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(Recap) Expectation Maximization for HMM 
§  Initialize transition and emission parameters 

§  Random, uniform, or more informed initialization 
§  Iterate until convergence 

§  E-Step: 
§  Compute expected counts  

 
§  M-Step: 

§  Compute new transition and emission parameters (using 
the expected counts computed above) 

§  How does this relate to the general form of EM? 

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)



Expectation Maximization 
Input: model    and unlabeled data  
Initialize parameters  
Until convergence 
§  E-step (expectation) 

§  compute the posteriors (while fixing the model parameters)  

§  M-step (maximization) 
§  compute parameters that maximize the expected log likelihood 

 

Result: learn      that maximizes:  
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Expectation Maximization 
§  E-step (expectation) 

§  compute the posteriors (while fixing the model parameters)  
§  we don’t actually need to compute the full posteriors, instead, 

we only need to compute “sufficient statistics” that matter for 
M-step, which boil down to “expected counts” of things 

§  computationally expensive when y is structured multivariate  
§  M-step (maximization) 

§  compute parameters that maximizes the expected log likelihood 
§  For models that are a product of multinomials (e.g., 

naiveBayes, HMM, PCFG), closed forms exist è “maximum 
likelihood estimates (MLE)” 
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Some Questions about EM 
1.  EM always converges?  
2.  EM converges even with approx E-step? 

 -- hard EM / soft EM 

3.  EM converges to a global or local optimum? (or saddle point?) 

4.  EM improve “likelihood”. How? 

 
 -- while what M-step maximizes is “expected likelihood” 

5.  Maximum Likelihood Estimates (MLEs) for M-step? 
6.  When to use EM (or not)? 
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EM improves         
§  Theorem: 

 
 
 

è Improvement on expected log likelihood  
 is lower bound for improvement on log likelihood 

 

§  Concavity of Log  
    (Jensen’s inequality): 
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Convergence of EM 
§  Theorem: 

§  Above only tells us that EM is “non-decreasing” 
§  Under relatively mild conditions, it can be shown that EM 

converges to a local optimum of  
§  “On the Convergence Properties of the EM Algorithm” 

Wu, 1983  

è As long as M-step improves expected log likelihood (at 
all), EM improves log likelihood. (Even if we don’t find 
argmax in M-step!) 

 
 
 

 

9 

L(✓)

L(✓)



Maximum Likelihood Estimates 
Supervised Learning for 
1.  Language Models: 

2.  HMM: 

3.  PCFG: 
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Maximum Likelihood Estimates 
Models: 
1.  Language Models: 

2.  HMM: 

3.  PCFG: 

What’s common?  
è product of multinomials*! 

*multinomials is a conflated term. “categorical distribution” is more correct 11 
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MLEs maximize Likelihood 
Supervised Learning for 
1.  Language  
      Models: 

2.    HMM: 

3.    PCFG: 

è Happens to be intuitive, we can also prove that  
§  MLE with actual counts maximize log likelihood 

§  MLE with expected counts maximize expected log likelihood 
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MLE for multinomial distributions 
§  Let’s first consider a simpler case.  
§  We want to learn parameters that maximize the (log) 

likelihood of the training data: 

§  Since it’s multinomial, it must be that  

§       := count of    used in the likelihood of training data  
§  For example, for Unigram LM, 

and        := count (apple) in the training corpus 
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MLE for multinomial distributions 
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§  Learning parameters for 

              such that  

§  equivalent to learning parameters for 

§  lambda is called Lagrangian multiplier 

§  You can add additional lambda terms: one for each equality constraint 
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MLE for multinomial distributions 
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§  Learning parameters for 

              such that  

§  equivalent to learning parameters for 

§  Find optimal parameters by setting partial derivatives = 0 

§  We have MLE! -- can be generalized to a product of multinomials, e.g., 
HMM, PCFG. For each prob distribution that needs to sum to 1, create a 
different lambda term. 

§  “Lagrange Multipliers without Permanent Scarring”, Dan Klein (http://
www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf) 
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When to use EM (or not) 
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§  The ultimate goal of (unsupervised) learning is to find the parameters θ 
that maximizes the likelihood over the training data: 

§  For some models, it is difficult to find the parameters that maximize the 
log likelihood directly. 

§  For such models, it is sometimes very easy to find the parameters that 
maximizes the expected log likelihood. (Use EM!) 

§  For example, there are closed form solutions (MLE) for models that are 
in the form of product of multinomials (i.e., categorical distributions). 

§  If optimizing for expected log likelihood is not any easier than optimizing 
for log likelihood --- no need to use EM. 
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Other EM Variants 
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§  Generalized EM (GEM) 
§  When exact M-step is difficult: finds θ that improves, but not 

necessarily maximizes. Converges to a local optimum. 

§  Stochastic EM 
§  When exact E-step is difficult: Monte Carlo sampling. Will 

asymptotically converge to a local optimum 

§  Hard EM 
§  When exact E-step is difficult: find the best prediction of the hidden 

variable ‘y’ and put all the prob mass ( = 1) to that best prediction. 
§  K-means is Hard EM. 
§  Will converge if improving the expected log likelihood of M-step. 

  


