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Why vector models of meaning?
computing the similarity between 

words

“fast” is similar to “rapid”

“tall” is similar to “height”

Question answering:

Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 
feet”



Similar words in plagiarism detection



Word similarity for historical linguistics:
semantic change over time

Kulkarni, Al-Rfou, Perozzi, Skiena 2015Sagi, Kaufmann Clark 2013
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Problems with thesaurus-based meaning

§ We don’t have a thesaurus for every language
§ We can’t have a thesaurus for every year

§ For historical linguistics, we need to compare word 
meanings in year t to year t+1

§ Thesauruses have problems with recall
§ Many words and phrases are missing
§ Thesauri work less well for verbs, adjectives



Distributional models of meaning
= vector-space models of meaning 

= vector semantics

Intuitions:  Zellig Harris (1954):
§ “oculist and eye-doctor … occur in almost the same 

environments”
§ “If A and B have almost identical environments we say 

that they are synonyms.”

Firth (1957): 
§ “You shall know a word by the company it keeps!”



Intuition of distributional word similarity

§ Suppose I asked you what is tesgüino?
A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.

§ From context words humans can guess tesgüino means
§ an alcoholic beverage like beer

§ Intuition for algorithm: 
§ Two words are similar if they have similar word 

contexts.



Four kinds of vector models

Sparse vector representations
1. Word co-occurrence matrices 

-- weighted by mutual-information

Dense vector representations
2. Singular value decomposition (and Latent Semantic 

Analysis)
3. Neural-network inspired models (skip-grams, 

CBOW)

Contextualized word embeddings
4. ELMo: Embeddings from a Language Model



Shared intuition

§ Model the meaning of a word by “embedding” it in a vector 
space.

§ The meaning of a word is a vector of numbers
§ Vector models are also called “embeddings”.



Thought vector?

§ You can't cram the meaning of a whole %&!$# sentence 
into a single $&!#* vector!

Raymond Mooney



Vector Semantics

I. Words and co-occurrence vectors



Co-occurrence Matrices

§ We represent how often a word occurs in a document
§ Term-document matrix

§ Or how often a word occurs with another
§ Term-term matrix 

(or word-word co-occurrence matrix

or word-context matrix)



As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

Term-document matrix

§ Each cell: count of word w in a document d:
§ Each document is a count vector in ℕv: a column below 



Similarity in term-document matrices

Two documents are similar if their vectors are similar

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0



The words in a term-document matrix

§ Each word is a count vector in ℕD: a row below 

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0



The words in a term-document matrix

§ Two words are similar if their vectors are similar

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0



The word-word or word-context matrix

§ Instead of entire documents, use smaller contexts
§ Paragraph
§ Window of ± 4 words

§ A word is now defined by a vector over counts of context 
words

§ Instead of each vector being of length D

§ Each vector is now of length |V|
§ The word-word matrix is |V|x|V|



Word-Word matrix
Sample contexts ± 7 words

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0
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tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the

… …



Word-word matrix

§ We showed only 4x6, but the real matrix is 50,000 x 50,000
§ So it’s very sparse (most values are 0)
§ That’s OK, since there are lots of efficient algorithms for 

sparse matrices.

§ The size of windows depends on your goals
§ The shorter the windows…

§ the more syntactic the representation (± 1-3 words)
§ The longer the windows…

§ the more semantic the representation (± 4-10 words)



2 kinds of co-occurrence between 2 words

§ First-order co-occurrence (syntagmatic association):
§ They are typically nearby each other. 
§ wrote is a first-order associate of book or poem. 

§ Second-order co-occurrence (paradigmatic association): 
§ They have similar neighbors. 
§ wrote is a second- order associate of words like said or 

remarked. 

(Schütze and Pedersen, 1993)



Vector Semantics

Positive Pointwise Mutual Information 
(PPMI)



Informativeness of a context word X 
for a target word Y

§ Freq(the, beer)     VS   freq(drink, beer) ?

§ How about joint probability?
§ P(the, beer) VS   P(drink, beer) ?

§ Frequent words like “the” and “of” are not quite 
informative

§ Normalize by the individual word frequencies!
è Pointwise Mutual Information (PMI)



Pointwise Mutual Information

Pointwise mutual information: 
Do events x and y co-occur more than if they were independent?

PMI between two words:  (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent? 

PMI $%&'(, $%&'* = log*
/($%&'(, $%&'*)
/ $%&'( /($%&'*)

PMI(X = x, Y = y) = log2
P (x, y)

P (x)P (y)



Positive Pointwise Mutual Information

§ PMI ranges from −∞ to +∞
§ But the negative values are problematic

§ Things are co-occurring less than we expect by chance
§ Unreliable without enormous corpora

§ Imagine w1 and w2 whose probability is each 10-6

§ Hard to be sure p(w1,w2) is significantly different than 10-12

§ Plus it’s not clear people are good at “unrelatedness”

§ So we just replace negative PMI values by 0

§ Positive PMI (PPMI) between word1 and word2:

PPMI '()*+, '()*- = max log-
5('()*+, '()*-)
5 '()*+ 5('()*-)

, 0



Computing PPMI on a term-context matrix

§ Matrix F with W rows (words) and C columns (contexts)

§ fij is # of times wi occurs in context cj

pij =
fijPW

i=1

PC
j=1 fij

pi⇤ =

PC
j=1 fijPW

i=1

PC
j=1 fij

p⇤j =

PW
i=1 fijPW

i=1

PC
j=1 fij

pmiij = log
pij

pi⇤p⇤j

ppmiij = max(0, pmiij)



p(w=information,c=data) = 

p(w=information) =

p(c=data) =

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

= .326/19

11/19 = .58

7/19 = .37

pij =
fijPW

i=1

PC
j=1 fij

p(wi) =

PC
j=1 fij

N
The picture can't be displayed.



§ pmi(information,data) = log2 (

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1

.32 / (.37*.58) ) = .58
(.57 using full precision)

pmiij = log
pij

pi⇤p⇤j



Weighting PMI

§ PMI is biased toward infrequent events
§ Very rare words have very high PMI values

§ Two solutions:
§ Give rare words slightly higher probabilities
§ Use add-one smoothing (which has a similar effect)



Weighting PMI: Giving rare context words 
slightly higher probability

§ Raise the context probabilities to ! = 0.75:

§ This helps because '( ) > ' ) for rare c
§ Consider two events, P(a) = .99 and P(b)=.01

§ '( + = .,,.-.
.,,.-./.01.-. = .97 '( 3 = .01.-.

.,,.-./.01.-. = .03
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p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.



TF-IDF: Alternative to PPMI for 
measuring association

§ tf-idf (that’s a hyphen not a minus sign)

§ The combination of two factors

§ Term frequency (Luhn 1957): frequency of the word

§ Inverse document frequency (IDF) (Sparck Jones 1972)

§ N is the total number of documents

§ dfi = “document frequency of word i”

= # of documents with word I

§ = weight of word i in document j

idfi = log
N
dfi

!

"

#
#

$

%

&
&

wij = tfij idfi



Vector Semantics

Measuring similarity: the cosine



Measuring similarity

§ Given 2 target words v and w

§ We’ll need a way to measure their similarity.
§ Most measure of vectors similarity are based on the:

§ Dot product or inner product from linear algebra

§ High when two vectors have large values in same 
dimensions. 

§ Low (in fact 0) for orthogonal vectors with zeros in 
complementary distribution
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computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector



Problem with dot product

§ Dot product is longer if the vector is longer. Vector length:

§ Vectors are longer if they have higher values in each dimension

§ That means more frequent words will have higher dot products

§ That’s bad: we don’t want a similarity metric to be sensitive to 
word frequency
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pineapple 0 0 0.56 0 0.56
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information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
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(19.13)
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For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector



Solution: cosine

§ Just divide the dot product by the length of the two 
vectors!

§ This turns out to be the cosine of the angle between them!
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The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =
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(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector



Cosine for computing similarity

cos(v, w) =
v • w
v w

=
v
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w
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Dot product Unit vectors

vi is the PPMI value for word v in context i
wi is the PPMI value for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3



Cosine as a similarity metric

§ -1: vectors point in opposite directions 

§ +1:  vectors point in same directions
§ 0: vectors are orthogonal

§ Raw frequency or PPMI are non-negative, so cosine range 0-1



Visualizing vectors and angles
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Vector Semantics

Evaluating similarity



Evaluating similarity

§ Extrinsic (task-based, end-to-end) Evaluation:
§ Question Answering
§ Spell Checking
§ Essay grading

§ Intrinsic Evaluation:
§ Correlation between algorithm and human word 

similarity ratings
§ Wordsim353: 353 noun pairs rated 0-10.   
sim(plane,car)=5.77

§ Taking TOEFL multiple-choice vocabulary tests
§ Levied is closest in meaning to:
imposed, believed, requested, correlated



Vector Semantics

Dense Vectors 



Sparse versus dense vectors

§ PPMI vectors are
§ long (length |V|= 20,000 to 50,000)
§ sparse (most elements are zero)

§ Alternative: learn vectors which are
§ short (length 200-1000)
§ dense (most elements are non-zero)



Sparse versus dense vectors

§ Why dense vectors?
§ Short vectors may be easier to use as features in 

machine learning (less weights to tune)
§ Dense vectors may generalize better than storing 

explicit counts
§ They may do better at capturing synonymy:

§ car and automobile are synonyms; but are 
represented as distinct dimensions; this fails to 
capture similarity between a word with car as a 
neighbor and a word with automobile as a neighbor



Three methods for short dense vectors

§ Singular Value Decomposition (SVD)
§ A special case of this is called LSA (Latent Semantic 

Analysis)

§ “Neural Language Model”-inspired predictive models
§ skip-grams and CBOW

§ Brown clustering



Vector Semantics

Dense Vectors via SVD



Intuition

§ Approximate an N-dimensional dataset using fewer 
dimensions

§ By first rotating the axes into a new space

§ In which the highest order dimension captures the most 
variance in the original dataset

§ And the next dimension captures the next most variance, 
etc.

§ Many such (related) methods:
§ PCA – principle components analysis
§ Factor Analysis
§ SVD
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PCA dimension 1
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Dimensionality reduction



Singular Value Decomposition

Any (w x c) matrix X equals the product of 3 matrices:
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 

Contexts 

3= 
m x m  m x c  

w x c  w x m  

Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 



Singular Value Decomposition

Any (w x c) matrix X equals the product of 3 matrices:

X = W S C

W: (w x m) matrix: rows corresponding to original but m
columns represents a dimension in a new latent space, such 
that 

• m column vectors are orthogonal to each other
• m = “Rank” of X. 

S: (m x m) matrix: diagonal matrix of singular values expressing 
the importance of each dimension.

C: (m x c) matrix: columns corresponding to original but m
rows corresponding to singular values



Singular Value Decomposition
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 
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Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 

Landuaer and Dumais 1997



SVD applied to term-document matrix:
Latent Semantic Analysis (LSA)

§ Often m is not small enough!

§ If instead of keeping all m dimensions, we just keep the top k
singular values. Let’s say 300.

§ The result is a least-squares approximation to the original X

§ But instead of multiplying,                                                                    
we’ll just make use of W.

§ Each row of W:
§ A k-dimensional vector
§ Representing word W
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main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
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singular values in the diagonal matrix along with the corresponding 
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is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 
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Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
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Deerwester et al (1988)



LSA more details

§ 300 dimensions are commonly used

§ The cells are commonly weighted by a product of two weights
§ Local weight:  Log term frequency
§ Global weight: either idf or an entropy measure



Let’s return to PPMI word-word matrices

§ Can we apply SVD to them?



SVD applied to term-term matrix

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
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Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

(simplifying assumption: the matrix has rank |V|)



Truncated SVD on term-term matrix

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).



Truncated SVD produces embeddings

§ Each row of W matrix is a k-dimensional 
representation of each word w

§ K might range from 50 to 1000

§ Generally we keep the top k dimensions, 
but some experiments suggest that 
getting rid of the top 1 dimension or  
even the top 50 dimensions is helpful 
(Lapesa and Evert 2014).
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Embeddings versus sparse vectors

Dense SVD embeddings sometimes work better than sparse 
PPMI matrices at tasks like word similarity
§ Denoising: low-order dimensions may represent 

unimportant information

§ Truncation may help the models generalize better to 
unseen data.

§ Having a smaller number of dimensions may make it easier 
for classifiers to properly weight the dimensions for the 
task.

§ Dense models may do better at capturing higher order co-
occurrence. 



Vector Semantics

Embeddings inspired by neural language 
models: skip-grams and CBOW



Prediction-based models:
An alternative way to get dense vectors

§ Skip-gram (Mikolov et al. 2013a)  CBOW (Mikolov et al. 2013b)

§ Learn embeddings as part of the process of word prediction.
§ Train a neural network to predict neighboring words
§ Inspired by neural net language models (sans nonlinearity).
§ In so doing, learn dense embeddings for the words in the 

training corpus.

§ Advantages:
§ Fast, easy to train (much faster than SVD)
§ Available online in the word2vec package
§ Including sets of pretrained embeddings!



Skip-grams

§ Predict each neighboring word 
§ in a context window of 2C words 
§ from the current word. 

§ So for C=2, we are given word wt and predicting these 4 words:
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This method is sometimes called truncated SVD. SVD is parameterized by k,truncated SVD
the number of dimensions in the representation for each word, typically ranging
from 500 to 1000. Usually, these are the highest-order dimensions, although for
some tasks, it seems to help to actually throw out a small number of the most high-
order dimensions, such as the first 50 (Lapesa and Evert, 2014).

The dense embeddings produced by SVD sometimes perform better than the
raw PPMI matrices on semantic tasks like word similarity. Various aspects of the
dimensionality reduction seem to be contributing to the increased performance. If
low-order dimensions represent unimportant information, the truncated SVD may be
acting to removing noise. By removing parameters, the truncation may also help the
models generalize better to unseen data. When using vectors in NLP tasks, having
a smaller number of dimensions may make it easier for machine learning classifiers
to properly weight the dimensions for the task. And the models may do better at
capturing higher order co-occurrence.

Nonetheless, there is a significant computational cost for the SVD for a large co-
occurrence matrix, and performance is not always better than using the full sparse
PPMI vectors, so for some applications the sparse vectors are the right approach.
Alternatively, the neural embeddings we discuss in the next section provide a popular
efficient solution to generating dense embeddings.

19.4 Embeddings from prediction: Skip-gram and CBOW

An alternative to applying dimensionality reduction techniques like SVD to co-
occurrence matrices is to apply methods that learn embeddings for words as part
of the process of word prediction. Two methods for generating dense embeddings,
skip-gram and CBOW (continuous bag of words) (Mikolov et al. 2013, Mikolovskip-gram

CBOW et al. 2013a), draw inspiration from the neural methods for language modeling intro-
duced in Chapter 5. Like the neural language models, these models train a network
to predict neighboring words, and while doing so learn dense embeddings for the
words in the training corpus. The advantage of these methods is that they are fast,
efficient to train, and easily available online in the word2vec package; code and
pretrained embeddings are both available.

We’ll begin with the skip-gram model. The skip-gram model predicts each
neighboring word in a context window of 2C words from the current word. So
for a context window C = 2 the context is [wt�2,wt�1,wt+1,wt+2] and we are pre-
dicting each of these from word wt . Fig. 17.12 sketches the architecture for a sample
context C = 1.

The skip-gram model actually learns two d-dimensional embeddings for each
word w: the input embedding v and the output embedding v0. These embeddingsinput

embedding
output

embedding are encoded in two matrices, the input matrix W and the output matrix W 0. Each
column i of the input matrix W is the 1⇥ d vector embedding vi for word i in the
vocabulary. Each row i of the output matrix W 0 is a d ⇥ 1 vector embedding v0i for
word i in the vocabulary

Let’s consider the prediction task. We are walking through a corpus of length T
and currently pointing at the tth word w(t), whose index in the vocabulary is j, so
we’ll call it w j (1 < j < |V |). Let’s consider predicting one of the 2C context words,
for example w(t+1), whose index in the vocabulary is k (1 < k < |V |). Hence our task
is to compute P(wk|w j).



Skip-grams learn 2 embeddings for each w

output embedding v′, in the output matrix W’

§ Embedding of the context word

§ Column i of the output matrix W′ is a  1 x d 
embedding v′i for word i in the vocabulary.

input embedding v, in the input matrix W

§ Embedding of the target word
§ Row i of the input matrix W is the d x 1 

embedding vi for word i in the vocabulary
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Setup

§ Walking through corpus pointing at word w(t), whose 
index in the vocabulary is j, so we’ll call it wj (1 < j < |V |). 

§ Let’s predict w(t+1) , whose index in the vocabulary is k 
(1 < k < |V |). Hence our task is to compute P(wk|wj). 



One-hot vectors

§ A vector of length |V| 

§ 1 for the target word and 0 for other words
§ So if “popsicle” is vocabulary word 5

§ The one-hot vector is

§ [0,0,0,0,1,0,0,0,0…….0]
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Turning outputs into probabilities

§ We use softmax to turn into probabilities
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Figure 19.12 The skip-gram model (Mikolov et al. 2013, Mikolov et al. 2013a).

We begin with an input vector x, which is a one-hot vector for the current word
w j (hence x j = 1, and xi = 0 8i 6= j). We then predict the probability of each of the
2C output words—in Fig. 17.12 that means the two output words wt�1 and wt+1—
in 3 steps:

1. x is multiplied by W , the input matrix, to give the hidden or projection layer.projection layer

Since each column of the input matrix W is just an embedding for word wt ,
and the input is a one-hot vector for w j, the projection layer for input x will be
h = v j, the input embedding for w j.

2. For each of the 2C context words we now multiply the projection vector h by
the output matrix W 0. The result for each context word, o = W 0h, is a 1⇥ |V |
dimensional output vector giving a score for each of the |V | vocabulary words.
In doing so, the element ok was computed by multiplying h by the output
embedding for word wk: ok = v0kh.

3. Finally, for each context word we normalize this score vector, turning the
score for each element ok into a probability by using the soft-max function:

p(wk|w j) =
exp(v0k · v j)P

w02|V | exp(v0w · v j)
(19.24)

The next section explores how the embeddings, the matrices W and W 0, are
learned. Once they are learned, we’ll have two embeddings for each word wi: vi and
v0i. We can just choose to use the input embedding vi from W , or we can add the
two and use the embedding vi + v0i as the new d-dimensional embedding, or we can
concatenate them into an embedding of dimensionality 2d.

As with the simple count-based methods like PPMI, the context window size C
effects the performance of skip-gram embeddings, and experiments often tune the
parameter C on a dev set. As as with PPMI, window sizing leads to qualitative
differences: smaller windows capture more syntactic information, larger ones more
semantic and relational information. One difference from the count-based methods

yk = v0Tk vj = v0k · vj



Embeddings from W and W’

§ Since we have two embeddings, vj and v’j for each word wj
§ We can either:

§ Just use vj

§ Sum them
§ Concatenate them to make a double-length embedding



Training embeddings
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is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

19.4.1 Learning the input and output embeddings
There are various ways to learn skip-grams; we’ll sketch here just the outline of a
simple version based on Eq. 17.24.

The goal of the model is to learn representations (the embedding matrices W and
W 0; we’ll refer to them collectively as the parameters q ) that do well at predicting
the context words, maximizing the log likelihood of the corpus, Text.

argmax
q

log p(Text) (19.25)

We’ll first make the naive bayes assumptions that the input word at time t is
independent of the other input words,

argmax
q

log
TY

t=1

p(w(t�C), ...,w(t�1),w(t+1), ...,w(t+C)) (19.26)

We’ll also assume that the probabilities of each context (output) word is independent
of the other outputs:

argmax
q

X

�c jc, j 6=0

log p(w(t+ j)|w(t)) (19.27)

We now substitute in Eq. 17.24:

= argmax
q

TX

t=1

X

�c jc, j 6=0

log
exp(v0(t+ j) · v(t))P
w2|V | exp(v0w · v(t))

(19.28)

With some rearrangements::

= argmax
q

TX

t=1

X

�c jc, j 6=0

2

4v0(t+ j) · v(t) � log
X

w2|V |
exp(v0w · v(t))

3

5 (19.29)

Eq. 17.29 shows that we are looking to set the parameters q (the embedding
matrices W and W 0) in a way that maximizes the similarity between each word w(t)

and its nearby context words w(t+ j), while minimizing the similarity between word
w(t) and all the words in the vocabulary.

The actual training objective for skip-gram, the negative sampling approach, is
somewhat different; because it’s so time-consuming to sum over all the words in
the vocabulary V , the algorithm merely chooses a few negative samples to minimize
rather than every word. The training proceeds by stochastic gradient descent, using
error backpropagation as described in Chapter 5 (Mikolov et al., 2013a).

There is an interesting relationship between skip-grams, SVD/LSA, and PPMI.
If we multiply the two context matrices W ·W 0T , we produce a |V |⇥ |V | matrix X ,
each entry mi j corresponding to some association between input word i and output
word j. Levy and Goldberg (2014b) shows that skip-gram’s optimal value occurs
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the vocabulary V , the algorithm merely chooses a few negative samples to minimize
rather than every word. The training proceeds by stochastic gradient descent, using
error backpropagation as described in Chapter 5 (Mikolov et al., 2013a).

There is an interesting relationship between skip-grams, SVD/LSA, and PPMI.
If we multiply the two context matrices W ·W 0T , we produce a |V |⇥ |V | matrix X ,
each entry mi j corresponding to some association between input word i and output
word j. Levy and Goldberg (2014b) shows that skip-gram’s optimal value occurs

= argmax
✓

TX

t=1

|w(t))



Training: Noise Contrastive Estimation (NCE)

§ the normalization factor is too expensive to compute 
exactly (why?)

§ Negative sampling: sample only a handful of negative 
examples to compute the normalization factor

§ (some engineering detail) the actual skip-gram training 
also converts the problem into binary classification 
(logistic regression) of predicting whether a given word 
is a context word or not
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is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

19.4.1 Learning the input and output embeddings
There are various ways to learn skip-grams; we’ll sketch here just the outline of a
simple version based on Eq. 17.24.

The goal of the model is to learn representations (the embedding matrices W and
W 0; we’ll refer to them collectively as the parameters q ) that do well at predicting
the context words, maximizing the log likelihood of the corpus, Text.

argmax
q

log p(Text) (19.25)

We’ll first make the naive bayes assumptions that the input word at time t is
independent of the other input words,

argmax
q

log
TY

t=1

p(w(t�C), ...,w(t�1),w(t+1), ...,w(t+C)) (19.26)

We’ll also assume that the probabilities of each context (output) word is independent
of the other outputs:

argmax
q

X

�c jc, j 6=0

log p(w(t+ j)|w(t)) (19.27)

We now substitute in Eq. 17.24:

= argmax
q

TX

t=1

X

�c jc, j 6=0

log
exp(v0(t+ j) · v(t))P
w2|V | exp(v0w · v(t))

(19.28)

With some rearrangements::
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Relation between skipgrams and PMI!

§ If we multiply WW’ 

§ We get a |V|x|V| matrix M , each entry mij corresponding to 
some association between input word i and output word j 

§ Levy and Goldberg (2014b) show that skip-gram reaches 
its optimum just when this matrix is a shifted version of 
PMI:

WW′=MPMI −log k 
§ So skip-gram is implicitly factoring a shifted version of the 

PMI matrix into the two embedding matrices.



CBOW (Continuous Bag of Words)

Input layer
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Properties of embeddings

§ Nearest words to some embeddings (Mikolov et al. 2013)
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matrix is repeated between each one-hot input and the projection layer h. For the
case of C = 1, these two embeddings must be combined into the projection layer,
which is done by multiplying each one-hot context vector x by W to give us two
input vectors (let’s say vi and v j). We then average these vectors

h = W · 1
2C

X

�c jc, j 6=0

v( j) (19.31)

As with skip-grams, the the projection vector h is multiplied by the output matrix
W 0. The result o = W 0h is a 1⇥ |V | dimensional output vector giving a score for
each of the |V | words. In doing so, the element ok was computed by multiplying
h by the output embedding for word wk: ok = v0kh. Finally we normalize this score
vector, turning the score for each element ok into a probability by using the soft-max
function.

19.5 Properties of embeddings

We’ll discuss in Section 17.8 how to evaluate the quality of different embeddings.
But it is also sometimes helpful to visualize them. Fig. 17.14 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 19.14 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 17.15 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property. We return in the next section to these
relational properties of embeddings and how they relate to meaning compositional-
ity: the way the meaning of a phrase is built up out of the meaning of the individual
vectors.

19.6 Compositionality in Vector Models of Meaning

To be written.



Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)



Contextualized Embeddings

ELMo: Embeddings from a 
Language Model

[Peters et al 2018]



Compute contextual vector:

ck = f(wk | w1, …, wn )  ∈ ℝ N

f(play | Elmo and Cookie Monster play a game .)
≠

f(play | The Broadway play premiered yesterday .)



Neural LMs embed the left 
context of a word.

We can introduce a bidirectional 
LM to embed left and right 
context.

Key ideas
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Embeddings from Language Models

• Use ELMo vectors in end tasks

e.g. instead of SkipGram or CBOW

• Lambdas are task-specific hyperparameters





* Kitaev and Klein, ACL 2018   (see also Joshi et al., ACL 2018)

*



Intrinsic 
evaluations

POS tagging and WSD 
to evaluate contextual 
representations



Intrinsic Evaluations

Linear classifier w/ 
contextual vector

Nearest neighbor
averaged contextual vector
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Different tasks can learn to mix
different types of supervision


