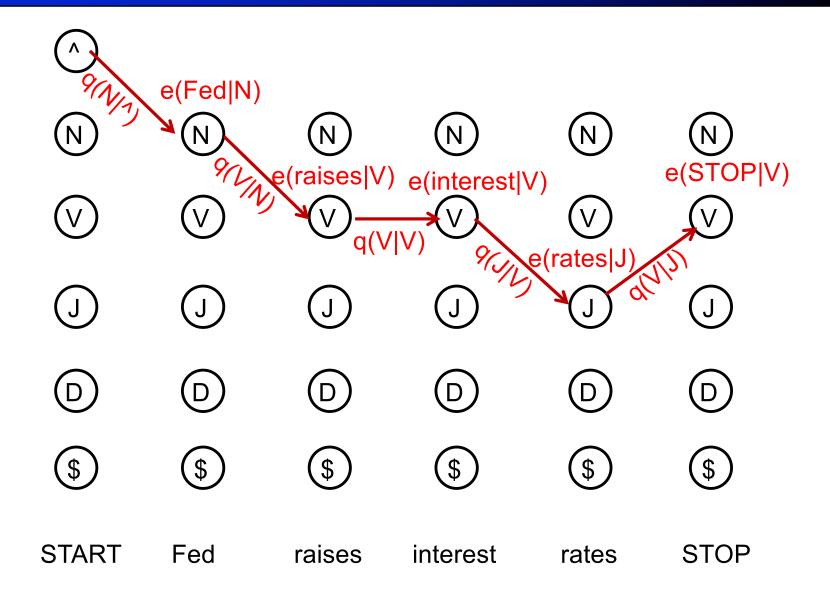
Problem: find the marginal probability of each tag for y_i

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

Compare it to "Viterbi Inference"

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

The State Lattice / Trellis: Viterbi



The State Lattice / Trellis: Marginal

Dynamic Programming!

$$p(x_1 \dots x_n, y_i) = p(x_1 \dots x_i, y_i) p(x_{i+1} \dots x_n | y_i)$$

Sum over all paths, on both sides of each y_i

$$\alpha(i, y_i) = p(x_1 \dots x_i, y_i) = \sum_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

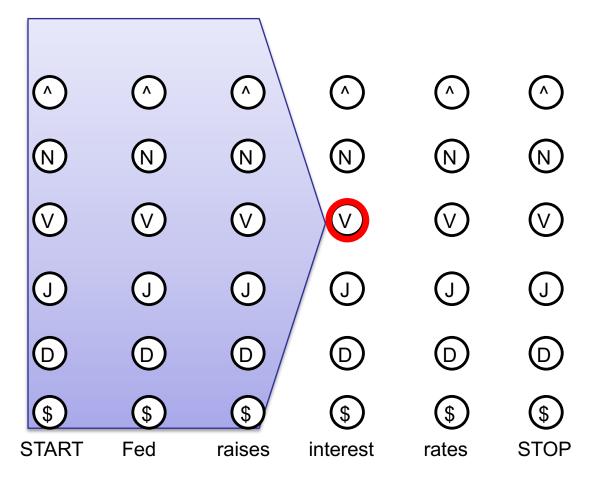
$$= \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i - 1, y_{i-1})$$

$$\beta(i, y_i) = p(x_{i+1} \dots x_n | y_i) = \sum_{y_{i+1} \dots y_n} p(x_{i+1} \dots x_n, y_{i+1} \dots y_{n+1} | y_i)$$

$$= \sum_{y_{i+1}} e(x_{i+1} | y_{i+1}) q(y_{i+1} | y_i) \beta(i + 1, y_{i+1})$$

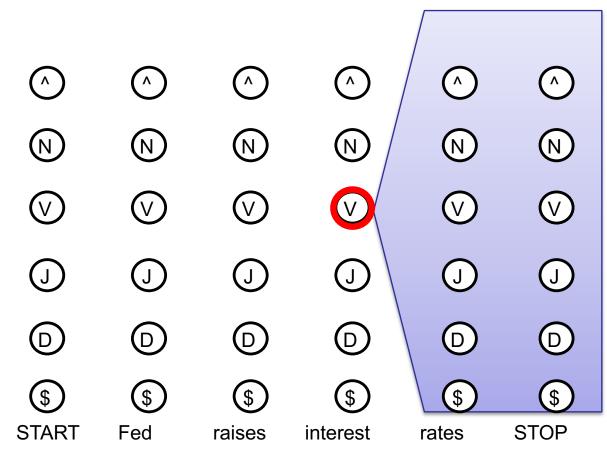
The State Lattice / Trellis: Forward

$$\alpha(i, y_i) = p(x_1 \dots x_i, y_i) = \sum_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$
$$= \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i-1, y_{i-1})$$



The State Lattice / Trellis: Backward

$$\beta(i, y_i) = p(x_{i+1} \dots x_n | y_i) = \sum_{y_{i+1} \dots y_n} p(x_{i+1} \dots x_n, y_{i+1} \dots y_{n+1} | y_i)$$
$$= \sum_{y_{i+1}} e(x_{i+1} | y_{i+1}) q(y_{i+1} | y_i) \beta(i+1, y_{i+1})$$



Forward Backward Algorithm

- Two passes: one forward, one back
 - Forward: $\alpha(0, y_0) = \begin{cases} 1 \text{ if } y_0 == START \\ 0 \text{ otherwise} \end{cases}$
 - For i = 1 ... n

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\alpha(i-1, y_{i-1})$$

Backward:

$$\beta(n, y_n) = \begin{cases} q(y_{n+1}|y_n) & \text{if } y_{n+1} = \text{STOP} \\ 0 & \text{otherwise} \end{cases}$$

• For i = n-1 ... 0

$$\beta(i, y_i) = \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i)\beta(i+1, y_{i+1})$$

Forward Backward: Runtime

- Linear in sentence length n
- Polynomial in the number of possible tags |K|

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\alpha(i-1, y_{i-1})$$
$$\beta(i, y_i) = \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i)\beta(i+1, y_{i+1})$$

- Specifically: $O(n|\mathcal{K}|)$ entries in $\alpha(i, y_i)$ and $\beta(i, y_i)$ $O(|\mathcal{K}|)$ time to compute each entry
- Total runtime: $O(n|\mathcal{K}|^2)$
- Q: How does this compare to Viterbi?
- A: Exactly the same!!!

Other Marginal Inference

We've been doing this:

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

Can we compute this?

$$p(x_{1}...x_{n}) = \sum_{y_{1}...y_{n}} p(x_{1}...x_{n}, y_{1}...y_{n+1})$$

$$= ...?... p(x_{1}...x_{n}, y_{i})$$

$$= \sum_{y_{i}} p(x_{1}...x_{n}, y_{i})$$

Other Marginal Inference

Can we compute this?

$$p(x_1...x_n) = \sum_{y_i} p(x_1...x_n, y_i)$$

Relation with forward quantity?

$$\alpha(i, y_i) = p(x_1 \dots x_i, y_i) = \sum_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$p(x_1 \dots x_n) = \sum_{y_1 \dots y_n} p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

$$= \dots \dots \dots \quad \alpha(n, y_n)$$

$$= \sum_{y_n} q(STOP|y_n)\alpha(n, y_n) := \alpha(n+1, STOP)$$

Learning: Unsupervised with EM

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) e(x_i|y_i)$$

- Unsupervised Learning
 - Assume m unlabeled labeled training examples:

$$\{x^{(i)} \mid i = 1 \dots m\}$$
 where $x^{(i)} = x_1 \dots x_n$

What distributions do we need to estimate?

$$q_{ML}(y_i|y_{i-1})$$
 $e_{ML}(x|y)$

- How is this even possible?
 - Clearly we can't just do counting...
- How is this different than a LM?

Expectation Maximization (General Form)

Input: model $p(x,y|\theta)$ and unlabeled data $D=\{x^1,x^2,...x^N\}$ Initialize parameters θ Until convergence

- E-step (expectation)
 - compute the posteriors (while fixing the model parameters)

$$p(y|x, \theta_t) = \frac{p(x, y|\theta^t)}{\sum_{y'} p(x, y'|\theta^t)}$$

- M-step (maximization)
 - compute parameters that maximize the expected log likelihood

$$\theta^{t+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \ \sum_{i} \sum_{y} p(y|x^{i} \ \theta^{t}) log \ p(x^{i}, y|\theta)$$

Result: learn θ that maximizes:

$$L(\theta) = \sum_{i} \log p(x^{i}|\theta) = \sum_{i} \log \sum_{y} p(x^{i}, y|\theta)$$

Unsupervised Learning (EM) Intuition

We've been doing this:

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

What we really want is this: (which we now know how to compute!)

$$p(y_i|x_1...x_n) = \frac{p(x_1...x_n, y_i)}{p(x_1...x_n)}$$

This means we can compute the expected count of things

(expected) count(NN) =
$$\sum_{i} p(y_i = NN | x_1...x_n)$$

Unsupervised Learning (EM) Intuition

What we really want is this: (which we now know how to compute!)

$$p(y_i|x_1...x_n) = \frac{p(x_1...x_n, y_i)}{p(x_1...x_n)}$$

This means we can compute the expected count of things:

(expected) count(NN) =
$$\sum_{i} p(y_i = NN | x_1...x_n)$$

- If we have this: $p(y_iy_{i+1}|x_1...x_n) = \frac{p(x_1...x_n,y_i,y_{i+1})}{p(x_1...x_n)}$
- We can also compute expected transition counts:

(expected) count(NN
$$\rightarrow$$
 VB) = $\sum_{i} p(y_i = \text{NN}, y_{i+1} = \text{VB}|x_1...x_n)$

Above marginals can be computed as

$$p(x_1...x_n, y_i) = \alpha(i, y_i)\beta(i, y_i)$$

$$p(x_1...x_n, y_i, y_{i+1}) = \alpha(i, y_i)q(y_{i+1}|y_i)e(x_{i+1}|y_{i+1})\beta(i+1, y_{i+1})$$

Unsupervised Learning (EM) Intuition

Expected emission counts:

(expected) count(NN
$$\rightarrow$$
 apple) = $\sum_{i} p(y_i = \text{NN}, x_i = \text{apple}|x_1...x_n)$
= $\sum_{i:x_i = \text{apple}} p(y_i = \text{NN}|x_1...x_n)$

Maximum Likelihood Parameters (Supervised Learning):

$$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})}$$
 $e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$

For Unsupervised Learning, replace the actual counts with the expected counts.

Expectation Maximization

- Initialize transition and emission parameters
 - Random, uniform, or more informed initialization
- Iterate until convergence
 - E-Step:
 - Compute expected counts

(expected) count(NN
$$\rightarrow$$
 VB) = $\sum_{i} p(y_i = \text{NN}, y_{i+1} = \text{VB}|x_1...x_n)$
(expected) count(NN \rightarrow apple) = $\sum_{i} p(y_i = \text{NN}, x_i = \text{apple}|x_1...x_n)$

- M-Step:
 - Compute new transition and emission parameters (using the expected counts computed above)

$$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})} \quad e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$$

Convergence? Yes. Global optimum? No

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden state set Q) **returns** HMM=(A,B)

initialize A and B iterate until convergence

E-step

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)} \ \forall \ t \text{ and } j$$

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(N)} \ \forall \ t, \ i, \text{ and } j$$

M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_t(i, j)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$

Equivalent to the procedure given in the textbook (J&M) – slightly different notations

return A, B

How is Unsupervised Learning Possible (at all)?

- I water the garden everyday
- Saw a weird bug in that garden ...
- While I was thinking of an equation ...

Noun

S: (n) garden (a plot of ground where plants are cultivated)

<u>S:</u> (n) **garden** (the flowers or vegetables or fruits or herbs that are cultivated in a garden)

S: (n) garden (a yard or lawn adjoining a house)

Verb

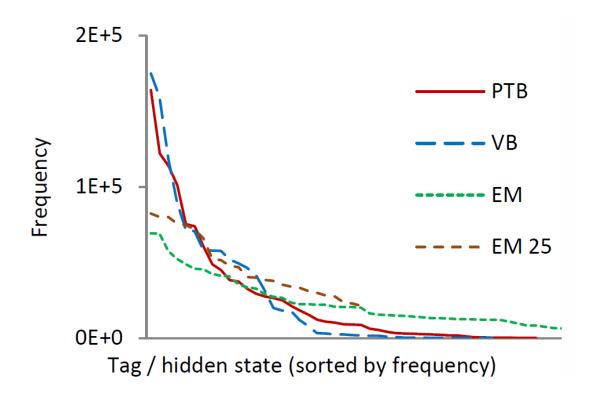
S: (v) garden (work in the garden) "My hobby is gardening"

Adjective

S: (adj) garden (the usual or familiar type) "it is a common or garden sparrow"

Does EM learn good HMM POS-taggers?

 "Why doesn't EM find good HMM POS-taggers", Johnson, EMNLP 2007



HMMs estimated by EM generally assign a roughly equal number of word tokens to each hidden state, while the empirical distribution of tokens to POS tags is highly skewed

Unsupervised Learning Results

- EM for HMM
 - POS Accuracy: 74.7%
- Bayesian HMM Learning [Goldwater, Griffiths 07]
 - Significant effort in specifying prior distriubtions
 - Integrate our parameters e(x|y) and t(y'|y)
 - POS Accuracy: 86.8%
- Unsupervised, feature rich models [Smith, Eisner 05]
 - Challenge: represent p(x,y) as a log-linear model, which requires normalizing over all possible sentences x
 - Smith presents a very clever approximation, based on local neighborhoods of x
 - POS Accuracy: 90.1%
- Newer, feature rich methods do better, not near supervised SOTA

Quiz: p(S1) vs. p(S2)

- S1 = Colorless green ideas sleep furiously.
- S2 = Furiously sleep ideas green colorless
 - "It is fair to assume that neither sentence (S1) nor (S2) had ever occurred in an English discourse. Hence, in any statistical model for grammaticalness, these sentences will be ruled out on identical grounds as equally "remote" from English" (Chomsky 1957)
- How would p(S1) and p(S2) compare based on (smoothed) bigram language models?
- How would p(S1) and p(S2) compare based on marginal probability based on POS-tagging HMMs?
 - i.e., marginalized over all possible sequences of POS tags