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(Recap) Expectation Maximization for HMM

= |nitialize transition and emission parameters
= Random, uniform, or more informed initialization

= |terate until convergence
= E-Step:
= Compute expected counts

(expected) count(NN) Zp y; = NN|z1...2p)
(expected) count(NN — VB) Zp NN,yHl VB|zy...2p)

expected) count(NN — apple) = NN, x; = apple|z1...z,
. M-Step: (expected) ( pp Zp pple|z1...z,)

= Compute new transition and emission fJarameters (using
the expected counts computed above)

o, _c(Yi-1,¥i) . N :C(y,x)
gL (Yilyi-1) = ) waly) = = 5

= How does this relate to the general form of EM?



Expectation Maximization (eneral Form)

Input: model p(x,y|6) and unlabeled data [) — {xl, 2, xN}
Initialize parameters @

Until convergence
= E-step (expectation)
= compute the posteriors (while fixing the model parameters)

p(x,y|0")
p(ylz,0:) = S p(x, y'|6Y)
Y ?

= M-step (maximization)
= compute parameters that maximize the expected log likelihood

0" argImax p(ylz* 6°)log p(z', y|6)
ZZ , ,

Y computed from E-step

Result: learn § that maximizes:

D Zlog p(z']0) = Zlog > r',ylf)



Expectation Maximization

p(x,y|0")
o Pz, y'10°)

= E-step (expectation)

p(y|$7 et) — Z

= compute the posteriors (while fixing the model parameters)

= we don’t actually need to compute the full posteriors, instead,
we only need to compute “sufficient statistics” that matter for
M-step, which boil down to “expected counts” of things

= computationally expensive when vy is structured multivariate

= M-step (maximization) gt+1 arggnax Z Zp(y\mz Qt)log p(xi’ y|0)

T Y
= compute parameters that maximizes the expected log likelihood

» For models that are a product of multinomials (e.g.,
naiveBayes, HMM, PCFG), closed forms exist = “maximum
likelihood estimates (MLE)”



Some Questions about EM

EM always converges?

EM converges even with approx E-step?
-- hard EM / soft EM

EM converges to a global or local optimum? (or saddie point?)
EM improve “likelihood”. How?

L(0) = Zlog p(z*]0) = Zlog > p(at,yl6)

-- while what M-step maximizes is “expected likelihood”
Maximum Likelihood Estimates (MLEs) for M-step?
When to use EM (or not)?




EM improves L(0)

= Theorem:
Forany 0,0'~' € O, L(0) —L(0" ") > Q0,0 ") — Q&' ", 6 ")

- Z log p(2"); 0) = Z log Y~ p(a'”, y; 0)

=1 yey

ZZP ylz; 0" log p(a'”), y: 0)

1=1ye)y

= Improvement on expected log likelihood
Is lower bound for improvement on log likelihood

= Concavity of Log log (Z Q, 3;3,) > Z a; log ;
(Jensen’s inequality): ? ;
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Forany 0,0~

—Q(= ", 0

L(0) — L(0")

e L(O)-L(O"") > Q8,0
" >, p(a',y; 0)
;lo Z,f}) (1 TR 91‘ 1)
I() Ly 0)
ZIOQZ(IU(I( ). gt~ 1))
1132} \ ). gt~ 1)log,p ZZp J|J;
Q(O,0"") - Q(G” 1 6*‘—)



Convergence of EM

= Theorem:

Forany 8,0~ € Q L(0) - L(6"") > Q(8,0") —Q(¢' ", 6 )

= Above only tells us that EM is “hon-decreasing” L(Q)

= Under relatively mild conditions, it can be shown that EM
converges to a local optimum of L(6)

= “On the Convergence Properties of the EM Algorithm”
Wu, 1983

=>» As long as M-step improves expected log likelihood (at

all), EM improves log likelihood. (Even if we don't find
argmax in M-step!)



Maximum Likelihood Estimates

Supervised Learning for
1. Language Models:

c(w) c(v,w)

= wlv) = wlu,v) = clu, v, w)
qur(w) = 0 qur(wlv) 0 qur(w|u,v)

c(u,v)

2. HMM:
qmrr(Yilyi-1) = C(yifl’yi) enp(zly) = c(y, )
C(y’b—l) C(y)

3. PCFG: Count( s 5)

Count(a)

qur(a — ) =

10



Maximum Likelihood Estimates

Models: ~
1. Language Models:  p(z1...z,) = | [ p(2s]zi1)
1=1

2. HMM: )

p(a1 .. T, 1 - yn) = A(STOP|y,) | [ a(vilyi-1)e(xilys)
1=1

3. PCFG pt) =TT ales — 8:)
=1

What's common??
=» product of multinomials™!

*multinomials is a conflated term. “categorical distribution” is more correct 11



MLEs maximize Likelihood

Supervised Learning for

1. Language c(w) c(v,w) c(u, v, w)

C_ZML(w) — C—()’ qML(w‘/U) — C(U) ) QML(’U)"U,,’U) — C(U,U) )

Models:

ooy i) @)
2. HMM:  aqmr(wilyi-1) = ) mr(z|y) )

C
3. PCFG: qur(a— fB)= Oégz(ri(:)ﬁ)

=» Happens to be intuitive, we can also prove that
» MLE with actual counts maximize log likelihood

= _log p(a’ Zlog Zp ", yl0)

1
= MLE with expected counts maX|m|ze expected log likelihood

Ep(yla) ZZP ylz’ 0")log p(a’, y|0)
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MLE for multinomial distributions

= Let’s first consider a simpler case.

= We want to learn parameters that maximize the (log)
likelihood of the training data:

[(0) = Z log p(z') = Z crlog 0y
i k

= Since it's multinomial, it must be that Zek —1
k

= | Ck:= count of 0, used in the likelihood of training data
= | For example, for Unigram LM, p(z"' = apple) = Happle
and C[ := count (apple) in the training corpus
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MLE for multinomial distributions

= Learning parameters for

0= argmaxz ¢ logh), such that Z 0, =1
0
k k

= equivalent to learning parameters for
argmax crlogh, — min\ 0, — 1
D S

= |ambda is called Lagrangian multiplier

g(A\0) == ciloghy — A O — 1)
k

k

\ J
\

encode constraint

= You can add additional lambda terms: one for each equality constraint
g(A0) = cploghy — A (f1(6) — C1) — Xa(f2(0) — C2) — ...
k
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MLE for multinomial distributions

= Learning parameters for
0= argmaxz ¢ logh), such that Z 0, =1
k k

0
= equivalent to learning parameters for

min max [g(A, 0) := chlOgﬁk — )\(Z O — 1)]
k

A 0
k

= Find optimal parameters by setting partial derivatives = 0

= We have MLE! -- can be generalized to a product of multinomials, e.g.,
HMM, PCFG. For each prob distribution that needs to sum to 1, create a
different lambda term.

» “Lagrange Multipliers without Permanent Scarring”, Dan Klein (http://
www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf)
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When to use EM gor notz

= The ultimate goal of (unsupervised) learning is to find the parameters 6
that maximizes the likelihood over the training data:

L(9) = Y log p(a'l6) = > log 3 pla",l6)

= For some models, it is difficult to find the parameters that maximize the
log likelihood directly.

= For such models, it is sometimes very easy to find the parameters that
maximizes the expected log likelihood. (Use EM!)

= For example, there are closed form solutions (MLE) for models that are
in the form of product of multinomials (i.e., categorical distributions).

= |f optimizing for expected log likelihood is not any easier than optimizing
for log likelihood --- no need to use EM.
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Other EM Variants

* Generalized EM (GEM)

= When exact M-step is difficult: finds 6 that improves, but not
necessarily maximizes. Converges to a local optimum.

= Stochastic EM

» When exact E-step is difficult: Monte Carlo sampling. Will
asymptotically converge to a local optimum

= Hard EM

= When exact E-step is difficult: find the best prediction of the hidden
variable ‘y’ and put all the prob mass ( = 1) to that best prediction.

= K-means is Hard EM.
= Will converge if improving the expected log likelihood of M-step.
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