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To-Do List

I Online quiz: due Sunday

I Read: Kübler et al. (2009, ch. 1, 2, 6)

I A3 due May 7 (Sunday)

I A4 due May 14 (Sunday)
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Dependencies

Informally, you can think of dependency structures as a transformation of
phrase-structures that

I maintains the word-to-word relationships induced by lexicalization,

I adds labels to them, and

I eliminates the phrase categories.

There are also linguistic theories built on dependencies (Tesnière, 1959; Mel’čuk,
1987), as well as treebanks corresponding to those.

I Free(r)-word order languages (e.g., Czech)
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Dependency Tree: Definition

Let x = 〈x1, . . . , xn〉 be a sentence. Add a special root symbol as “x0.”

A dependency tree consists of a set of tuples 〈p, c, `〉, where

I p ∈ {0, . . . , n} is the index of a parent

I c ∈ {1, . . . , n} is the index of a child

I ` ∈ L is a label

Different annotation schemes define different label sets L, and different constraints on
the set of tuples. Most commonly:

I The tuple is represented as a directed edge from xp to xc with label `.

I The directed edges form an arborescence (directed tree) with x0 as the root
(sometimes denoted root).
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Example

S

NP

Pronoun

we

VP

Verb

wash

NP

Determiner

our

Noun

cats

Phrase-structure tree.
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Example

S

NP

Pronoun

we

VP

Verb

wash

NP

Determiner

our

Noun

cats

Phrase-structure tree with heads.
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Example

Swash

NPwe

Pronounwe

we

VPwash

Verbwash

wash

NPcats

Determinerour

our

Nouncats

cats

Phrase-structure tree with heads, lexicalized.
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Example

we wash our cats

“Bare bones” dependency tree.
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Example

we wash our cats who stink
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Example

we vigorously wash our cats who stink

10 / 96



Content Heads vs. Function Heads
Credit: Nathan Schneider

little kids were always watching birds with fish

little kids were always watching birds with fish
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Labels

kids saw birds with fish

root

sbj dobj prep

pobj

Key dependency relations captured in the labels include: subject, direct object,
preposition object, adjectival modifier, adverbial modifier.

In this lecture, I will mostly not discuss labels, to keep the algorithms simpler.
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Coordination Structures

we vigorously wash our cats and dogs who stink

The bugbear of dependency syntax.
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Example

we vigorously wash our cats and dogs who stink

Make the first conjunct the head?
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Example

we vigorously wash our cats and dogs who stink

Make the coordinating conjunction the head?
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Example

we vigorously wash our cats and dogs who stink

Make the second conjunct the head?
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Dependency Schemes

I Transform the treebank: define “head rules” that can select the head child of any
node in a phrase-structure tree and label the dependencies.

I More powerful, less local rule sets, possibly collapsing some words into arc labels.
I Stanford dependencies are a popular example (de Marneffe et al., 2006).

I Direct annotation.
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Three Approaches to Dependency Parsing

1. Dynamic programming with the Eisner algorithm.

2. Transition-based parsing with a stack.

3. Chu-Liu-Edmonds algorithm for arborescences.
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Dependencies and Grammar

Context-free grammars can be used to encode dependency structures.

For every head word and constellation of dependent children:

Nhead → Nleftmost-sibling . . . Nhead . . . Nrightmost-sibling

And for every v ∈ V: Nv → v and S → Nv.
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Dependencies and Grammar

Context-free grammars can be used to encode dependency structures.

For every head word and constellation of dependent children:

Nhead → Nleftmost-sibling . . . Nhead . . . Nrightmost-sibling

And for every v ∈ V: Nv → v and S → Nv.

A bilexical dependency grammar binarizes the dependents, generating only one per
rule.

Such a grammar can produce only projective trees, which are (informally) trees in
which the arcs don’t cross.
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Bilexical Dependency Grammar: Derivation

S

Nwash

Nwe

we

Nwash

Nwash

wash

Ncats

Nour

our

Ncats

cats

Näıvely, the CKY algorithm will require O(n5) runtime. Why?
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CKY for Bilexical Context-Free Grammars

i k

Nxh

j + 1 k

Nxc

i j

Nxh

p(Nxh Nxc | Nxh)

i k

Nxh

j + 1 k

Nxh

i j

Nxc

p(Nxc Nxh  | Nxh)
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CKY Example

we          wash           our           cats

goal

Nwe Nwash Nour. Ncats

Ncats

Nwash

Nwash

S
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Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Items:
h d d h c h h c

I Both triangles indicate that xd is a descendant of xh.

I Both trapezoids indicate that xc can be attached as the child of xh.

I In all cases, the words “in between” are descendants of xh.
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Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Initialization:

i i i i

1p(xi | Nxi)

Goal:

1 i i n
p(Nxi | S)

goal
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Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Attaching a left dependent: Complete a left child:

i j j + 1 k

i k

p(Nxi Nxk | Nxk)
j ki j

i k
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Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Attaching a right dependent: Complete a right child:

i j j + 1 k

i k

p(Nxi Nxk | Nxi)
i j j k

i k
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Eisner Algorithm Example

we          wash           our           cats

goal
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Three Approaches to Dependency Parsing

1. Dynamic programming with the Eisner algorithm.

2. Transition-based parsing with a stack.

3. Chu-Liu-Edmonds algorithm for arborescences.
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Transition-Based Parsing

I Process x once, from left to right, making a sequence of greedy parsing decisions.

I Formally, the parser is a state machine (not a finite-state machine) whose state
is represented by a stack S and a buffer B.

I Initialize the buffer to contain x and the stack to contain the root symbol.
I The “arc standard” transition set (Nivre, 2004):

I shift the word at the front of the buffer B onto the stack S.
I right-arc: u = pop(S); v = pop(S); push(S, v → u).
I left-arc: u = pop(S); v = pop(S); push(S, v ← u).

(For labeled parsing, add labels to the right-arc and left-arc transitions.)

I During parsing, apply a classifier to decide which transition to take next, greedily.
No backtracking.
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Transition-Based Parsing: Example

Stack S:

root

Buffer B:

we
vigorously
wash
our
cats
who
stink

Actions:
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Transition-Based Parsing: Example

Stack S:

we
root

Buffer B:

vigorously
wash
our
cats
who
stink

Actions: shift
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Transition-Based Parsing: Example

Stack S:

vigorously
we
root

Buffer B:

wash
our
cats
who
stink

Actions: shift shift
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Transition-Based Parsing: Example

Stack S:

wash
vigorously
we
root

Buffer B:

our
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stink

Actions: shift shift shift
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Transition-Based Parsing: Example

Stack S:

vigorously wash

we
root

Buffer B:

our
cats
who
stink

Actions: shift shift shift left-arc
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Transition-Based Parsing: Example

Stack S:

we vigorously wash

root

Buffer B:

our
cats
who
stink

Actions: shift shift shift left-arc left-arc
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Transition-Based Parsing: Example

Stack S:

our

we vigorously wash

root

Buffer B:

cats
who
stink

Actions: shift shift shift left-arc left-arc shift
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Transition-Based Parsing: Example

Stack S:

cats
our

we vigorously wash

root

Buffer B:

who
stink

Actions: shift shift shift left-arc left-arc shift shift
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Transition-Based Parsing: Example

Stack S:

our cats

we vigorously wash

root

Buffer B:

who
stink

Actions: shift shift shift left-arc left-arc shift shift left-arc

44 / 96



Transition-Based Parsing: Example

Stack S:

who

our cats

we vigorously wash

root

Buffer B:

stink

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
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Transition-Based Parsing: Example

Stack S:

stink
who

our cats

we vigorously wash

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift
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Transition-Based Parsing: Example
Stack S:

who stink

our cats

we vigorously wash

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc
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Transition-Based Parsing: Example

Stack S:

our cats who stink

we vigorously wash

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc right-arc
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Transition-Based Parsing: Example

Stack S:

we vigorously wash our cats who stink

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc right-arc right-arc
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Transition-Based Parsing: Example

Stack S:

we vigorously wash our cats who stink

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc right-arc right-arc right-arc
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The Core of Transition-Based Parsing: Classification

I At each iteration, choose among {shift, right-arc, left-arc}.
(Actually, among all L-labeled variants of right- and left-arc.)

I Features can look S, B, and the history of past actions—usually there is no
decomposition into local structures.

I Training data: “oracle” transition sequence that gives the right tree converts into
2 · n pairs: 〈state, correct transition〉. Each word gets shifted once and
participates as a child in one arc.
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Transition-Based Parsing: Remarks

I Can also be applied to phrase-structure parsing (e.g., Sagae and Lavie, 2006).
Keyword: “shift-reduce” parsing.

I The algorithm for making decisions doesn’t need to be greedy; can maintain
multiple hypotheses.

I E.g., beam search, which we’ll discuss in the context of machine translation later.

I Potential flaw: the classifier is typically trained under the assumption that
previous classification decisions were all correct.

I As yet, no principled solution to this problem, but see “dynamic oracles” (Goldberg
and Nivre, 2012).
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Three Approaches to Dependency Parsing

1. Dynamic programming with the Eisner algorithm.

2. Transition-based parsing with a stack.

3. Chu-Liu-Edmonds algorithm for arborescences.
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Features in Dependency Parsing

For the Eisner algorithm, the score of an unlabeled parse y was

sglobal(y) =

n∑
c=1

log p(xc | Nxc) + log


p(Nxc Nxp | Nxp) if 〈p, c〉 ∈ y ∧ c < p ∧ p > 0
p(Nxp Nxc | Nxp) if 〈p, c〉 ∈ y ∧ c > p ∧ p > 0
p(Nxc | S) if 〈0, c〉 ∈ y

For transition-based parsing, we could use any past decisions to score the current
decision:

sglobal(y) = s(a) =

|a|∑
i=1

s(ai | a0:i−1)

We gave up on any guarantee of finding the best possible y in favor of arbitrary
features.

I For a neural network-based model that fully exploits this, see Dyer et al. (2015).
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Graph-Based Dependency Parsing
(McDonald et al., 2005)

Every possible directed edge e between a parent p and a child c gets a local score, s(e).

This set, E, contains O(n2) edges.
No incoming edges to x0, ensuring that it will be the root.
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First-Order Graph-Based (FOG) Dependency Parsing
(McDonald et al., 2005)

y∗ = argmax
y⊂E

sglobal(y) = argmax
y⊂E

∑
e∈y

s(e)

subject to the constraint that y is an arborescence

Classical algorithm to efficiently solve this problem: Chu and Liu (1965), Edmonds
(1967)
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Chu-Liu-Edmonds Intuitions

I Every non-root node needs exactly one incoming edge.

I In fact, every connected component that doesn’t contain x0 needs exactly one
incoming edge.
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Chu-Liu-Edmonds Intuitions

I Every non-root node needs exactly one incoming edge.

I In fact, every connected component that doesn’t contain x0 needs exactly one
incoming edge.

High-level view of the algorithm:

1. For every c, pick an incoming edge (i.e., pick a parent)—greedily.

2. If this forms an arborescence, you are done!

3. Otherwise, it’s because there’s a cycle, C.
I Arborescences can’t have cycles, so some edge in C needs to be kicked out.
I We also need to find an incoming edge for C.
I Choosing the incoming edge for C determines which edge to kick out.
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Chu-Liu-Edmonds: Recursive (Inefficient) Definition

def maxArborescence(V , E, root):
# returns best arborescence as a map from each node to its parent

for c in V \ root:
bestInEdge[c]← argmaxe∈E:e=〈p,c〉 e.s # i.e., s(e)

if bestInEdge contains a cycle C:
# build a new graph where C is contracted into a single node
vC ← new Node()
V ′ ← V ∪ {vC} \ C
E′ ← {adjust(e, vC) for e ∈ E \ C}
A← maxArborescence(V ′, E′, root)
return {e.original for e ∈ A} ∪ C \ {A[vC ].kicksOut}

# each node got a parent without creating any cycles
return bestInEdge

63 / 96



Understanding Chu-Liu-Edmonds

There are two stages:

I Contraction (the stuff before the recursive call)

I Expansion (the stuff after the recursive call)
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Chu-Liu-Edmonds: Contraction

I For each non-root node v, set bestInEdge[v] to be its highest scoring incoming
edge.

I If a cycle C is formed:
I contract the nodes in C into a new node vC

adjust subroutine on next slide performs the following:
I Edges incoming to any node in C now get destination vC
I For each node v in C, and for each edge e incoming to v from outside of C:

I Set e.kicksOut to bestInEdge[v], and
I Set e.s to be e.s− e.kicksOut.s

I Edges outgoing from any node in C now get source vC

I Repeat until every non-root node has an incoming edge and no cycles are formed
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Chu-Liu-Edmonds: Edge Adjustment Subroutine

def adjust(e, vC):
e′ ← copy(e)
e′.original← e
if e.dest ∈ C:

e′.dest← vC
e′.kicksOut← bestInEdge[e.dest]
e′.s← e.s− e′.kicksOut.s

elif e.src ∈ C:
e′.src← vC

return e′
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Contraction Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1
V2
V3

kicksOut
a
b
c
d
e
f
g
h
i
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Contraction Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 g
V2
V3

kicksOut
a
b
c
d
e
f
g
h
i
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Contraction Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 g
V2 d
V3

kicksOut
a
b
c
d
e
f
g
h
i
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Contraction Example

V1

ROOT

V3V2

a : 5 − 10 b : 1 − 11 c : 1

f : 5d : 11

h : 9 − 10

e : 4

i : 8 − 11g : 10

V4

bestInEdge

V1 g
V2 d
V3

kicksOut
a g
b d
c
d
e
f
g
h g
i d
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Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3
V4

kicksOut

a g
b d
c
d
e
f
g
h g
i d
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Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3 f
V4

kicksOut

a g
b d
c
d
e
f
g
h g
i d
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Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3 f
V4 h

kicksOut

a g
b d
c
d
e
f
g
h g
i d
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Contraction Example

V4

ROOT

V3

b : −10 − −1 c : 1 − 5

f : 5

a : −5 − −1

h : −1

e : 4

i : −3

V5

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5

kicksOut

a g, h
b d, h
c f
d
e
f
g
h g
i d
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Contraction Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Contraction Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Chu-Liu-Edmonds: Expansion

After the contraction stage, every contracted node will have exactly one bestInEdge.
This edge will kick out one edge inside the contracted node, breaking the cycle.

I Go through each bestInEdge e in the reverse order that we added them

I Lock down e, and remove every edge in kicksOut(e) from bestInEdge.
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Expansion Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Expansion Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Expansion Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Expansion Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Expansion Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Expansion Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Observation

The set of arborescences strictly includes the set of projective dependency trees.

Is this a good thing or a bad thing?
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Nonprojective Example

A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT
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Chu-Liu-Edmonds: Notes

I This is a greedy algorithm with a clever form of delayed backtracking to recover
from inconsistent decisions (cycles).

I CLE is exact: it always recovers an optimal arborescence.
I What about labeled dependencies?

I As a matter of preprocessing, for each 〈p, c〉, keep only the top-scoring labeled edge.

I Tarjan (1977) offered a more efficient, but unfortunately incorrect,
implementation.
Camerini et al. (1979) corrected it.
The approach is not recursive; instead using a disjoint set data structure to keep
track of collapsed nodes.
Even better: Gabow et al. (1986) used a Fibonacci heap to keep incoming edges
sorted, and finds cycles in a more sensible way. Also constrains root to have only
one outgoing edge.
With these tricks, O(n2) runtime.
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More Details on Statistical Dependency Parsing

I What about the scores? McDonald et al. (2005) used carefully-designed features
and (something close to) the structured perceptron; Kiperwasser and Goldberg
(2016) used bidirectional recurrent neural networks.

I What about higher-order parsing? Requires approximate inference, e.g., dual
decomposition (Martins et al., 2013).
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Important Tradeoffs (and Not Just in NLP)

1. Two extremes:
I Specialized algorithm that efficiently solves your problem, under your assumptions.

E.g., Chu-Liu-Edmonds for FOG dependency parsing.
I General-purpose method that solves many problems, allowing you to test the effect

of different assumptions. E.g., dynamic programming, transition-based methods,
some forms of approximate inference.

2. Two extremes:
I Fast (linear-time) but greedy
I Model-optimal but slow
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1. Two extremes:
I Specialized algorithm that efficiently solves your problem, under your assumptions.

E.g., Chu-Liu-Edmonds for FOG dependency parsing.
I General-purpose method that solves many problems, allowing you to test the effect

of different assumptions. E.g., dynamic programming, transition-based methods,
some forms of approximate inference.

2. Two extremes:
I Fast (linear-time) but greedy
I Model-optimal but slow

I Dirty secret: the best way to get (English) dependency trees is to run
phrase-structure parsing, then convert.
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