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Overview 

§  The language modeling problem 
§  N-gram language models 
§  Evaluation: perplexity 
§  Smoothing 

§  Add-N  
§  Linear Interpolation 
§  Discounting Methods  

 



The Language Modeling Problem 
n  Setup: Assume a (finite) vocabulary of words 
 
 

n  We can construct an (infinite) set of strings 

 
n  Data: given a training set of example sentences              
n  Problem: estimate a probability distribution 

n  Question: why would we ever want to do this? 
 

V†
= {the, a, the a, the fan, the man, the man with the telescope, ...}

x � V†

X

x�V†

p(x) = 1

and p(x) � 0 for all x ⇥ V†

p(the) = 10�12

p(a) = 10�13

p(the fan) = 10�12

p(the fan saw Beckham) = 2⇥ 10�8

p(the fan saw saw) = 10�15

. . .



The Noisy-Channel Model 
n  We want to predict a sentence given acoustics: 
 
 
n  The noisy channel approach: 

 
 
 

Acoustic model: Distributions 
over acoustic waves given a 

sentence  

Language model: 
Distributions over sequences 

of words (sentences) 



Acoustically Scored Hypotheses 
 
 
the station signs are in deep in english    -14732 
the stations signs are in deep in english    -14735 
the station signs are in deep into english   -14739 
the station 's signs are in deep in english   -14740 
the station signs are in deep in the english   -14741 
the station signs are indeed in english    -14757 
the station 's signs are indeed in english   -14760 
the station signs are indians in english    -14790 
the station signs are indian in english    -14799 
the stations signs are indians in english    -14807 
the stations signs are indians and english   -14815 
 



ASR System Components 

source 
P(w) 

w a 

decoder 
observed      

argmax P(w|a) = argmax P(a|w)P(w) 
w w 

w a 
best 

channel 
P(a|w) 

Language Model Acoustic Model 



Translation: Codebreaking? 

§  “Also knowing nothing official about, but having 
guessed and inferred considerable about, the 
powerful new mechanized methods in cryptography
—methods which I believe succeed even when one 
does not know what language has been coded—one 
naturally wonders if the problem of translation could 
conceivably be treated as a problem in 
cryptography.  When I look at an article in Russian, I 
say: ‘This is really written in English, but it has been 
coded in some strange symbols. I will now proceed 
to decode.’  ”  

§  Warren Weaver (1955:18, quoting a letter he wrote in 1947) 



MT System Components 

source 
P(e) 

e f 

decoder 
observed      

argmax P(e|f) = argmax P(f|e)P(e) 
e e 

e f 
best 

channel 
P(f|e) 

Language Model Translation Model 



Learning Language Models 
§  Goal: Assign useful probabilities P(x) to sentences x 

§  Input: many observations of training sentences x 
§  Output: system capable of computing P(x) 

§  Probabilities should broadly indicate plausibility of sentences 
§  P(I saw a van) >> P(eyes awe of an) 
§  Not grammaticality: P(artichokes intimidate zippers) ≈ 0 
§  In principle, “plausible” depends on the domain, context, speaker… 

§  One option: empirical distribution over training sentences… 

§  Problem: does not generalize (at all) 
§  Need to assign non-zero probability to previously unseen sentences! 

p(x1 . . . xn) =
c(x1 . . . xn)

N

for sentence x = x1 . . . xn



Unigram Models 
§  Simplest case: unigrams 

§  Generative process: pick a word, pick a word, … until you pick STOP 
§  As a graphical model: 

§  Examples: 
§  [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.] 
§  [thrift, did, eighty, said, hard, 'm, july, bullish] 
§  [that, or, limited, the] 
§  [] 
§  [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, 

mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, 
board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, 
they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, 
however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, 
advancers, half, between, nasdaq] 

§  Big problem with unigrams: P(the the the the) >> P(I like ice cream)! 

x1 x2 xn-1 STOP …………. 

p(x1 . . . xn) =
nY

i=1

p(xi)



Bigram Models 
§  Condition on previous single word: 

 
§  Generative process: pick START, pick a word conditioned on previous one,     

   repeat until to pick STOP 
§  Graphical Model: 

§  Any better? 
§  [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., 

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, 
fifty, five, yen] 

§  [outside, new, car, parking, lot, of, the, agreement, reached] 
§  [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, 

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of, 
american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe, 
chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious, 
teaching] 

§  [this, would, be, a, record, november] 
§  But, what is the cost? 

x1 x2 xn-1 STOP START 

p(x1 . . . xn) =
nY

i=1

p(xi|xi�1)



Higher Order N-grams? 

3380 please close the door 
1601 please close the window 
1164 please close the new 
1159 please close the gate 
… 
0 please close the first 
----------------- 
13951 please close the * 

198015222 the first 
194623024 the same 
168504105 the following 
158562063 the world 
… 
14112454 the door 
----------------- 
23135851162 the * 
 

197302 close the window 
191125 close the door 
152500 close the gap 
116451 close the thread 
87298 close the deal 
----------------- 
3785230 close the * 
 

Please close the door 

Please close the first window on the left 



N-Gram Model Decomposition 
§  Exact decomposition: law of conditional probability 

§  Impractical to condition on everything before 
§  P(??? | Turn to page 134 and look at the picture of the) ? 

§  k-gram models (k>1): condition on k-1 previous words 
 

§  Learning: estimate the distributions   

p(x1 . . . xn) = p(x1)
nY

i=2

p(xi|x1 . . . xi�1)

p(x1 . . . xn) =
nY

i=1

q(xi|xi�(k�1) . . . xi�1)

where xi � V ⇥ {STOP} and x1 . . . xk�1 = START

q(xi|xi�(k�1) . . . xi�1)



Unigram LMs are a Well Defined Dist’ns* 
§  Simplest case: unigrams 

§  Generative process: pick a word, pick a word, … until you pick STOP 
§  For all strings x (of any length): p(x)≥0  
§  Claim:  the sum over string of all lengths is 1 : Σxp(x) = 1 

§  Step 1: decompose sum over length (p(n) is prob. of sent. with n words) 

§  Step 2: For each length, inner sum is 1 

§  Step 3: For stopping prob. ps=P(STOP), we get a geometric series 

 
 

§  Question: What about the n-gram case? 

p(x1 . . . xn) =
nY

i=1

p(xi)

X

x

p(x)



N-Gram Model Parameters 
§  The parameters of an n-gram model: 

§  Maximum likelihood estimate: relative frequency 

 where c is the empirical counts on a training set 
 

§  General approach 
§  Take a training set X and a test set X’ 
§  Compute an estimate of the qs from X 
§  Use it to assign probabilities to other sentences, such as those in X’ 

198015222 the first 
194623024 the same 
168504105 the following 
158562063 the world 
… 
14112454 the door 
----------------- 
23135851162 the * 

Tr
ai

ni
ng

 C
ou

nt
s 

q(door|the) = 14112454

2313581162

= 0.0006

qML(w) =
c(w)

c()
, qML(w|v) =

c(w, v)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .



More N-Gram Examples 



Regular Languages? 

§  N-gram models are (weighted) regular languages 
§  Many linguistic arguments that language isn’t regular. 

§  Long-distance effects: “The computer which I had just put into the 
machine room on the fifth floor ___.” 

§  Recursive structure 
§  Why CAN we often get away with n-gram models? 

§  PCFG LM (later): 
§  [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, 

risk, involving, IRS, leaders, and, transportation, prices, .] 
§  [It, could, be, announced, sometime, .] 
§  [Mr., Toseland, believes, the, average, defense, economy, is, 

drafted, from, slightly, more, than, 12, stocks, .] 

     



Measuring Model Quality 

§  The goal isn’t to pound out fake sentences! 
§  Obviously, generated sentences get “better” as we increase the 

model order 
§  More precisely: using ML estimators, higher order is always 

better likelihood on train, but not test 

§  What we really want to know is: 
§  Will our model prefer good sentences to bad ones? 
§  Bad ≠ ungrammatical! 
§  Bad ≈ unlikely 
§  Bad = sentences that our acoustic model really likes but aren’t 

the correct answer 



Measuring Model Quality 
§  The Shannon Game: 

§  How well can we predict the next word? 

§  Unigrams are terrible at this game.  (Why?) 

§  How good are we doing? 
  Compute per word log likelihood (M words, m test sentences si): 

When I eat pizza, I wipe off the ____ 

Many children are allergic to ____ 

I saw a ____ 

grease 0.5 

sauce 0.4 

dust 0.05 

…. 

mice 0.0001 

…. 

the     1e-100 

l =
1

M

mX

i=1

log p(si)



Measuring Model Quality 
§  But, we usually report perplexity 

§  Lower is better! 
§  Example:  

§  uniform model à perplexity is N 

§  Interpretation: effective vocabulary size (accounting for statistical 
regularities) 

§  Typical values for newspaper text:  
§  Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200 

§  Important note: 
§  It’s easy to get bogus perplexities by having bogus probabilities 

that sum to more than one over their event spaces.  Be careful in 
homeworks! 

2

�l
where l =

1

M

mX

i=1

log p(si)

|V| = N and q(w| . . .) = 1
N



Measuring Model Quality (Speech) 

§  Word Error Rate (WER) 

§  The “right” measure: 
§  Task error driven 
§  For speech recognition 
§  For a specific recognizer! 

§  Common issue: intrinsic measures like perplexity are 
easier to use, but extrinsic ones are more credible 

Correct answer:          Andy saw a part of the movie 

Recognizer output:     And he saw apart of the movie 

insertions + deletions + substitutions 
true sentence size 

WER: 4/7 
= 57% 
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Sparsity 
§  Problems with n-gram models: 

§  New words appear all the time: 
§  Synaptitute 
§  132,701.03 
§  multidisciplinarization 

§  New n-grams: even more often 
§  Zipf’s Law 

§  Types (words) vs. tokens (word occurrences) 
§  Broadly: most word types are rare ones 
§  Specifically:  

§  Rank word types by token frequency 
§  Frequency inversely proportional to rank 

§  Not special to language: randomly generated character strings 
have this property (try it!) 

§  This is particularly problematic when… 
§  Training set is small (does this happen for language modeling?) 
§  Transferring domains: e.g., newswire, scientific literature, Twitter 



Parameter Estimation 
§  Maximum likelihood estimates won’t get us 

very far 

§  Need to smooth these estimates 
§  General method (procedurally) 

§  Take your empirical counts 
§  Modify them in various ways to improve 

estimates 
§  General method (mathematically) 

§  Often can give estimators a formal statistical 
interpretation … but not always 

§  Approaches that are mathematically obvious 
aren’t always what works 

3516 wipe off the excess  
1034 wipe off the dust 
547 wipe off the sweat 
518 wipe off the mouthpiece 
… 
120 wipe off the grease 
0 wipe off the sauce 
0 wipe off the mice 
----------------- 
28048 wipe off the * 

qML(w) =
c(w)

c()
, qML(w|v) =

c(w, v)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .



Smoothing 
§  We often want to make estimates from sparse statistics: 

§  Smoothing flattens spiky distributions so they generalize better 

§  Very important all over NLP (and ML more generally), but easy to do badly! 
§  Question: what is the best way to do it? 

P(w | denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 request 
 

  7 total 

al
le

ga
tio

ns
 

ch
ar

ge
s 

m
ot

io
n 

be
ne

fit
s 

…

al
le

ga
tio

ns
 

re
po

rts
 

cl
ai

m
s 

ch
ar

ge
s 

re
qu

es
t 

m
ot

io
n 

be
ne

fit
s 

…

al
le

ga
tio

ns
 

re
po

rts
 

cl
ai

m
s 

re
qu

es
t 

P(w | denied the) 
  2.5 allegations 
  1.5 reports 
  0.5 claims 
  0.5 request 
  2 other 
 

  7 total 



Smoothing: Add-One, Etc. 
§  Classic solution: add counts (Laplace smoothing) 

§  Add-one smoothing especially often talked about 

§  For a bigram distribution, can add counts shaped like the unigram: 

§  Can consider hierarchical formulations: trigram is recursively 
centered on smoothed bigram estimate, etc. [MacKay and Peto, 94] 

§  Bayesian: Can be derived from Dirichlet / multinomial conjugacy - 
prior shape shows up as pseudo-counts 

§  Problem: works quite poorly! 

qadd��(w) =
c(w) + �P

w0(c(w0) + �)

quni��(w|v) =
c(v, w) + �qML(w)�P

w0 c(v, w0)
�
+ �



Linear Interpolation 
§  Problem:                         is supported by few counts 
§  Classic solution: mixtures of related, denser histories: 
 
 
§  Is this a well defined distribution? 

§  Yes, if all λi≥0 and they sum to 1 

§  The mixture approach tends to work better than add-δ 
approach for several reasons 
§  Can flexibly include multiple back-off contexts 
§  Good ways of learning the mixture weights with EM (later) 
§  Not entirely clear why it works so much better 

§  All the details you could ever want: [Chen and Goodman, 98] 

qML(w|u, v)

q(w|u, v) = �3qML(w|u, v) + �2qML(w|v) + �1qML(w)



Held-Out Data 
§  Important tool for optimizing how models generalize: 

§  Set a small number of hyperparameters that control the degree of 
smoothing by maximizing the (log-)likelihood of held-out data 

§  Can use any optimization technique (line search or EM usually easiest) 

§  Examples: 

Training Data Held-Out 
Data 

Test 
Data 

k 

L 

q(w|u, v) = �3qML(w|u, v) + �2qML(w|v) + �1qML(w)

quni��(w|v) =
c(v, w) + �qML(w)�P

w0 c(v, w0)
�
+ �



Held-Out Reweighting 
§  What’s wrong with add-d smoothing? 
§  Let’s look at some real bigram counts [Church and Gale 91]: 

§  Big things to notice: 
§  Add-one vastly overestimates the fraction of new bigrams 
§  Add-0.0000027 vastly underestimates the ratio 2*/1* 

§  One solution: use held-out data to predict the map of c to c* 

Count in 22M Words Actual c* (Next 22M) Add-one’s c* Add-0.0000027’s c* 

1 0.448 2/7e-10 ~1 

2 1.25 3/7e-10 ~2 

3 2.24 4/7e-10 ~3 

4 3.23 5/7e-10 ~4 

5 4.21 6/7e-10 ~5 

Mass on New  9.2% ~100% 9.2% 

Ratio of 2/1 2.8 1.5 ~2 



§  Idea 1: observed n-grams occur more in training than they will later: 
 
 
 
 

 
§  Absolute Discounting (Bigram case) 

§  No need to actually have held-out data; just subtract 0.75 (or some d) 

§  But, then we have “extra” probability mass 

 
 
§  Question: How to distribute α between the unseen words? 

Absolute Discounting 

Count in 22M Words Future c* (Next 22M) 

1 0.448 

2 1.25 

3 2.24 

4 3.23 

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

c⇤(v, w) = c(v, w)� 0.75 and q(w|v) = c⇤(v, w)

c(v)



§  Absolute discounting, with backoff to unigram estimates 

§  Define the words into seen and unseen 

§  Now, backoff to maximum likelihood unigram estimates for unseen 
words 

 
§  Can consider hierarchical formulations: trigram is recursively backed 

off to Katz bigram estimate, etc 
§  Can also have multiple count thresholds (instead of just 0 and >0) 

Katz Backoff 

↵(v) = 1�
X

w

c⇤(v, w)

c(v)c⇤(v, w) = c(v, w)� d

A(v) = {w : c(u,w) > 0} B(v) = {w : c(u,w) = 0}

qBO(w|v) =
(

c⇤(v,w)
c(v) If w 2 A(v)

↵(v)⇥ qML(w)P
w02B(v) qML(w0) If w 2 B(v)



§  Question: why the same d for all n-grams? 
§  Good-Turing Discounting invented during WWII by Alan 

Turing and later published by Good. Frequency 
estimates were needed for Enigma code-breaking effort. 

§  Let nr be the number of n-grams x for which c(x) = r 
§  Now, use the modified counts 

 
§  Then, our estimate of the missing mass is: 

§  Where N is the number of tokens in the training set 

 
 
 

 

Good-Turing Discounting* 

c

⇤(x) = (r + 1)
nr+1

nr
i↵ c(x) = r, r > 0

↵(v) =
n1
N



Kneser-Ney Backoff* 
§  Idea: Type-based fertility 

§  Shannon game:  There was an unexpected ____? 
§  delay? 
§  Francisco? 

§  “Francisco” is more common than “delay” 
§  … but “Francisco” (almost) always follows “San” 
§  … so it’s less “fertile” 

§  Solution: type-continuation probabilities 
§  In the back-off model, we don’t want the unigram estimate pML 

§  Instead, want the probability that w is allowed in a novel context 
§  For each word, count the number of bigram types it completes 

§  KN smoothing repeatedly proven effective 
§  [Teh, 2006] shows it is a kind of approximate inference in a hierarchical 

Pitman-Yor process (and other, better approximations are possible) 



What Actually Works? 
§  Trigrams and beyond: 

§  Unigrams, bigrams 
generally useless 

§  Trigrams much better (when 
there’s enough data) 

§  4-, 5-grams really useful in 
MT, but not so much for 
speech 

§  Discounting 
§  Absolute discounting, Good-

Turing, held-out estimation, 
Witten-Bell, etc… 

 
§  See [Chen+Goodman] 

reading for tons of graphs… 

[Graphs from 
Joshua Goodman] 



Data vs. Method? 
§  Having more data is better… 
 
 
 
 
 
 
 
 
 
 

 
 
§  … but so is using a better estimator 
§  Another issue: N > 3 has huge costs in speech recognizers 
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Tons of Data? 

§  Tons of data closes gap, for extrinsic MT evaluation 



Beyond N-Gram LMs 
§  Lots of ideas we won’t have time to discuss: 

§  Caching models: recent words more likely to appear again 
§  Trigger models: recent words trigger other words 
§  Topic models 
 

§  A few recent ideas 
§  Syntactic models: use tree models to capture long-distance 

syntactic effects [Chelba and Jelinek, 98] 
 
§  Discriminative models: set n-gram weights to improve final task 

accuracy rather than fit training set density [Roark, 05, for ASR;  
Liang et. al., 06, for MT] 

 
§  Structural zeros: some n-grams are syntactically forbidden, keep 

estimates at zero [Mohri and Roark, 06] 

§  Bayesian document and IR models [Daume 06] 
 


