CSEP 517
Natural Language Processing
Autumn 2013

Parts of Speech and
Feature Rich Sequence Models

Luke Zettlemoyer - University of Washington

[Many slides from Dan Klein]

Overview

= POS Tagging
= Feature Rich Techniques
» Maximum Entropy Markov Models (MEMMs)

= Structured Perceptron

= Conditional Random Fields (CRFs)

Parts-of-Speech (English)

= One basic kind of linguistic structure: syntactic word classes

Open class (lexical) words

Nouns Verbs Adjectives yellow
Proper Common Main Adverbs slowly
IBM cat / cats see
Italy snow registered Numbers more

122,312
. one
Closed class (functional
() Modals

Determiners the some can Prepositions to with

had

Conjunctions and or Particles off up

Pronouns he its

... more

Penn Treebank POS: 36 possible tags, 34 pages of tagging guidelines.

cc
cD
DT
EX
FW
IN
JJ
JJR
JJs
MD
NN
NNP
NNPS
NNS
POS
PRP
PRP$
RB
RBR
RBS
RP
TO
UH
VB
VBD
VBG
VBN
VBP
VBZ
WDT
WP
WP$
WRB

conjunction, coordinating
numeral, cardinal
determiner
existential there
foreign word
preposition or conjunction, subordinating
adjective or numeral, ordinal
adjective, comparative
adjective, superlative
modal auxiliary
noun, common, singular or mass
noun, proper, singular
noun, proper, plural
noun, common, plural
genitive marker
pronoun, personal
pronoun, possessive
adverb
adverb, comparative
adverb, superlative
particle
"to" as preposition or infinitive marker
interjection
verb, base form
verb, past tense
verb, present participle or gerund
verb, past participle
verb, present tense, not 3rd person singular
verb, present tense, 3rd person singular
WH-determiner
WH-pronoun
WH-pronoun, possessive
Wh-adverb

and both but either or
mid-1890 nine-thirty 0.5 one
a all an every no that the
there
gemeinschaft hund ich jeux
among whether out on by if
third ill-mannered regrettable
braver cheaper taller
bravest cheapest tallest
can may might will would
cabbage thermostat investment subhumanity
Motown Cougar Yvette Liverpool
Americans Materials States
undergraduates bric-a-brac averages
''s
hers himself it we them
her his mine my our ours their thy your
occasionally maddeningly adventurously
further gloomier heavier less-perfectly
best biggest nearest worst
aboard away back by on open through
to
huh howdy uh whammo shucks heck
ask bring fire see take
pleaded swiped registered saw
stirring focusing approaching erasing
dilapidated imitated reunifed unsettled
twist appear comprise mold postpone
bases reconstructs marks uses
that what whatever which whichever
that what whatever which who whom
whose
however whenever where why

ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz

Part-of-Speech Ambiguity

= \Words can have multiple parts of speech

VBD VB
VBN VBZ VBP VBZ

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent

Mrs./NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/ VBG
All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

= Two basic sources of constraint:
= (Grammatical environment
= |dentity of the current word

= Many more possible features:
= Suffixes, capitalization, name databases (gazetteers), etc...

Why POS Tagging?

= Useful in and of itself (more than you'd think)
= Text-to-speech: record, lead
= | emmatization: saw|[v] — see, saw[n] — saw
» Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

» Useful as a pre-processing step for parsing
» |ess tag ambiguity means fewer parses
= However, some tag choices are better decided by parsers

IN

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...

VDN
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

= Choose the most common tag
* 90.3% with a bad unknown word model
= 93.7% with a good one

Baselines and Upper Bounds

Noise in the data

= Many errors in the training and test

corpora

= Probably about 2% guaranteed error
from noise (on this data)

JJ JJ NN
chief executive officer

NN JJ NN
chief executive officer

JJ NN NN
chief executive officer

NN NN NN
chief executive officer

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% /€55%) -
Most errors
= TnT (Brants, 2000): on unknown
= A carefully smoothed trigram tagger words

= Suffix trees for emissions
= 96.7% on WSJ text (SOA is ~97.5%)

= Upper bound: ~98%

Common Errors

= Common errors [from Toutanova & Manning 00]

NN NNP NNPS RB RP IN VB VBD VBN VBP Total
JJ 177 56 0 o6l 2 5 10 15 0 488
NN 0 103 0 12 1 1 29 5 19 525
NNP 106 0 132 5 0 7 5 1 0 427
NNPS 0 110 0 0 0 0 0 0 0 142
RB 21 7 0 0 16 138 1 0 0 295
RP 0 0 0 9 0 65 0 0 0 104
IN 0 1 0 3 0 1 0 0 323
VB 64 9 0 0 1 0 4 85 189
VBD 5 3 0 0 0 3 0 2 166
VBN 3 3 0 0 0 3 108 1 221
VBP 34 3 1 0 2 49 6 0 104
Total 536 348 144 2 279 102 140 108 3651

NN/JJ NN VBD RP/IN DT NN RB VBD/VBN NNS

official knowledge made up the story recently sold shares

What about better features?

= Choose the most common tag
= 90.3% with a bad unknown word model @
= 93.7% with a good one

= What about looking at a word and its @ @ @
environment, but no sequence information?
* Add in previous / next word the
* Previous / next word shapes X X
= Occurrence pattern features [X: x X occurs]
» Crude entity detection ~___wiee. (Inc.|Co0.)
= Phrasal verb in sentence? put...... L

= Conjunctions of these things

= Uses lots of features: > 200K

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
* Trigram HMM: ~95% [~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%

Q: What does this say about sequence models?

Q: How do we add more features to our sequence
models?

Upper bound: ~98%

MEMM Taggers

= One step up: also condition on previous tags

m
p(s1...8m|x1. . Tm) = Hp(si\sl 81,1 .. L)
i=1

m
= Hp(silsi_l, L1Qjm)
=1

= Train up p(si|s;.1,X4 --X,) @s a discrete log-linear (maxent) model,
then use to score sequences

exp (w -+ (1 ... Tm, 1, 8i-1,5i))

p(silsic1, @1 ... T) = :
e " Yooexp(w-od(xr...Tm,1,8-1,5"))

= This is referred to as an MEMM tagger [Ratnaparkhi 96]

= Beam search effective! (Why?)

= What's the advantage of beam size 1?

he HMM State Lattice / Trellis (repeat slide)

®» ©® ©®© ©
%@SW) e(interest|V) e(STOPV)
q(VIV) @

9@be(rates|J) Q\B\

O OSNO
©® ©

START Fed raises interest rates STOP

®© © ©
©

The MEMM State Lattice / Trellis

® > ®\g ® ® ©
© O, ©
© © © 0NN
® ® ® ® ©® ©

x = START Fed raises interest rates STOP

Decoding

= Decoding maxent taggers:
= Just like decoding HMMs
= Viterbi, beam search, posterior decoding
= Viterbi algorithm (HMMs):
= Define 11(i,s;) to be the max score of a sequence of length i ending in tag s;

(i, 8;) = max e(xi|si)q(si|si—1)m(i —1,8;-1)
1—1

= Viterbi algorithm (Maxent):

= Can use same algorithm for MEMMSs, just need to redefine T(i,s;) !

7T(i, Sz) — ISIlaXp(SZ“SZ'_l, L1 ... Qjm)ﬂ'(i — 1, 87;_1)
i—1

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%

Upper bound: ~98%

Global Discriminative Taggers

= Newer, higher-powered discriminative sequence models
» CRFs (also perceptrons, M3Ns)
= Do not decompose training into independent local regions
= Can be deathly slow to train — require repeated inference on
training set
= Differences can vary in importance, depending on task

= However: one issue worth knowing about in local models

= “Label bias™ and other explaining away effects

MEMM taggers’ local scores can be near one without having both
good “transitions” and “emissions”

This means that often evidence doesn't flow properly
Why isn't this a big deal for POS tagging?
Also: in decoding, condition on predicted, not gold, histories

[Collins 02]

Linear Models: Perceptron

= The perceptron algorithm
= [teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:
= Start with zero weights Sentence: x=X;...X,

= Visit training instances (x,,y;) one by one
= Make a prediction
y* = argmaxw - ¢(x;, K
Y Tag Sequence:

= |f correct (y*==y,): no change, goto next example! Y=84...8
= |If wrong: adjust weights

W =W + ¢(337,, yz-) — ¢(%:?J*)

Challenge: How to compute argmax efficiently?

Decoding

* Linear Perceptron § = argmaxw - ®(z,s) -0

= Features must be local, forx =X4... Xy, @and $=s,...S

Z¢ £ .]783 1783

= Define 11(i,s;) to be the max score of a sequence of length i
ending in tag s

m(1,8;) = maxw - ¢(x,%,8;_4,8;) +m(i —1,58,_1)
Si—1

= Viterbi algorithm (HMMs):
m(i,8;) = max e(w;[s;)q(si|si—1)m(e — 1, 8;-1)
= Viterbi algorithm ﬁl\/laxent)'

(1, 8;) = maxp(sz Si 1,X1 .+ Ty)T(i —1,8;_1)
Si;—1

Overview: Accuracies

Most freq tag:
Trigram HMM:

™TnT (HMM++):
Maxent P(s;|x):
MEMM tagger:

Perceptron

Upper bound:

= Roadmap of (known / unknown) accuracies:

~90% / ~50%
~95% [/ ~55%
96.2% / 86.0%
96.8% / 86.8%
96.9% / 86.9%
96.7% [/ ?7?

~98%

Conditional Random Fields (CRFs)

[Lafferty, McCallum, Pereira 01]
= Maximum entropy (logistic regression)

Sentence: x=X,...X

— sy &P (w-o(z,y))
P) Dy exp(w-d(z,y))

Tag Sequence: y=s,...S,

» |Learning: maximize the (log) conditional likelihood of training
data {(z;, yi) }izq

a T
%L() Z (ﬁby xzayz ZP ?J‘%a (by xz,y)> — Aw;
J

=1

= Computational Challenges?

= Most likely tag sequence, normalization constant, gradient

Decoding ..

S = argmaxpls|xr;w
= CRFs xplsfm;)
» Features must be local, for x=x,...x.,, and s=s,...s,
exp (w - P(x, s)) ik .
p(slz;w) = P(z, s :E O(x,7,8i_1,8;
(| § :S/ exXp (w . (I)(xysl)) () j=1 (= j)

— exp (w - P(z, s))
S e (- B(,)

= arg max exp (w - (z, s))

= argmaxw - (z, s)

= Same as Linear Perceptron!!!

(1, 8;) = max ¢(x, 1,8 _3,8;) +m(t—1,8_1)
1—1

CRFs: Computing Normalization

slz:w) = exp (w - ®(z, 5)) d(x,s) = Y T,7,58i_1,S;
Pl) = = ey) = L0l ns)

Z exXp (w . CD(:C, 8’)>: Zexp (Zw - P(z, J, 33‘1,33')>

— Z H exp (w - ¢(x, J, $j—1,55))
s’ g

Define norm(i,s;) to sum of scores for sequences ending in position i

norm(i,y;) = Z exp (w - ¢(x,1,8;_1,8;))norm(i —1,8;_1)
Si—1

Forward Algorithm! Remember HMM case:

(i, y;) = Z e(zilyi)q(yilyi—1)a(i — 1,yi-1)
Yi—1
= Could also use backward?

CRFs: Computing Gradient

slz:w) = exp (w - ®(z, 5)) d(x,s) = Y T,7,58i_1,Si
Pl) = = gy) = Lol ns)

iL(w) = Z (CDJ-(:C,L-, S;) — Zp(s]a:i;w)q)j(a:i, s)) — Aw;

Ow.;
J i=1

ZP(S‘CI%J w)cbj(xz’; s) = ZP(S\%;UJ) Z@c(wi,j, Sj—1,55)
S S 71=1
= ZZ Z p(s|zi; w)Pr(zi, J, $j-1, 55)

j=1 a,b sisj_1=a,sp=>b

* Need forward and backward messages

See notes for full details!

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%
= Perceptron 96.7% [?7?

= CRF (untuned) 95.7% 1 76.2%

= Upper bound: ~98%

CyC“C NetWO rk [Toutanova et al 03]
« Train two MEMMs. (@@ ~(1)

multiple together to é L é)
score @ @

(a) Left-to-Right CMM
= And be very careful

* Tune regularization
* Try lots of different é é
features @ @

» See paper for full (b) Right-to-Left CMM

details e @
FEe &

(¢) Bidirectional Dependency Network

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%
= Perceptron 96.7% [?7?

= CRF (untuned) 95.7% 1 76.2%
= Cyclic tagger: 97.2% 1 89.0%

= Upper bound: ~98%

Domain Effects

= Accuracies degrade outside of domain
= Up to triple error rate

» Usually make the most errors on the things you care
about in the domain (e.g. protein names)

= Open questions

= How to effectively exploit unlabeled data from a new
domain (what could we gain?)

* How to best incorporate domain lexica in a principled
way (e.g. UMLS specialist lexicon, ontologies)

