
CSEP 517
Natural Language Processing

Autumn 2013

Language Models

Luke Zettlemoyer

Many slides from Dan Klein and Michael Collins

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

Overview

§  The language modeling problem
§  N-gram language models
§  Evaluation: perplexity
§  Smoothing

§  Add-N
§  Linear Interpolation
§  Discounting Methods

The Language Modeling Problem
n  Setup: Assume a (finite) vocabulary of words

n  We can construct an (infinite) set of strings

n  Data: given a training set of example sentences
n  Problem: estimate a probability distribution

n  Question: why would we ever want to do this?

V†
= {the, a, the a, the fan, the man, the man with the telescope, ...}

x � V†

X

x�V†

p(x) = 1

and p(x) � 0 for all x ⇥ V†

p(the) = 10�12

p(a) = 10�13

p(the fan) = 10�12

p(the fan saw Beckham) = 2⇥ 10�8

p(the fan saw saw) = 10�15

. . .

The Noisy-Channel Model
n  We want to predict a sentence given acoustics:

n  The noisy channel approach:

Acoustic model: Distributions
over acoustic waves given a

sentence

Language model:
Distributions over sequences

of words (sentences)

Acoustically Scored Hypotheses

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815

ASR System Components

source
P(w)

w a

decoder
observed

argmax P(w|a) = argmax P(a|w)P(w)
w w

w a
best

channel
P(a|w)

Language Model Acoustic Model

Translation: Codebreaking?

§  “Also knowing nothing official about, but having
guessed and inferred considerable about, the
powerful new mechanized methods in cryptography
—methods which I believe succeed even when one
does not know what language has been coded—one
naturally wonders if the problem of translation could
conceivably be treated as a problem in
cryptography. When I look at an article in Russian, I
say: ‘This is really written in English, but it has been
coded in some strange symbols. I will now proceed
to decode.’ ”

§  Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

Learning Language Models
§  Goal: Assign useful probabilities P(x) to sentences x

§  Input: many observations of training sentences x
§  Output: system capable of computing P(x)

§  Probabilities should broadly indicate plausibility of sentences
§  P(I saw a van) >> P(eyes awe of an)
§  Not grammaticality: P(artichokes intimidate zippers) ≈ 0
§  In principle, “plausible” depends on the domain, context, speaker…

§  One option: empirical distribution over training sentences…

§  Problem: does not generalize (at all)
§  Need to assign non-zero probability to previously unseen sentences!

p(x1 . . . xn) =
c(x1 . . . xn)

N

for sentence x = x1 . . . xn

Unigram Models
§  Simplest case: unigrams

§  Generative process: pick a word, pick a word, … until you pick STOP
§  As a graphical model:

§  Examples:
§  [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
§  [thrift, did, eighty, said, hard, 'm, july, bullish]
§  [that, or, limited, the]
§  []
§  [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed,

mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further,
board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a,
they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay,
however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers,
advancers, half, between, nasdaq]

§  Big problem with unigrams: P(the the the the) >> P(I like ice cream)!

x1 x2 xn-1 STOP ………….

p(x1 . . . xn) =
nY

i=1

p(xi)

Bigram Models
§  Condition on previous single word:

§  Generative process: pick START, pick a word conditioned on previous one,

 repeat until to pick STOP
§  Graphical Model:

§  Any better?
§  [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

§  [outside, new, car, parking, lot, of, the, agreement, reached]
§  [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of,
american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe,
chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious,
teaching]

§  [this, would, be, a, record, november]
§  But, what is the cost?

x1 x2 xn-1 STOP START

p(x1 . . . xn) =
nY

i=1

p(xi|xi�1)

Higher Order N-grams?

3380 please close the door
1601 please close the window
1164 please close the new
1159 please close the gate
…
0 please close the first

13951 please close the *

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door

23135851162 the *

197302 close the window
191125 close the door
152500 close the gap
116451 close the thread
87298 close the deal

3785230 close the *

Please close the door

Please close the first window on the left

N-Gram Model Decomposition
§  Exact decomposition: law of conditional probability

§  Impractical to condition on everything before
§  P(??? | Turn to page 134 and look at the picture of the) ?

§  k-gram models (k>1): condition on k-1 previous words

§  Learning: estimate the distributions

p(x1 . . . xn) = p(x1)
nY

i=2

p(xi|x1 . . . xi�1)

p(x1 . . . xn) =
nY

i=1

q(xi|xi�(k�1) . . . xi�1)

where xi � V ⇥ {STOP} and x1 . . . xk�1 = START

q(xi|xi�(k�1) . . . xi�1)

Unigram LMs are a Well Defined Dist’ns*
§  Simplest case: unigrams

§  Generative process: pick a word, pick a word, … until you pick STOP
§  For all strings x (of any length): p(x)≥0
§  Claim: the sum over string of all lengths is 1 : Σxp(x) = 1

§  Step 1: decompose sum over length (p(n) is prob. of sent. with n words)

§  Step 2: For each length, inner sum is 1

§  Step 3: For stopping prob. ps=P(STOP), we get a geometric series

§  Question: What about the n-gram case?

p(x1 . . . xn) =
nY

i=1

p(xi)

X

x

p(x)

N-Gram Model Parameters
§  The parameters of an n-gram model:

§  Maximum likelihood estimate: relative frequency

 where c is the empirical counts on a training set

§  General approach
§  Take a training set X and a test set X’
§  Compute an estimate of the qs from X
§  Use it to assign probabilities to other sentences, such as those in X’

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door

23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

q(door|the) = 14112454

2313581162

= 0.0006

qML(w) =
c(w)

c()
, qML(w|v) =

c(w, v)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

More N-Gram Examples

Regular Languages?

§  N-gram models are (weighted) regular languages
§  Many linguistic arguments that language isn’t regular.

§  Long-distance effects: “The computer which I had just put into the
machine room on the fifth floor ___.”

§  Recursive structure
§  Why CAN we often get away with n-gram models?

§  PCFG LM (later):
§  [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the,

risk, involving, IRS, leaders, and, transportation, prices, .]
§  [It, could, be, announced, sometime, .]
§  [Mr., Toseland, believes, the, average, defense, economy, is,

drafted, from, slightly, more, than, 12, stocks, .]

Measuring Model Quality

§  The goal isn’t to pound out fake sentences!
§  Obviously, generated sentences get “better” as we increase the

model order
§  More precisely: using ML estimators, higher order is always

better likelihood on train, but not test

§  What we really want to know is:
§  Will our model prefer good sentences to bad ones?
§  Bad ≠ ungrammatical!
§  Bad ≈ unlikely
§  Bad = sentences that our acoustic model really likes but aren’t

the correct answer

Measuring Model Quality
§  The Shannon Game:

§  How well can we predict the next word?

§  Unigrams are terrible at this game. (Why?)

§  How good are we doing?
 Compute per word log likelihood (M words, m test sentences si):

When I eat pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100

l =
1

M

mX

i=1

log p(si)

Measuring Model Quality
§  But, we usually report perplexity

§  Lower is better!
§  Example:

§  uniform model à perplexity is N

§  Interpretation: effective vocabulary size (accounting for statistical
regularities)

§  Typical values for newspaper text:
§  Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200

§  Important note:
§  It’s easy to get bogus perplexities by having bogus probabilities

that sum to more than one over their event spaces. Be careful in
homeworks!

2

�l
where l =

1

M

mX

i=1

log p(si)

|V| = N and q(w| . . .) = 1
N

Measuring Model Quality (Speech)

§  Word Error Rate (WER)

§  The “right” measure:
§  Task error driven
§  For speech recognition
§  For a specific recognizer!

§  Common issue: intrinsic measures like perplexity are
easier to use, but extrinsic ones are more credible

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7
= 57%

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

S
ee

n

Unigrams

Bigrams

Rules

Sparsity
§  Problems with n-gram models:

§  New words appear all the time:
§  Synaptitute
§  132,701.03
§  multidisciplinarization

§  New n-grams: even more often
§  Zipf’s Law

§  Types (words) vs. tokens (word occurrences)
§  Broadly: most word types are rare ones
§  Specifically:

§  Rank word types by token frequency
§  Frequency inversely proportional to rank

§  Not special to language: randomly generated character strings
have this property (try it!)

§  This is particularly problematic when…
§  Training set is small (does this happen for language modeling?)
§  Transferring domains: e.g., newswire, scientific literature, Twitter

Parameter Estimation
§  Maximum likelihood estimates won’t get us

very far

§  Need to smooth these estimates
§  General method (procedurally)

§  Take your empirical counts
§  Modify them in various ways to improve

estimates
§  General method (mathematically)

§  Often can give estimators a formal statistical
interpretation … but not always

§  Approaches that are mathematically obvious
aren’t always what works

3516 wipe off the excess
1034 wipe off the dust
547 wipe off the sweat
518 wipe off the mouthpiece
…
120 wipe off the grease
0 wipe off the sauce
0 wipe off the mice

28048 wipe off the *

qML(w) =
c(w)

c()
, qML(w|v) =

c(w, v)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

Smoothing
§  We often want to make estimates from sparse statistics:

§  Smoothing flattens spiky distributions so they generalize better

§  Very important all over NLP (and ML more generally), but easy to do badly!
§  Question: what is the best way to do it?

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request

 7 total

al
le

ga
tio

ns

ch
ar

ge
s

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

ch
ar

ge
s

re
qu

es
t

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other

 7 total

Smoothing: Add-One, Etc.
§  Classic solution: add counts (Laplace smoothing)

§  Add-one smoothing especially often talked about

§  For a bigram distribution, can add counts shaped like the unigram:

§  Can consider hierarchical formulations: trigram is recursively
centered on smoothed bigram estimate, etc. [MacKay and Peto, 94]

§  Bayesian: Can be derived from Dirichlet / multinomial conjugacy -
prior shape shows up as pseudo-counts

§  Problem: works quite poorly!

qadd��(w) =
c(w) + �P

w0(c(w0) + �)

quni��(w|v) =
c(v, w) + �qML(w)�P

w0 c(v, w0)
�
+ �

Linear Interpolation
§  Problem: is supported by few counts
§  Classic solution: mixtures of related, denser histories:

§  Is this a well defined distribution?

§  Yes, if all λi≥0 and they sum to 1

§  The mixture approach tends to work better than add-δ
approach for several reasons
§  Can flexibly include multiple back-off contexts
§  Good ways of learning the mixture weights with EM (later)
§  Not entirely clear why it works so much better

§  All the details you could ever want: [Chen and Goodman, 98]

qML(w|u, v)

q(w|u, v) = �3qML(w|u, v) + �2qML(w|v) + �1qML(w)

Held-Out Data
§  Important tool for optimizing how models generalize:

§  Set a small number of hyperparameters that control the degree of
smoothing by maximizing the (log-)likelihood of held-out data

§  Can use any optimization technique (line search or EM usually easiest)

§  Examples:

Training Data Held-Out
Data

Test
Data

k

L

q(w|u, v) = �3qML(w|u, v) + �2qML(w|v) + �1qML(w)

quni��(w|v) =
c(v, w) + �qML(w)�P

w0 c(v, w0)
�
+ �

Held-Out Reweighting
§  What’s wrong with add-d smoothing?
§  Let’s look at some real bigram counts [Church and Gale 91]:

§  Big things to notice:
§  Add-one vastly overestimates the fraction of new bigrams
§  Add-0.0000027 vastly underestimates the ratio 2*/1*

§  One solution: use held-out data to predict the map of c to c*

Count in 22M Words Actual c* (Next 22M) Add-one’s c* Add-0.0000027’s c*

1 0.448 2/7e-10 ~1

2 1.25 3/7e-10 ~2

3 2.24 4/7e-10 ~3

4 3.23 5/7e-10 ~4

5 4.21 6/7e-10 ~5

Mass on New 9.2% ~100% 9.2%

Ratio of 2/1 2.8 1.5 ~2

§  Idea 1: observed n-grams occur more in training than they will later:

§  Absolute Discounting (Bigram case)

§  No need to actually have held-out data; just subtract 0.75 (or some d)

§  But, then we have “extra” probability mass

§  Question: How to distribute α between the unseen words?

Absolute Discounting

Count in 22M Words Future c* (Next 22M)

1 0.448

2 1.25

3 2.24

4 3.23

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

c⇤(v, w) = c(v, w)� 0.75 and q(w|v) = c⇤(v, w)

c(v)

§  Absolute discounting, with backoff to unigram estimates

§  Define the words into seen and unseen

§  Now, backoff to maximum likelihood unigram estimates for unseen
words

§  Can consider hierarchical formulations: trigram is recursively backed

off to Katz bigram estimate, etc
§  Can also have multiple count thresholds (instead of just 0 and >0)

Katz Backoff

↵(v) = 1�
X

w

c⇤(v, w)

c(v)c⇤(v, w) = c(v, w)� d

A(v) = {w : c(u,w) > 0} B(v) = {w : c(u,w) = 0}

qBO(w|v) =
(

c⇤(v,w)
c(v) If w 2 A(v)

↵(v)⇥ qML(w)P
w02B(v) qML(w0) If w 2 B(v)

§  Question: why the same d for all n-grams?
§  Good-Turing Discounting invented during WWII by Alan

Turing and later published by Good. Frequency
estimates were needed for Enigma code-breaking effort.

§  Let nr be the number of n-grams x for which c(x) = r
§  Now, use the modified counts

§  Then, our estimate of the missing mass is:

§  Where N is the number of tokens in the training set

Good-Turing Discounting*

c

⇤(x) = (r + 1)
nr+1

nr
i↵ c(x) = r, r > 0

↵(v) =
n1
N

Kneser-Ney Backoff*
§  Idea: Type-based fertility

§  Shannon game: There was an unexpected ____?
§  delay?
§  Francisco?

§  “Francisco” is more common than “delay”
§  … but “Francisco” (almost) always follows “San”
§  … so it’s less “fertile”

§  Solution: type-continuation probabilities
§  In the back-off model, we don’t want the unigram estimate pML

§  Instead, want the probability that w is allowed in a novel context
§  For each word, count the number of bigram types it completes

§  KN smoothing repeatedly proven effective
§  [Teh, 2006] shows it is a kind of approximate inference in a hierarchical

Pitman-Yor process (and other, better approximations are possible)

What Actually Works?
§  Trigrams and beyond:

§  Unigrams, bigrams
generally useless

§  Trigrams much better (when
there’s enough data)

§  4-, 5-grams really useful in
MT, but not so much for
speech

§  Discounting
§  Absolute discounting, Good-

Turing, held-out estimation,
Witten-Bell, etc…

§  See [Chen+Goodman]

reading for tons of graphs…

[Graphs from
Joshua Goodman]

Data vs. Method?
§  Having more data is better…

§  … but so is using a better estimator
§  Another issue: N > 3 has huge costs in speech recognizers

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

E
nt

ro
py

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Tons of Data?

§  Tons of data closes gap, for extrinsic MT evaluation

Beyond N-Gram LMs
§  Lots of ideas we won’t have time to discuss:

§  Caching models: recent words more likely to appear again
§  Trigger models: recent words trigger other words
§  Topic models

§  A few recent ideas
§  Syntactic models: use tree models to capture long-distance

syntactic effects [Chelba and Jelinek, 98]

§  Discriminative models: set n-gram weights to improve final task

accuracy rather than fit training set density [Roark, 05, for ASR;
Liang et. al., 06, for MT]

§  Structural zeros: some n-grams are syntactically forbidden, keep

estimates at zero [Mohri and Roark, 06]

§  Bayesian document and IR models [Daume 06]

