
Natural Language Processing (CSEP 517):
Dependency Syntax and Parsing

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

May 1, 2017

1 / 96

To-Do List

I Online quiz: due Sunday

I Read: Kübler et al. (2009, ch. 1, 2, 6)

I A3 due May 7 (Sunday)

I A4 due May 14 (Sunday)

2 / 96

Dependencies

Informally, you can think of dependency structures as a transformation of
phrase-structures that

I maintains the word-to-word relationships induced by lexicalization,

I adds labels to them, and

I eliminates the phrase categories.

There are also linguistic theories built on dependencies (Tesnière, 1959; Mel’čuk,
1987), as well as treebanks corresponding to those.

I Free(r)-word order languages (e.g., Czech)

3 / 96

Dependency Tree: Definition

Let x = 〈x1, . . . , xn〉 be a sentence. Add a special root symbol as “x0.”

A dependency tree consists of a set of tuples 〈p, c, `〉, where

I p ∈ {0, . . . , n} is the index of a parent

I c ∈ {1, . . . , n} is the index of a child

I ` ∈ L is a label

Different annotation schemes define different label sets L, and different constraints on
the set of tuples. Most commonly:

I The tuple is represented as a directed edge from xp to xc with label `.

I The directed edges form an arborescence (directed tree) with x0 as the root
(sometimes denoted root).

4 / 96

Example

S

NP

Pronoun

we

VP

Verb

wash

NP

Determiner

our

Noun

cats

Phrase-structure tree.

5 / 96

Example

S

NP

Pronoun

we

VP

Verb

wash

NP

Determiner

our

Noun

cats

Phrase-structure tree with heads.

6 / 96

Example

Swash

NPwe

Pronounwe

we

VPwash

Verbwash

wash

NPcats

Determinerour

our

Nouncats

cats

Phrase-structure tree with heads, lexicalized.

7 / 96

Example

we wash our cats

“Bare bones” dependency tree.

8 / 96

Example

we wash our cats who stink

9 / 96

Example

we vigorously wash our cats who stink

10 / 96

Content Heads vs. Function Heads
Credit: Nathan Schneider

little kids were always watching birds with fish

little kids were always watching birds with fish

11 / 96

Labels

kids saw birds with fish

root

sbj dobj prep

pobj

Key dependency relations captured in the labels include: subject, direct object,
preposition object, adjectival modifier, adverbial modifier.

In this lecture, I will mostly not discuss labels, to keep the algorithms simpler.

12 / 96

Coordination Structures

we vigorously wash our cats and dogs who stink

The bugbear of dependency syntax.

13 / 96

Example

we vigorously wash our cats and dogs who stink

Make the first conjunct the head?

14 / 96

Example

we vigorously wash our cats and dogs who stink

Make the coordinating conjunction the head?

15 / 96

Example

we vigorously wash our cats and dogs who stink

Make the second conjunct the head?

16 / 96

Dependency Schemes

I Transform the treebank: define “head rules” that can select the head child of any
node in a phrase-structure tree and label the dependencies.

I More powerful, less local rule sets, possibly collapsing some words into arc labels.
I Stanford dependencies are a popular example (de Marneffe et al., 2006).

I Direct annotation.

17 / 96

Three Approaches to Dependency Parsing

1. Dynamic programming with the Eisner algorithm.

2. Transition-based parsing with a stack.

3. Chu-Liu-Edmonds algorithm for arborescences.

18 / 96

Dependencies and Grammar

Context-free grammars can be used to encode dependency structures.

For every head word and constellation of dependent children:

Nhead → Nleftmost-sibling . . . Nhead . . . Nrightmost-sibling

And for every v ∈ V: Nv → v and S → Nv.

19 / 96

Dependencies and Grammar

Context-free grammars can be used to encode dependency structures.

For every head word and constellation of dependent children:

Nhead → Nleftmost-sibling . . . Nhead . . . Nrightmost-sibling

And for every v ∈ V: Nv → v and S → Nv.

A bilexical dependency grammar binarizes the dependents, generating only one per
rule.

20 / 96

Dependencies and Grammar

Context-free grammars can be used to encode dependency structures.

For every head word and constellation of dependent children:

Nhead → Nleftmost-sibling . . . Nhead . . . Nrightmost-sibling

And for every v ∈ V: Nv → v and S → Nv.

A bilexical dependency grammar binarizes the dependents, generating only one per
rule.

Such a grammar can produce only projective trees, which are (informally) trees in
which the arcs don’t cross.

21 / 96

Bilexical Dependency Grammar: Derivation

S

Nwash

Nwe

we

Nwash

Nwash

wash

Ncats

Nour

our

Ncats

cats

Näıvely, the CKY algorithm will require O(n5) runtime. Why?

22 / 96

CKY for Bilexical Context-Free Grammars

i k

Nxh

j + 1 k

Nxc

i j

Nxh

p(Nxh Nxc | Nxh)

i k

Nxh

j + 1 k

Nxh

i j

Nxc

p(Nxc Nxh | Nxh)

23 / 96

CKY Example

we wash our cats

goal

Nwe Nwash Nour. Ncats

Ncats

Nwash

Nwash

S

24 / 96

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Items:
h d d h c h h c

I Both triangles indicate that xd is a descendant of xh.

I Both trapezoids indicate that xc can be attached as the child of xh.

I In all cases, the words “in between” are descendants of xh.

25 / 96

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Initialization:

i i i i

1p(xi | Nxi)

Goal:

1 i i n
p(Nxi | S)

goal

26 / 96

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Attaching a left dependent: Complete a left child:

i j j + 1 k

i k

p(Nxi Nxk | Nxk)
j ki j

i k

27 / 96

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Attaching a right dependent: Complete a right child:

i j j + 1 k

i k

p(Nxi Nxk | Nxi)
i j j k

i k

28 / 96

Eisner Algorithm Example

we wash our cats

goal

29 / 96

Three Approaches to Dependency Parsing

1. Dynamic programming with the Eisner algorithm.

2. Transition-based parsing with a stack.

3. Chu-Liu-Edmonds algorithm for arborescences.

30 / 96

Transition-Based Parsing

I Process x once, from left to right, making a sequence of greedy parsing decisions.

I Formally, the parser is a state machine (not a finite-state machine) whose state
is represented by a stack S and a buffer B.

I Initialize the buffer to contain x and the stack to contain the root symbol.
I The “arc standard” transition set (Nivre, 2004):

I shift the word at the front of the buffer B onto the stack S.
I right-arc: u = pop(S); v = pop(S); push(S, v → u).
I left-arc: u = pop(S); v = pop(S); push(S, v ← u).

(For labeled parsing, add labels to the right-arc and left-arc transitions.)

I During parsing, apply a classifier to decide which transition to take next, greedily.
No backtracking.

31 / 96

Transition-Based Parsing

I Process x once, from left to right, making a sequence of greedy parsing decisions.

I Formally, the parser is a state machine (not a finite-state machine) whose state
is represented by a stack S and a buffer B.

I Initialize the buffer to contain x and the stack to contain the root symbol.
I The “arc standard” transition set (Nivre, 2004):

I shift the word at the front of the buffer B onto the stack S.
I right-arc: u = pop(S); v = pop(S); push(S, v → u).
I left-arc: u = pop(S); v = pop(S); push(S, v ← u).

(For labeled parsing, add labels to the right-arc and left-arc transitions.)

I During parsing, apply a classifier to decide which transition to take next, greedily.
No backtracking.

32 / 96

Transition-Based Parsing

I Process x once, from left to right, making a sequence of greedy parsing decisions.

I Formally, the parser is a state machine (not a finite-state machine) whose state
is represented by a stack S and a buffer B.

I Initialize the buffer to contain x and the stack to contain the root symbol.

I The “arc standard” transition set (Nivre, 2004):
I shift the word at the front of the buffer B onto the stack S.
I right-arc: u = pop(S); v = pop(S); push(S, v → u).
I left-arc: u = pop(S); v = pop(S); push(S, v ← u).

(For labeled parsing, add labels to the right-arc and left-arc transitions.)

I During parsing, apply a classifier to decide which transition to take next, greedily.
No backtracking.

33 / 96

Transition-Based Parsing

I Process x once, from left to right, making a sequence of greedy parsing decisions.

I Formally, the parser is a state machine (not a finite-state machine) whose state
is represented by a stack S and a buffer B.

I Initialize the buffer to contain x and the stack to contain the root symbol.
I The “arc standard” transition set (Nivre, 2004):

I shift the word at the front of the buffer B onto the stack S.
I right-arc: u = pop(S); v = pop(S); push(S, v → u).
I left-arc: u = pop(S); v = pop(S); push(S, v ← u).

(For labeled parsing, add labels to the right-arc and left-arc transitions.)

I During parsing, apply a classifier to decide which transition to take next, greedily.
No backtracking.

34 / 96

Transition-Based Parsing

I Process x once, from left to right, making a sequence of greedy parsing decisions.

I Formally, the parser is a state machine (not a finite-state machine) whose state
is represented by a stack S and a buffer B.

I Initialize the buffer to contain x and the stack to contain the root symbol.
I The “arc standard” transition set (Nivre, 2004):

I shift the word at the front of the buffer B onto the stack S.
I right-arc: u = pop(S); v = pop(S); push(S, v → u).
I left-arc: u = pop(S); v = pop(S); push(S, v ← u).

(For labeled parsing, add labels to the right-arc and left-arc transitions.)

I During parsing, apply a classifier to decide which transition to take next, greedily.
No backtracking.

35 / 96

Transition-Based Parsing: Example

Stack S:

root

Buffer B:

we
vigorously
wash
our
cats
who
stink

Actions:

36 / 96

Transition-Based Parsing: Example

Stack S:

we
root

Buffer B:

vigorously
wash
our
cats
who
stink

Actions: shift

37 / 96

Transition-Based Parsing: Example

Stack S:

vigorously
we
root

Buffer B:

wash
our
cats
who
stink

Actions: shift shift

38 / 96

Transition-Based Parsing: Example

Stack S:

wash
vigorously
we
root

Buffer B:

our
cats
who
stink

Actions: shift shift shift

39 / 96

Transition-Based Parsing: Example

Stack S:

vigorously wash

we
root

Buffer B:

our
cats
who
stink

Actions: shift shift shift left-arc

40 / 96

Transition-Based Parsing: Example

Stack S:

we vigorously wash

root

Buffer B:

our
cats
who
stink

Actions: shift shift shift left-arc left-arc

41 / 96

Transition-Based Parsing: Example

Stack S:

our

we vigorously wash

root

Buffer B:

cats
who
stink

Actions: shift shift shift left-arc left-arc shift

42 / 96

Transition-Based Parsing: Example

Stack S:

cats
our

we vigorously wash

root

Buffer B:

who
stink

Actions: shift shift shift left-arc left-arc shift shift

43 / 96

Transition-Based Parsing: Example

Stack S:

our cats

we vigorously wash

root

Buffer B:

who
stink

Actions: shift shift shift left-arc left-arc shift shift left-arc

44 / 96

Transition-Based Parsing: Example

Stack S:

who

our cats

we vigorously wash

root

Buffer B:

stink

Actions: shift shift shift left-arc left-arc shift shift left-arc shift

45 / 96

Transition-Based Parsing: Example

Stack S:

stink
who

our cats

we vigorously wash

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift

46 / 96

Transition-Based Parsing: Example
Stack S:

who stink

our cats

we vigorously wash

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc

47 / 96

Transition-Based Parsing: Example

Stack S:

our cats who stink

we vigorously wash

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc right-arc

48 / 96

Transition-Based Parsing: Example

Stack S:

we vigorously wash our cats who stink

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc right-arc right-arc

49 / 96

Transition-Based Parsing: Example

Stack S:

we vigorously wash our cats who stink

root

Buffer B:

Actions: shift shift shift left-arc left-arc shift shift left-arc shift
shift right-arc right-arc right-arc right-arc

50 / 96

The Core of Transition-Based Parsing: Classification

I At each iteration, choose among {shift, right-arc, left-arc}.
(Actually, among all L-labeled variants of right- and left-arc.)

I Features can look S, B, and the history of past actions—usually there is no
decomposition into local structures.

I Training data: “oracle” transition sequence that gives the right tree converts into
2 · n pairs: 〈state, correct transition〉. Each word gets shifted once and
participates as a child in one arc.

51 / 96

The Core of Transition-Based Parsing: Classification

I At each iteration, choose among {shift, right-arc, left-arc}.
(Actually, among all L-labeled variants of right- and left-arc.)

I Features can look S, B, and the history of past actions—usually there is no
decomposition into local structures.

I Training data: “oracle” transition sequence that gives the right tree converts into
2 · n pairs: 〈state, correct transition〉. Each word gets shifted once and
participates as a child in one arc.

52 / 96

The Core of Transition-Based Parsing: Classification

I At each iteration, choose among {shift, right-arc, left-arc}.
(Actually, among all L-labeled variants of right- and left-arc.)

I Features can look S, B, and the history of past actions—usually there is no
decomposition into local structures.

I Training data: “oracle” transition sequence that gives the right tree converts into
2 · n pairs: 〈state, correct transition〉. Each word gets shifted once and
participates as a child in one arc.

53 / 96

Transition-Based Parsing: Remarks

I Can also be applied to phrase-structure parsing (e.g., Sagae and Lavie, 2006).
Keyword: “shift-reduce” parsing.

I The algorithm for making decisions doesn’t need to be greedy; can maintain
multiple hypotheses.

I E.g., beam search, which we’ll discuss in the context of machine translation later.

I Potential flaw: the classifier is typically trained under the assumption that
previous classification decisions were all correct.

I As yet, no principled solution to this problem, but see “dynamic oracles” (Goldberg
and Nivre, 2012).

54 / 96

Three Approaches to Dependency Parsing

1. Dynamic programming with the Eisner algorithm.

2. Transition-based parsing with a stack.

3. Chu-Liu-Edmonds algorithm for arborescences.

55 / 96

Acknowledgment

Slides are mostly adapted from those by Swabha Swayamdipta and Sam Thomson.

56 / 96

Features in Dependency Parsing

For the Eisner algorithm, the score of an unlabeled parse y was

sglobal(y) =

n∑
c=1

log p(xc | Nxc) + log


p(Nxc Nxp | Nxp) if 〈p, c〉 ∈ y ∧ c < p ∧ p > 0
p(Nxp Nxc | Nxp) if 〈p, c〉 ∈ y ∧ c > p ∧ p > 0
p(Nxc | S) if 〈0, c〉 ∈ y

For transition-based parsing, we could use any past decisions to score the current
decision:

sglobal(y) = s(a) =

|a|∑
i=1

s(ai | a0:i−1)

We gave up on any guarantee of finding the best possible y in favor of arbitrary
features.

I For a neural network-based model that fully exploits this, see Dyer et al. (2015).

57 / 96

Graph-Based Dependency Parsing
(McDonald et al., 2005)

Every possible directed edge e between a parent p and a child c gets a local score, s(e).

This set, E, contains O(n2) edges.
No incoming edges to x0, ensuring that it will be the root.

58 / 96

First-Order Graph-Based (FOG) Dependency Parsing
(McDonald et al., 2005)

y∗ = argmax
y⊂E

sglobal(y) = argmax
y⊂E

∑
e∈y

s(e)

subject to the constraint that y is an arborescence

Classical algorithm to efficiently solve this problem: Chu and Liu (1965), Edmonds
(1967)

59 / 96

Chu-Liu-Edmonds Intuitions

I Every non-root node needs exactly one incoming edge.

I In fact, every connected component that doesn’t contain x0 needs exactly one
incoming edge.

60 / 96

Chu-Liu-Edmonds Intuitions

I Every non-root node needs exactly one incoming edge.

I In fact, every connected component that doesn’t contain x0 needs exactly one
incoming edge.

61 / 96

Chu-Liu-Edmonds Intuitions

I Every non-root node needs exactly one incoming edge.

I In fact, every connected component that doesn’t contain x0 needs exactly one
incoming edge.

High-level view of the algorithm:

1. For every c, pick an incoming edge (i.e., pick a parent)—greedily.

2. If this forms an arborescence, you are done!

3. Otherwise, it’s because there’s a cycle, C.
I Arborescences can’t have cycles, so some edge in C needs to be kicked out.
I We also need to find an incoming edge for C.
I Choosing the incoming edge for C determines which edge to kick out.

62 / 96

Chu-Liu-Edmonds: Recursive (Inefficient) Definition

def maxArborescence(V , E, root):
returns best arborescence as a map from each node to its parent

for c in V \ root:
bestInEdge[c]← argmaxe∈E:e=〈p,c〉 e.s # i.e., s(e)

if bestInEdge contains a cycle C:
build a new graph where C is contracted into a single node
vC ← new Node()
V ′ ← V ∪ {vC} \ C
E′ ← {adjust(e, vC) for e ∈ E \ C}
A← maxArborescence(V ′, E′, root)
return {e.original for e ∈ A} ∪ C \ {A[vC].kicksOut}

each node got a parent without creating any cycles
return bestInEdge

63 / 96

Understanding Chu-Liu-Edmonds

There are two stages:

I Contraction (the stuff before the recursive call)

I Expansion (the stuff after the recursive call)

64 / 96

Chu-Liu-Edmonds: Contraction

I For each non-root node v, set bestInEdge[v] to be its highest scoring incoming
edge.

I If a cycle C is formed:
I contract the nodes in C into a new node vC

adjust subroutine on next slide performs the following:
I Edges incoming to any node in C now get destination vC
I For each node v in C, and for each edge e incoming to v from outside of C:

I Set e.kicksOut to bestInEdge[v], and
I Set e.s to be e.s− e.kicksOut.s

I Edges outgoing from any node in C now get source vC

I Repeat until every non-root node has an incoming edge and no cycles are formed

65 / 96

Chu-Liu-Edmonds: Edge Adjustment Subroutine

def adjust(e, vC):
e′ ← copy(e)
e′.original← e
if e.dest ∈ C:

e′.dest← vC
e′.kicksOut← bestInEdge[e.dest]
e′.s← e.s− e′.kicksOut.s

elif e.src ∈ C:
e′.src← vC

return e′

66 / 96

Contraction Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1
V2
V3

kicksOut
a
b
c
d
e
f
g
h
i

67 / 96

Contraction Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 g
V2
V3

kicksOut
a
b
c
d
e
f
g
h
i

68 / 96

Contraction Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 g
V2 d
V3

kicksOut
a
b
c
d
e
f
g
h
i

69 / 96

Contraction Example

V1

ROOT

V3V2

a : 5 − 10 b : 1 − 11 c : 1

f : 5d : 11

h : 9 − 10

e : 4

i : 8 − 11g : 10

V4

bestInEdge

V1 g
V2 d
V3

kicksOut
a g
b d
c
d
e
f
g
h g
i d

70 / 96

Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3
V4

kicksOut

a g
b d
c
d
e
f
g
h g
i d

71 / 96

Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3 f
V4

kicksOut

a g
b d
c
d
e
f
g
h g
i d

72 / 96

Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3 f
V4 h

kicksOut

a g
b d
c
d
e
f
g
h g
i d

73 / 96

Contraction Example

V4

ROOT

V3

b : −10 − −1 c : 1 − 5

f : 5

a : −5 − −1

h : −1

e : 4

i : −3

V5

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5

kicksOut

a g, h
b d, h
c f
d
e
f
g
h g
i d

74 / 96

Contraction Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

75 / 96

Contraction Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

76 / 96

Chu-Liu-Edmonds: Expansion

After the contraction stage, every contracted node will have exactly one bestInEdge.
This edge will kick out one edge inside the contracted node, breaking the cycle.

I Go through each bestInEdge e in the reverse order that we added them

I Lock down e, and remove every edge in kicksOut(e) from bestInEdge.

77 / 96

Expansion Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

78 / 96

Expansion Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

79 / 96

Expansion Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

80 / 96

Expansion Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

81 / 96

Expansion Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

82 / 96

Expansion Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1 a �g
V2 d
V3 f

V4 a �h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d

83 / 96

Observation

The set of arborescences strictly includes the set of projective dependency trees.

Is this a good thing or a bad thing?

84 / 96

Nonprojective Example

A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

85 / 96

Chu-Liu-Edmonds: Notes

I This is a greedy algorithm with a clever form of delayed backtracking to recover
from inconsistent decisions (cycles).

I CLE is exact: it always recovers an optimal arborescence.
I What about labeled dependencies?

I As a matter of preprocessing, for each 〈p, c〉, keep only the top-scoring labeled edge.

I Tarjan (1977) offered a more efficient, but unfortunately incorrect,
implementation.
Camerini et al. (1979) corrected it.
The approach is not recursive; instead using a disjoint set data structure to keep
track of collapsed nodes.
Even better: Gabow et al. (1986) used a Fibonacci heap to keep incoming edges
sorted, and finds cycles in a more sensible way. Also constrains root to have only
one outgoing edge.
With these tricks, O(n2) runtime.

86 / 96

Chu-Liu-Edmonds: Notes

I This is a greedy algorithm with a clever form of delayed backtracking to recover
from inconsistent decisions (cycles).

I CLE is exact: it always recovers an optimal arborescence.

I What about labeled dependencies?
I As a matter of preprocessing, for each 〈p, c〉, keep only the top-scoring labeled edge.

I Tarjan (1977) offered a more efficient, but unfortunately incorrect,
implementation.
Camerini et al. (1979) corrected it.
The approach is not recursive; instead using a disjoint set data structure to keep
track of collapsed nodes.
Even better: Gabow et al. (1986) used a Fibonacci heap to keep incoming edges
sorted, and finds cycles in a more sensible way. Also constrains root to have only
one outgoing edge.
With these tricks, O(n2) runtime.

87 / 96

Chu-Liu-Edmonds: Notes

I This is a greedy algorithm with a clever form of delayed backtracking to recover
from inconsistent decisions (cycles).

I CLE is exact: it always recovers an optimal arborescence.
I What about labeled dependencies?

I As a matter of preprocessing, for each 〈p, c〉, keep only the top-scoring labeled edge.

I Tarjan (1977) offered a more efficient, but unfortunately incorrect,
implementation.
Camerini et al. (1979) corrected it.
The approach is not recursive; instead using a disjoint set data structure to keep
track of collapsed nodes.
Even better: Gabow et al. (1986) used a Fibonacci heap to keep incoming edges
sorted, and finds cycles in a more sensible way. Also constrains root to have only
one outgoing edge.
With these tricks, O(n2) runtime.

88 / 96

Chu-Liu-Edmonds: Notes

I This is a greedy algorithm with a clever form of delayed backtracking to recover
from inconsistent decisions (cycles).

I CLE is exact: it always recovers an optimal arborescence.
I What about labeled dependencies?

I As a matter of preprocessing, for each 〈p, c〉, keep only the top-scoring labeled edge.

I Tarjan (1977) offered a more efficient, but unfortunately incorrect,
implementation.
Camerini et al. (1979) corrected it.
The approach is not recursive; instead using a disjoint set data structure to keep
track of collapsed nodes.
Even better: Gabow et al. (1986) used a Fibonacci heap to keep incoming edges
sorted, and finds cycles in a more sensible way. Also constrains root to have only
one outgoing edge.
With these tricks, O(n2) runtime.

89 / 96

More Details on Statistical Dependency Parsing

I What about the scores? McDonald et al. (2005) used carefully-designed features
and (something close to) the structured perceptron; Kiperwasser and Goldberg
(2016) used bidirectional recurrent neural networks.

I What about higher-order parsing? Requires approximate inference, e.g., dual
decomposition (Martins et al., 2013).

90 / 96

More Details on Statistical Dependency Parsing

I What about the scores? McDonald et al. (2005) used carefully-designed features
and (something close to) the structured perceptron; Kiperwasser and Goldberg
(2016) used bidirectional recurrent neural networks.

I What about higher-order parsing? Requires approximate inference, e.g., dual
decomposition (Martins et al., 2013).

91 / 96

Important Tradeoffs (and Not Just in NLP)

1. Two extremes:
I Specialized algorithm that efficiently solves your problem, under your assumptions.

E.g., Chu-Liu-Edmonds for FOG dependency parsing.
I General-purpose method that solves many problems, allowing you to test the effect

of different assumptions. E.g., dynamic programming, transition-based methods,
some forms of approximate inference.

2. Two extremes:
I Fast (linear-time) but greedy
I Model-optimal but slow

92 / 96

Important Tradeoffs (and Not Just in NLP)

1. Two extremes:
I Specialized algorithm that efficiently solves your problem, under your assumptions.

E.g., Chu-Liu-Edmonds for FOG dependency parsing.
I General-purpose method that solves many problems, allowing you to test the effect

of different assumptions. E.g., dynamic programming, transition-based methods,
some forms of approximate inference.

2. Two extremes:
I Fast (linear-time) but greedy
I Model-optimal but slow

93 / 96

Important Tradeoffs (and Not Just in NLP)

1. Two extremes:
I Specialized algorithm that efficiently solves your problem, under your assumptions.

E.g., Chu-Liu-Edmonds for FOG dependency parsing.
I General-purpose method that solves many problems, allowing you to test the effect

of different assumptions. E.g., dynamic programming, transition-based methods,
some forms of approximate inference.

2. Two extremes:
I Fast (linear-time) but greedy
I Model-optimal but slow

I Dirty secret: the best way to get (English) dependency trees is to run
phrase-structure parsing, then convert.

94 / 96

References I

Paolo M. Camerini, Luigi Fratta, and Francesco Maffioli. A note on finding optimum branchings. Networks, 9
(4):309–312, 1979.

Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400, 1965.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generating typed dependency
parses from phrase structure parses. In Proc. of LREC, 2006.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. Transition-based dependency
parsing with stack long short-term memory. In Proc. of ACL, 2015.

Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards, 71B:233–240,
1967.

Jason M. Eisner. Three new probabilistic models for dependency parsing: An exploration. In Proc. of COLING,
1996.

Harold N. Gabow, Zvi Galil, Thomas Spencer, and Robert E. Tarjan. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica, 6(2):109–122, 1986.

Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency parsing. In Proc. of COLING,
2012.

Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirectional LSTM
feature representations. Transactions of the Association for Computational Linguistics, 4:313–327, 2016.

95 / 96

References II

Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency Parsing. Synthesis Lectures on Human
Language Technologies. Morgan and Claypool, 2009. URL
http://www.morganclaypool.com/doi/pdf/10.2200/S00169ED1V01Y200901HLT002.

André F. T. Martins, Miguel Almeida, and Noah A. Smith. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of ACL, 2013.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of HLT-EMNLP, 2005. URL
http://www.aclweb.org/anthology/H/H05/H05-1066.pdf.

Igor A. Mel’čuk. Dependency Syntax: Theory and Practice. State University Press of New York, 1987.

Joakim Nivre. Incrementality in deterministic dependency parsing. In Proc. of ACL, 2004.

Kenji Sagae and Alon Lavie. A best-first probabilistic shift-reduce parser. In Proc. of COLING-ACL, 2006.

Robert E. Tarjan. Finding optimum branchings. Networks, 7:25–35, 1977.

L. Tesnière. Éléments de Syntaxe Structurale. Klincksieck, 1959.

96 / 96

http://www.morganclaypool.com/doi/pdf/10.2200/S00169ED1V01Y200901HLT002
http://www.aclweb.org/anthology/H/H05/H05-1066.pdf

