
Natural Language Processing (CSEP 517):
Phrase Structure Syntax and Parsing

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

April 24, 2017

1 / 87

To-Do List

I Online quiz: due Sunday

I Ungraded mid-quarter survey: due Sunday

I Read: Jurafsky and Martin (2008, ch. 12–14), Collins (2011)

I A3 due May 7 (Sunday)

2 / 87

Finite-State Automata

A finite-state automaton (plural “automata”) consists of:
I A finite set of states S

I Initial state s0 ∈ S
I Final states F ⊆ S

I A finite alphabet Σ

I Transitions δ : S × Σ→ 2S

I Special case: deterministic FSA defines δ : S × Σ→ S

A string x ∈ Σn is recognizable by the FSA iff there is a sequence 〈s0, . . . , sn〉 such
that sn ∈ F and

n∧
i=1

[[si ∈ δ(si−1, xi)]]

This is sometimes called a path.

3 / 87

Terminology from Theory of Computation

I A regular expression can be:
I an empty string (usually denoted ε) or a symbol from Σ
I a concatentation of regular expressions (e.g., abc)
I an alternation of regular expressions (e.g., ab|cd)
I a Kleene star of a regular expression (e.g., (abc)∗)

I A language is a set of strings.

I A regular language is a language expressible by a regular expression.

I Important theorem: every regular language can be recognized by a FSA, and every
FSA’s language is regular.

4 / 87

Proving a Language Isn’t Regular

Pumping lemma (for regular languages): if L is an infinite regular language, then there
exist strings x, y, and z, with y 6= ε, such that xynz ∈ L, for all n ≥ 0.

s0 s sf

x

y

z

If L is infinite and x, y, z do not exist, then L is not regular.

5 / 87

Proving a Language Isn’t Regular
Pumping lemma (for regular languages): if L is an infinite regular language, then there
exist strings x, y, and z, with y 6= ε, such that xynz ∈ L, for all n ≥ 0.

s0 s sf

x

y

z

If L is infinite and x, y, z do not exist, then L is not regular.

If L1 and L2 are regular, then L1 ∩ L2 is regular.

6 / 87

Proving a Language Isn’t Regular
Pumping lemma (for regular languages): if L is an infinite regular language, then there
exist strings x, y, and z, with y 6= ε, such that xynz ∈ L, for all n ≥ 0.

s0 s sf

x

y

z

If L is infinite and x, y, z do not exist, then L is not regular.

If L1 and L2 are regular, then L1 ∩ L2 is regular.

If L1 ∩ L2 is not regular, and L1 is regular, then L2 is not regular.
7 / 87

Claim: English is not regular.

L1 = (the cat|mouse|dog)∗(ate|bit|chased)∗ likes tuna fish

L2 = English

L1 ∩ L2 = (the cat|mouse|dog)n(ate|bit|chased)n−1 likes tuna fish

L1 ∩ L2 is not regular, but L1 is ⇒ L2 is not regular.

8 / 87

the cat likes tuna fish

the cat the dog chased likes tuna fish

the cat the dog the mouse scared chased likes tuna fish

the cat the dog the mouse the elephant squashed scared chased likes tuna fish

the cat the dog the mouse the elephant the flea bit squashed scared chased likes tuna
fish

the cat the dog the mouse the elephant the flea the virus infected bit squashed scared
chased likes tuna fish

9 / 87

Linguistic Debate

10 / 87

Linguistic Debate

Chomsky put forward an argument like the one we just saw.

11 / 87

Linguistic Debate

Chomsky put forward an argument like the one we just saw.

(Chomsky gets credit for formalizing a hierarchy of types of languages: regular,
context-free, context-sensitive, recursively enumerable. This was an important
contribution to CS!)

12 / 87

Linguistic Debate

Chomsky put forward an argument like the one we just saw.

(Chomsky gets credit for formalizing a hierarchy of types of languages: regular,
context-free, context-sensitive, recursively enumerable. This was an important
contribution to CS!)

Some are unconvinced, because after a few center embeddings, the examples become
unintelligible.

13 / 87

Linguistic Debate

Chomsky put forward an argument like the one we just saw.

(Chomsky gets credit for formalizing a hierarchy of types of languages: regular,
context-free, context-sensitive, recursively enumerable. This was an important
contribution to CS!)

Some are unconvinced, because after a few center embeddings, the examples become
unintelligible.

Nonetheless, most agree that natural language syntax isn’t well captured by FSAs.

14 / 87

Noun Phrases

What, exactly makes a noun phrase? Examples (Jurafsky and Martin, 2008):

I Harry the Horse

I the Broadway coppers

I they

I a high-class spot such as Mindy’s

I the reason he comes into the Hot Box

I three parties from Brooklyn

15 / 87

Constituents

More general than noun phrases: constituents are groups of words.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and in the morning

16 / 87

Constituents

More general than noun phrases: constituents are groups of words.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and in the morning

17 / 87

Constituents

More general than noun phrases: constituents are groups of words.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and in the morning

18 / 87

Constituents

More general than noun phrases: constituents are groups of words.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and in the morning

19 / 87

Recursion and Constituents

this is the house

this is the house that Jack built

this is the cat that lives in the house that Jack built

this is the dog that chased the cat that lives in the house that Jack built

this is the flea that bit the dog that chased the cat that lives in the house the Jack built

this is the virus that infected the flea that bit the dog that chased the cat that lives in
the house that Jack built

20 / 87

Not Constituents
(Pullum, 1991)

I If on a Winter’s Night a Traveler (by Italo Calvino)

I Nuclear and Radiochemistry (by Gerhart Friedlander et al.)

I The Fire Next Time (by James Baldwin)

I A Tad Overweight, but Violet Eyes to Die For (by G.B. Trudeau)

I Sometimes a Great Notion (by Ken Kesey)

I [how can we know the] Dancer from the Dance (by Andrew Holleran)

21 / 87

Context-Free Grammar

A context-free grammar consists of:
I A finite set of nonterminal symbols N

I A start symbol S ∈ N
I A finite alphabet Σ, called “terminal” symbols, distinct from N
I Production rule set R, each of the form “N → α” where

I The lefthand side N is a nonterminal from N
I The righthand side α is a sequence of zero or more terminals and/or nonterminals:
α ∈ (N ∪ Σ)∗

I Special case: Chomsky normal form constrains α to be either a single terminal
symbol or two nonterminals

22 / 87

An Example CFG for a Tiny Bit of English
From Jurafsky and Martin (2008)

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near
Nominal → Nominal Noun | through
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

23 / 87

Example Phrase Structure Tree

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

The phrase-structure tree represents both the syntactic structure of the sentence and
the derivation of the sentence under the grammar. E.g., VP

Verb NP

corresponds to the

rule VP → Verb NP.

24 / 87

The First Phrase-Structure Tree
(Chomsky, 1956)

Sentence

NP

the man

VP

V

took

NP

the book

25 / 87

Where do natural language CFGs come from?

As evidenced by the discussion in Jurafsky and Martin (2008), building a CFG for a
natural language by hand is really hard.

I Need lots of categories to make sure all and only grammatical sentences are
included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual grammar
construction; these are often based on constraints and a powerful algorithmic tool
called unification.

26 / 87

Where do natural language CFGs come from?

As evidenced by the discussion in Jurafsky and Martin (2008), building a CFG for a
natural language by hand is really hard.

I Need lots of categories to make sure all and only grammatical sentences are
included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual grammar
construction; these are often based on constraints and a powerful algorithmic tool
called unification.

27 / 87

Where do natural language CFGs come from?

As evidenced by the discussion in Jurafsky and Martin (2008), building a CFG for a
natural language by hand is really hard.

I Need lots of categories to make sure all and only grammatical sentences are
included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual grammar
construction; these are often based on constraints and a powerful algorithmic tool
called unification.

28 / 87

Where do natural language CFGs come from?

As evidenced by the discussion in Jurafsky and Martin (2008), building a CFG for a
natural language by hand is really hard.

I Need lots of categories to make sure all and only grammatical sentences are
included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual grammar
construction; these are often based on constraints and a powerful algorithmic tool
called unification.

29 / 87

Where do natural language CFGs come from?

As evidenced by the discussion in Jurafsky and Martin (2008), building a CFG for a
natural language by hand is really hard.

I Need lots of categories to make sure all and only grammatical sentences are
included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual grammar
construction; these are often based on constraints and a powerful algorithmic tool
called unification.

Standard approach today:

1. Build a corpus of annotated sentences, called a treebank. (Memorable example:
the Penn Treebank, Marcus et al., 1993.)

2. Extract rules from the treebank.

3. Optionally, use statistical models to generalize the rules.

30 / 87

Example from the Penn Treebank

S

NP-SBJ

NP

NNP

Pierre

NNP

Vinken

,

,

ADJP

NP

CD

61

NNS

years

JJ

old

,

,

VP

MD

will

VP

VB

join

NP

DT

the

NN

board

PP-CLR

IN

as

NP

DT

a

JJ

nonexecutive

NN

director

NP-TMP

NNP

Nov.

CD

29

31 / 87

LISP Encoding in the Penn Treebank
((S

(NP-SBJ-1

(NP (NNP Rudolph) (NNP Agnew))

(, ,)

(UCP

(ADJP

(NP (CD 55) (NNS years))

(JJ old))

(CC and)

(NP

(NP (JJ former) (NN chairman))

(PP (IN of)

(NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC)))))

(, ,))

(VP (VBD was)

(VP (VBN named)

(S

(NP-SBJ (-NONE- *-1))

(NP-PRD

(NP (DT a) (JJ nonexecutive) (NN director))

(PP (IN of)

(NP (DT this) (JJ British) (JJ industrial) (NN conglomerate)))))))

(. .)))
32 / 87

Some Penn Treebank Rules with Counts
40717 PP → IN NP
33803 S → NP-SBJ VP
22513 NP-SBJ → -NONE-
21877 NP → NP PP
20740 NP → DT NN
14153 S → NP-SBJ VP .
12922 VP → TO VP
11881 PP-LOC → IN NP
11467 NP-SBJ → PRP
11378 NP → -NONE-
11291 NP → NN
. . .
989 VP → VBG S
985 NP-SBJ → NN
983 PP-MNR → IN NP
983 NP-SBJ → DT
969 VP → VBN VP
. . .

100 VP → VBD PP-PRD
100 PRN → : NP :
100 NP → DT JJS
100 NP-CLR → NN
99 NP-SBJ-1 → DT NNP
98 VP → VBN NP PP-DIR
98 VP → VBD PP-TMP
98 PP-TMP → VBG NP
97 VP → VBD ADVP-TMP VP
. . .
10 WHNP-1 → WRB JJ
10 VP → VP CC VP PP-TMP
10 VP → VP CC VP ADVP-MNR
10 VP → VBZ S , SBAR-ADV
10 VP → VBZ S ADVP-TMP

33 / 87

Penn Treebank Rules: Statistics
32,728 rules in the training section (not including 52,257 lexicon rules)
4,021 rules in the development section
overlap: 3,128

34 / 87

(Phrase-Structure) Recognition and Parsing

Given a CFG (N , S,Σ,R) and a sentence x, the recognition problem is:

Is x in the language of the CFG?

Related problem: parsing:

Show one or more derivations for x, using R.

35 / 87

(Phrase-Structure) Recognition and Parsing

Given a CFG (N , S,Σ,R) and a sentence x, the recognition problem is:

Is x in the language of the CFG?

The proof is a derivation.

Related problem: parsing:

Show one or more derivations for x, using R.

36 / 87

(Phrase-Structure) Recognition and Parsing

Given a CFG (N , S,Σ,R) and a sentence x, the recognition problem is:

Is x in the language of the CFG?

The proof is a derivation.

Related problem: parsing:

Show one or more derivations for x, using R.

With reasonable grammars, the number of parses is exponential in |x|.

37 / 87

Ambiguity

S

NP

I

VP

shot NP

an Nominal

Nominal

elephant

PP

in my pajamas

S

NP

I

VP

VP

shot NP

an Nominal

elephant

PP

in my pajamas

38 / 87

Parser Evaluation

Represent a parse tree as a collection of tuples 〈〈`1, i1, j1〉, 〈`2, i2, j2〉, . . . , 〈`n, in, jn〉,
where

I `k is the nonterminal labeling the kth phrase

I ik is the index of the first word in the kth phrase

I jk is the index of the last word in the kth phrase

Example:

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

−→
〈
〈S, 1, 6〉, 〈NP, 2, 3〉,
〈VP, 4, 6〉, 〈NP, 5, 6〉

〉

Convert gold-standard tree and system hypothesized tree into this representation, then
estimate precision, recall, and F1.

39 / 87

Tree Comparison Example
S

NP

I

VP

shot NP

an Nominal

Nominal

elephant

PP

in NP

my pajamas

S

NP

I

VP

VP

shot NP

an Nominal

elephant

PP

in NP

my pajamas

〈
〈NP, 3, 7〉,
〈Nominal, 4, 7〉

〉
︸ ︷︷ ︸

only in left tree

〈 〈NP, 1, 1〉
〈S, 1, 7〉, 〈VP, 2, 7〉,
〈PP, 5, 7〉, 〈NP, 6, 7〉
〈Nominal, 4, 4〉

〉
︸ ︷︷ ︸

in both trees

〈
〈VP, 2, 4〉,
〈NP, 3, 4〉

〉
︸ ︷︷ ︸
only in right tree

40 / 87

Two Views of Parsing

1. Incremental search: the state of the search is the partial structure built so far;
each action incrementally extends the tree.

I Often greedy, with a statistical classifier deciding what action to take in every state.

2. Discrete optimization: define a scoring function and seek the tree with the highest
score.

I Today: scores are defined using the rules.

predict(x) = argmax
t

∏
r∈R

s(r)ct(r) = argmax
t

∑
r∈R

ct(r) log s(r)

where t is constrained to include grammatical trees with x as their yield. Denote
this set Tx.

41 / 87

Two Views of Parsing

1. Incremental search: the state of the search is the partial structure built so far;
each action incrementally extends the tree.

I Often greedy, with a statistical classifier deciding what action to take in every state.

2. Discrete optimization: define a scoring function and seek the tree with the highest
score.

I Today: scores are defined using the rules.

predict(x) = argmax
t

∏
r∈R

s(r)ct(r) = argmax
t

∑
r∈R

ct(r) log s(r)

where t is constrained to include grammatical trees with x as their yield. Denote
this set Tx.

42 / 87

Two Views of Parsing

1. Incremental search: the state of the search is the partial structure built so far;
each action incrementally extends the tree.

I Often greedy, with a statistical classifier deciding what action to take in every state.

2. Discrete optimization: define a scoring function and seek the tree with the highest
score.

I Today: scores are defined using the rules.

predict(x) = argmax
t

∏
r∈R

s(r)ct(r) = argmax
t

∑
r∈R

ct(r) log s(r)

where t is constrained to include grammatical trees with x as their yield. Denote
this set Tx.

43 / 87

Two Views of Parsing

1. Incremental search: the state of the search is the partial structure built so far;
each action incrementally extends the tree.

I Often greedy, with a statistical classifier deciding what action to take in every state.

2. Discrete optimization: define a scoring function and seek the tree with the highest
score.

I Today: scores are defined using the rules.

predict(x) = argmax
t

∏
r∈R

s(r)ct(r) = argmax
t

∑
r∈R

ct(r) log s(r)

where t is constrained to include grammatical trees with x as their yield. Denote
this set Tx.

44 / 87

Two Views of Parsing

1. Incremental search: the state of the search is the partial structure built so far;
each action incrementally extends the tree.

I Often greedy, with a statistical classifier deciding what action to take in every state.

2. Discrete optimization: define a scoring function and seek the tree with the highest
score.

I Today: scores are defined using the rules.

predict(x) = argmax
t

∏
r∈R

s(r)ct(r) = argmax
t

∑
r∈R

ct(r) log s(r)

where t is constrained to include grammatical trees with x as their yield. Denote
this set Tx.

45 / 87

Probabilistic Context-Free Grammar

A probabilistic context-free grammar consists of:
I A finite set of nonterminal symbols N

I A start symbol S ∈ N
I A finite alphabet Σ, called “terminal” symbols, distinct from N
I Production rule set R, each of the form “N → α” where

I The lefthand side N is a nonterminal from N
I The righthand side α is a sequence of zero or more terminals and/or nonterminals:
α ∈ (N ∪ Σ)∗

I Special case: Chomsky normal form constrains α to be either a single terminal
symbol or two nonterminals

I For each N ∈ N , a probability distribution over the rules where N is the lefthand
side, p(∗ | N).

46 / 87

PCFG Example

S

Write down the start symbol. Here: S

Score:

1

47 / 87

PCFG Example

S

Aux NP VP

Choose a rule from the “S” distribution. Here: S → Aux NP VP

Score:

p(Aux NP VP | S)

48 / 87

PCFG Example

S

Aux

does

NP VP

Choose a rule from the “Aux” distribution. Here: Aux → does

Score:

p(Aux NP VP | S) · p(does | Aux)

49 / 87

PCFG Example

S

Aux

does

NP

Det Noun

VP

Choose a rule from the “NP” distribution. Here: NP → Det Noun

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP)

50 / 87

PCFG Example

S

Aux

does

NP

Det

this

Noun

VP

Choose a rule from the “Det” distribution. Here: Det → this

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

51 / 87

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Choose a rule from the “Noun” distribution. Here: Noun → flight

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun)

52 / 87

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb NP

Choose a rule from the “VP” distribution. Here: VP → Verb NP
Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP)

53 / 87

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Choose a rule from the “Verb” distribution. Here: Verb → include
Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

54 / 87

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det Noun

Choose a rule from the “NP” distribution. Here: NP → Det Noun
Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

· p(Det Noun | NP)

55 / 87

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

Choose a rule from the “Det” distribution. Here: Det → a
Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

· p(Det Noun | NP) · p(a | Det)
56 / 87

PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

Choose a rule from the “Noun” distribution. Here: Noun → meal
Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)

· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)

· p(Det Noun | NP) · p(a | Det) · p(meal | Noun)
57 / 87

PCFG as a Noisy Channel

source −→ T −→ channel −→ X

The PCFG defines the source model.

The channel is deterministic: it erases everything except the tree’s leaves (the yield).

Decoding:

argmax
t

p(t) ·
{

1 if t ∈ Tx
0 otherwise

= argmax
t∈Tx

p(t)

58 / 87

Probabilistic Parsing with CFGs

I How to set the probabilities p(righthand side | lefthand side)?

I How to decode/parse?

59 / 87

Probabilistic CKY
(Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967)

Input:

I a PCFG (N , S,Σ,R, p(∗ | ∗)), in Chomsky normal form

I a sentence x (let n be its length)

Output: argmax
t∈Tx

p(t | x) (if x is in the language of the grammar)

60 / 87

Probabilistic CKY
Base case: for i ∈ {1, . . . , n} and for each N ∈ N :

si:i(N) = p(xi | N)

For each i, k such that 1 ≤ i < k ≤ n and each N ∈ N :

si:k(N) = max
L,R∈N ,j∈{i,...,k−1}

p(L R | N) · si:j(L) · s(j+1):k(R)

N

L

xi . . . xj

R

xj+1 . . . xk

Solution:

s1:n(S) = max
t∈Tx

p(t)

61 / 87

Parse Chart

x1

x2

x3

x4

x5

62 / 87

Parse Chart

s1:1(∗)

x1 s2:2(∗)

x2 s3:3(∗)

x3 s4:4(∗)

x4 s5:5(∗)

x5

63 / 87

Parse Chart

s1:1(∗) s1:2(∗)

x1 s2:2(∗) s2:3(∗)

x2 s3:3(∗) s3:4(∗)

x3 s4:4(∗) s4:5(∗)

x4 s5:5(∗)

x5

64 / 87

Parse Chart

s1:1(∗) s1:2(∗) s1:3(∗)

x1 s2:2(∗) s2:3(∗) s2:4(∗)

x2 s3:3(∗) s3:4(∗) s3:5(∗)

x3 s4:4(∗) s4:5(∗)

x4 s5:5(∗)

x5

65 / 87

Parse Chart

s1:1(∗) s1:2(∗) s1:3(∗) s1:4(∗)

x1 s2:2(∗) s2:3(∗) s2:4(∗) s2:5(∗)

x2 s3:3(∗) s3:4(∗) s3:5(∗)

x3 s4:4(∗) s4:5(∗)

x4 s5:5(∗)

x5

66 / 87

Parse Chart

s1:1(∗) s1:2(∗) s1:3(∗) s1:4(∗) s1:5(∗)

x1 s2:2(∗) s2:3(∗) s2:4(∗) s2:5(∗)

x2 s3:3(∗) s3:4(∗) s3:5(∗)

x3 s4:4(∗) s4:5(∗)

x4 s5:5(∗)

x5

67 / 87

Remarks

I Space and runtime requirements?

I Recovering the best tree?

I Probabilistic Earley’s algorithm does not require the grammar to be in Chomsky
normal form.

68 / 87

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3) runtime.

I Recovering the best tree?

I Probabilistic Earley’s algorithm does not require the grammar to be in Chomsky
normal form.

69 / 87

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3) runtime.

I Recovering the best tree?

I Probabilistic Earley’s algorithm does not require the grammar to be in Chomsky
normal form.

70 / 87

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3) runtime.

I Recovering the best tree? Backpointers.

I Probabilistic Earley’s algorithm does not require the grammar to be in Chomsky
normal form.

71 / 87

Remarks

I Space and runtime requirements? O(|N |n2) space, O(|R|n3) runtime.

I Recovering the best tree? Backpointers.

I Probabilistic Earley’s algorithm does not require the grammar to be in Chomsky
normal form.

72 / 87

The Declarative View of CKY

i k

N

j + 1 k

R

i j

L

p(L R | N) i i

N

p(xi | N)

1 n

Sgoal:

73 / 87

Probabilistic CKY with an Agenda

1. Initialize every item’s value in the chart to the “default” (zero).

2. Place all initializing updates onto the agenda.

3. While the agenda is not empty or the goal is not reached:
I Pop the highest-priority update from the agenda (item I with value v)
I If I = goal, then return v.
I If v > chart(I):

I chart(I)← v
I Find all combinations of I with other items in the chart, generating new possible

updates; place these on the agenda.

Any priority function will work! But smart ordering will save time.

This idea can also be applied to other algorithms (e.g., Viterbi).

74 / 87

Starting Point: Phrase Structure

S

NP

DT

The

NN

luxury

NN

auto

NN

maker

NP

JJ

last

NN

year

VP

VBD

sold

NP

CD

1,214

NN

cars

PP

IN

in

NP

DT

the

NNP

U.S.

75 / 87

Parent Annotation
(Johnson, 1998)

SROOT

NPS

DTNP

The

NNNP

luxury

NNNP

auto

NNNP

maker

NPS

JJNP

last

NNNP

year

VPS

VBDVP

sold

NPVP

CDNP

1,214

NNNP

cars

PPVP

INPP

in

NPPP

DTNP

the

NNPNP

U.S.

Increases the “vertical” Markov order:

p(children | parent, grandparent)

76 / 87

Headedness

S

NP

DT

The

NN

luxury

NN

auto

NN

maker

NP

JJ

last

NN

year

VP

VBD

sold

NP

CD

1,214

NN

cars

PP

IN

in

NP

DT

the

NNP

U.S.

Suggests “horizontal” markovization:

p(children | parent) = p(head | parent) ·
∏
i

p(ith sibling | head, parent)

77 / 87

Lexicalization

Ssold

NPmaker

DTThe

The

NNluxury

luxury

NNauto

auto

NNmaker

maker

NPyear

JJlast

last

NNyear

year

VPsold

VBDsold

sold

NPcars

CD1,214

1,214

NNcars

cars

PPin

INin

in

NPU.S.

DTthe

the

NNPU.S.

U.S.

Each node shares a lexical head with its head child.

78 / 87

Transformations on Trees

Starting around 1998, many different ideas—both linguistic and statistical—about how
to transform treebank trees.

All of these make the grammar larger—and therefore all frequencies became
sparser—so a lot of research on smoothing the probability rules.

Parent annotation, headedness, markovization, and lexicalization; also category
refinement by linguistic rules (Klein and Manning, 2003).

I These are reflected in some versions of the popular Stanford and Berkeley parsers.

79 / 87

Tree Decorations
(Klein and Manning, 2003)

I Mark nodes with only 1 child as UNARY

I Mark DTs (determiners), RBs (adverbs) when they are only children

I Annotate POS tags with their parents

I Split IN (prepositions; 6 ways), AUX, CC, %

I NPs: temporal, possessive, base

I VPs annotated with head tag (finite vs. others)

I DOMINATES-V

I RIGHT-RECURSIVE NP

80 / 87

Machine Learning and Parsing

I Define arbitrary features on trees, based on linguistic knowledge; to parse, use a
PCFG to generate a k-best list of parses, then train a log-linear model to rerank
(Charniak and Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)

I Define rule-local features on trees (and any part of the input sentence); minimize
hinge or log loss.

I These exploit dynamic programming algorithms for training (CKY for arbitrary
scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables (Petrov et al., 2006).
I Neural, too:

I Socher et al. (2013) define compositional vector grammars that associate each
phrase with a vector, calculated as a function of its subphrases’ vectors. Used
essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars, generative models like
PCFGs that encode arbitrary previous derivation steps in a vector. Parsing requires
some tricks.

81 / 87

Machine Learning and Parsing

I Define arbitrary features on trees, based on linguistic knowledge; to parse, use a
PCFG to generate a k-best list of parses, then train a log-linear model to rerank
(Charniak and Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)

I Define rule-local features on trees (and any part of the input sentence); minimize
hinge or log loss.

I These exploit dynamic programming algorithms for training (CKY for arbitrary
scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables (Petrov et al., 2006).
I Neural, too:

I Socher et al. (2013) define compositional vector grammars that associate each
phrase with a vector, calculated as a function of its subphrases’ vectors. Used
essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars, generative models like
PCFGs that encode arbitrary previous derivation steps in a vector. Parsing requires
some tricks.

82 / 87

Machine Learning and Parsing

I Define arbitrary features on trees, based on linguistic knowledge; to parse, use a
PCFG to generate a k-best list of parses, then train a log-linear model to rerank
(Charniak and Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)

I Define rule-local features on trees (and any part of the input sentence); minimize
hinge or log loss.

I These exploit dynamic programming algorithms for training (CKY for arbitrary
scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables (Petrov et al., 2006).
I Neural, too:

I Socher et al. (2013) define compositional vector grammars that associate each
phrase with a vector, calculated as a function of its subphrases’ vectors. Used
essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars, generative models like
PCFGs that encode arbitrary previous derivation steps in a vector. Parsing requires
some tricks.

83 / 87

Machine Learning and Parsing

I Define arbitrary features on trees, based on linguistic knowledge; to parse, use a
PCFG to generate a k-best list of parses, then train a log-linear model to rerank
(Charniak and Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)

I Define rule-local features on trees (and any part of the input sentence); minimize
hinge or log loss.

I These exploit dynamic programming algorithms for training (CKY for arbitrary
scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables (Petrov et al., 2006).

I Neural, too:
I Socher et al. (2013) define compositional vector grammars that associate each

phrase with a vector, calculated as a function of its subphrases’ vectors. Used
essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars, generative models like
PCFGs that encode arbitrary previous derivation steps in a vector. Parsing requires
some tricks.

84 / 87

Machine Learning and Parsing

I Define arbitrary features on trees, based on linguistic knowledge; to parse, use a
PCFG to generate a k-best list of parses, then train a log-linear model to rerank
(Charniak and Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)

I Define rule-local features on trees (and any part of the input sentence); minimize
hinge or log loss.

I These exploit dynamic programming algorithms for training (CKY for arbitrary
scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables (Petrov et al., 2006).
I Neural, too:

I Socher et al. (2013) define compositional vector grammars that associate each
phrase with a vector, calculated as a function of its subphrases’ vectors. Used
essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars, generative models like
PCFGs that encode arbitrary previous derivation steps in a vector. Parsing requires
some tricks.

85 / 87

References I

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discriminative reranking. In
Proc. of ACL, 2005.

Noam Chomsky. Three models for the description of language. Information Theory, IEEE Transactions on, 2(3):
113–124, 1956.

John Cocke and Jacob T. Schwartz. Programming languages and their compilers: Preliminary notes. Technical
report, Courant Institute of Mathematical Sciences, New York University, 1970.

Michael Collins. Probabilistic context-free grammars, 2011. URL
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network grammars,
2016. To appear.

Liang Huang and David Chiang. Better k-best parsing. In Proc. of IWPT, 2005.

Mark Johnson. PCFG models of linguistic tree representations. Computational Linguistics, 24(4):613–32, 1998.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. Prentice Hall, second edition, 2008.

Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free languages. Technical
Report AFCRL-65-758, Air Force Cambridge Research Lab, 1965.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proc. of ACL, 2003.

86 / 87

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf

References II

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of
English: the Penn treebank. Computational Linguistics, 19(2):313–330, 1993.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and interpretable tree
annotation. In Proc. of COLING-ACL, 2006.

Geoffrey K. Pullum. The Great Eskimo Vocabulary Hoax and Other Irreverent Essays on the Study of Language.
University of Chicago Press, 1991.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing with compositional vector
grammars. In Proc. of ACL, 2013.

Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Information and Control, 10
(2), 1967.

87 / 87

