
Name:

CSE P505, Autumn 2016
Sample Exam Questions

Notes:

• Most of these questions are from old exams given in slightly different classes, so don’t worry too much
if one or two problems feel only tangentially related to what you learned. Others were written a bit
quickly, so they may be more “study problems” than “exam problems” but they are still in the style
of exam problems.

• All of these problems were written assuming “closed notes” (but allowing each student to bring one
sheet of paper with anything wanted on it). Our exam is “open notes” as explained elsewhere.

• The actual exam will cover some of the same topics and some different ones. There will be roughly 10
questions on the exam, so not everything can be covered. The real exam will cover Haskell and related
topics, but none of these sample questions do.

1

Name:

1. (a) Write a function wgo_help1 such that this function:

let wgo1 max lst = wgo_help1 0 max lst

behaves as follows: If lst is a list of integers [i1;i2;...;in], then wgo1 returns the sum of a
prefix of the list i1 ... ij such that:

• The sum is less than max.

• Either the sum of the next-larger prefix i1 ... ij i is not less than max or there is no
next-larger prefix (i.e., the entire list has a sum less than max).

Do not define any other helper functions. Note wgo stands for, “without going over.”

(b) What is the type of wgo_help1?

(c) Write a function wgo_help2 such that this function:

let wgo2 max lst = wgo_help2 (fun x -> x < max) (fun x y -> x+y) 0 lst

has the same observable behavior as wgo1. Do not define any other functions. wgo_help2 should
not contain an explicit addition.

(d) What is the type of wgo_help2?

(e) Rewrite wgo1 and wgo2 to be shorter.

2

Name:

2. Consider this OCaml code. It uses strcmp, which has type string->string->bool and the expected
behavior.

exception NoValue

let empty = fun s -> raise NoValue

let extend m x v = fun s -> if strcmp s x then v else m s

let lookup m x = m x

(a) What functionality do these three bindings provide a client?

(b) What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)

3

Name:

3. (a) Consider this OCaml code:

type t = A of int | B of (int->int)

let x = 2

let f y = x + y

let ans1 = (let x = 3 in

let a = A (f 4) in

let x = 5 in

match a with A x -> x | B x -> x 6)

let ans2 = (let x = 3 in

let b = B f in

let x = 5 in

match b with A x -> x | B x -> x 6)

After evaluating this code, what values are ans1 and ans2 bound to?

(b) Consider this OCaml code:

let rec g x =

match x with

[] -> []

| hd::tl -> (fun y -> hd + y)::(g tl)

i. What does this function do?

ii. What is this function’s type?

iii. Write a function h that is the inverse of g. That is, fun x -> h (g x) would return a value
equivalent to its input.

4

Name:

4. Consider the following OCaml code.

let catch_all1 t1 t2 = try t1 () with x -> t2 ()

let catch_all2 t1 t2 = try t1 () with x -> t2

(a) Under what conditions, if any, does using catch_all1 raise an exception?

(b) Under what conditions, if any, does using catch_all2 raise an exception?

(c) What type does OCaml give catch_all1?

(d) What type does OCaml give catch_all2?

5

Name:

5. Here is our OCaml abstract syntax for IMP with one new kind of statement described below:

type exp = Int of int | Var of string | Plus of exp * exp | Times of exp * exp

type stmt = Skip | Assign of string * exp | Seq of stmt * stmt

| If of exp * stmt * stmt | While of exp * stmt

| CompareAndSwap of string * exp * exp

Recall that in the semantics the expression in an if-statement or while-statement is true if it is not
zero.

In this problem, we consider a new kind of statement in IMP. The semantics of CompareAndSwap(s,e1,e2)
is as follows:

• If evaluating e1 under the current heap produces the same value that variable s holds under the
current heap, then update the heap so s holds the value that e2 evaluates to under the current
heap.

• Otherwise make no change to the heap.

In OCaml, write a translation from IMP-including-compare-and-swap statements to IMP-not-including-
compare-and-swap statements. In other words, write a function translate of type stmt -> stmt such
that (1) the result contains no compare-and-swap statements and (2) the result is equivalent to the
argument.

Note: Some of you might recognize compare-and-swap as related to concurrency, but this problem has
nothing to do with concurrency.

6

Name:

6. (a) Why do we not have this rule in our IMP statement semantics?

H0 ; s1 ⇓ H1H1 ; s2 ⇓ H2H2 ; s3 ⇓ H3

H0 ; s1; (s2; s3) ⇓ H3

(b) Why do we not have this rule in our IMP statement semantics?

H0 ; s2 ⇓ H1H1 ; s1 ⇓ H2

H0 ; s1; s2 ⇓ H2

7

Name:

7. Consider this OCaml syntax for a λ-calculus:

type exp = Var of string

| Lam of string * exp

| Apply of exp * exp

| Int of int

| Pair of exp * exp

| First of exp

| Second of exp

(a) Write an OCaml function swap of type exp->exp that changes all Pair expressions by switch-
ing the order of the subexpressions, changes all First expressions into Second expressions, and
changes all Second expressions into First expressions.

(b) True or false: Given an implementation of the λ-calculus, interp(swap(e)) is always that same
as interp(e).

(c) True or false: Given an implementation of the λ-calculus, if interp(swap(e)) returns Int i, then
interp(e) returns Int i.

8

Name:

8. In this problem we define a small language that manipulates a stack of strings. You are given the
syntax and the informal semantics.

The language syntax is a command list. A program state contains a command list and a stack of
strings (the stack “grows to the right”):

string str ::= (any string)
command c ::= push str | pop | dup | swap

command-list lst ::= [] | c::lst
stack stk ::= · | stk , str

Informally, the commands behave as follows:

• push str makes a bigger stack with str on top.

• pop makes a smaller stack by removing the top element.

• dup (short for duplicate) makes a bigger stack by placing a copy of the top stack-element on top.

• swap swaps the order of the top two elements on the stack.

A command list executes the commands in order.

(a) Give large-step inference rules for the judgment stk1 ; lst ⇓ stk2 , meaning, “running lst starting
from stk1 produces stk2 .” One rule is given to you as an example. You need to write down 4
other rules.

stk1 , str ; lst ⇓ stk2

stk1 ; (push str)::lst ⇓ stk2

(b) The semantics can get stuck, i.e., there exists stacks stk1 and command-lists lst such that we
cannot derive stk1 ; lst ⇓ stk2 for any stk2 . In English, describe why there may be not be a
derivation.

(c) Give a complete derivation that concludes ·; (push “pl”)::dup::swap::[] ⇓ ·, “pl”, “pl”

9

Name:

9. When we added sums (syntax A e, B e, and match e1 with A x → e2|B y → e3) to the λ-calculus, we
gave a small-step semantics and had exactly two constructors.

(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-by-
value large-step judgment e ⇓ v with new rules. (Use 4 rules.)

(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that
have exactly three cases:

match e1 with A x→ e2 |B y → e3 |C z → e4

Explain a possible translation of such a program into an equivalent one that uses only two con-
structors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to
translate match expressions. Do not write inference rules.)

10

Name:

10. Suppose we add division to our IMP expression language. In OCaml, the expression syntax becomes:

type exp =

Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp

Our interpreter (not shown) raises a OCaml exception if the second argument to Div evaluates to 0.
We are ignoring statements; assume an IMP program is an expression that takes an unknown heap
and produces an integer.

(a) Write an OCaml function nsz (stands for “no syntactic zero”) of type exp->bool that returns
false if and only if its argument contains a division where the second argument is the integer
constant 0. Note we are not interpreting the input; nsz is not even passed a heap.

(b) If we consider division-by-zero at run-time a “stuck state” and nsz a “type system” (where true
means “type-checks”), then:

i. Is nsz sound? Explain.

ii. Is nsz complete? Explain.

11

Name:

11. (a) Recall this typing rule, one of the three rules we added for sums:

Γ ` e : τ1

Γ ` A e : τ1 + τ2

Explain this rule in English. In particular, what expressions can this typing rule be used for and
what types can it give to such expressions?

(b) Recall this typing rule for functions:

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Explain this rule in English. In particular, what expressions can this typing rule be used for and
what types can it give to such expressions?

(c) Suppose we changed the typing rule for functions to the following:

Γ, x : τ2 ` e : τ2

Γ ` λx. e : τ2 → τ2

Explain why this change would not violate type safety. Explain why it is a bad idea anyway.

12

Name:

12. For all subproblems, assume the simply-typed λ calculus.

(a) Give a Γ, e1, e2, and τ such that Γ ` e1 : τ and Γ ` e2 : τ and e1 6= e2.

(b) Give a Γ1, Γ2, e, and τ such that Γ1 ` e : τ and Γ2 ` e : τ and Γ1 6= Γ2.

(c) Give a Γ, e, τ1, and τ2 such that Γ ` e : τ1 and Γ ` e : τ2 and τ1 6= τ2.

13

Name:

13. Suppose you design a new type system for Java to prevent null-pointer dereferences. However, due to
poor design, your type system has the strange property that there are exactly 47 programs that your
type system accepts; it rejects all others.

Explain your answers briefly.

(a) Is it possible that your type system is sound with respect to null-pointer dereferences?

(b) Is it possible that your type system is complete with respect to null-pointer dereferences?

(c) Is it definitely the case given just the information above that your type system is sound with
respect to null-pointer dereferences?

(d) Is it definitely the case given just the information above that your type system is complete with
respect to null-pointer dereferences?

14

Name:

14. Consider a λ-calculus with tuples (i.e., “pairs with any number of fields”), so we have expressions
(e1, e2, ..., en) and e.i and types τ1 ∗ τ2 ∗ ... ∗ τn. For each of our subtyping rules for records, explain
whether or not an analogous rule for tuples makes sense.

15

Name:

15. Assume a typed lambda-calculus with records, references, and subtyping. For each of the following,
describe exactly the conditions under which the subtyping claim holds.

Example question: {l1:τ1, l2:τ2} ≤ {l1:τ3, l2:τ4}

Example answer: “when τ1 ≤ τ3 and τ2 ≤ τ4”

Your answer should be “fully reduced” in the sense that if you say τ ≤ τ ′, then τ or τ ′ or both should
be τi for some number i where τi appears in the question.

Note: We did not discuss much (at all?) in P505 that references are like records with one mutable
field.

(a) ({l1:τ1, l2:τ2})→ int ≤ ({l1:τ3, l2:τ4})→ int

(b) {l1:(τ1 ref)} ≤ {l1:τ2}

(c) (τ1 → τ2)→ (τ3 → τ4) ≤ (τ5 → τ6)→ (τ7 → τ8)

(d) (τ1 → τ2) ref ≤ (τ3 → τ4) ref

16

Name:

16. Consider these definitions in a class-based OO language:

class C1 { class Main {

int g() { return 0; } int m1(C1 x) { return x.f() }

int f() { return g(); } int m2(C2 x) { return x.f() }

} int m3(D1 x) { return x.f() }

class C2 extends C1 { int m4(D2 x) { return x.f() }

int g() { return 1; } }

}

class D1 {

private C1 x = new C1();

int g() { return 0; }

int f() { return x.f(); }

}

class D2 extends D1 {

int g() { return 1; }

}

Assume this is not the entire program, but the rest of the program does not declare subclasses of the
classes above.

Explain your answers:

(a) True or false: Changing the body of m1 to return 0 produces an equivalent m1.

(b) True or false: Changing the body of m2 to return 1 produces an equivalent m2.

(c) True or false: Changing the body of m3 to return 0 produces an equivalent m3.

(d) True or false: Changing the body of m4 to return 1 produces an equivalent m4.

(e) How do your answers change if the rest of the program might declare subclasses of the classes
above (excluding Main)?

17

Name:

17. Consider a typical class-based OOP language like we did in class. Suppose somewhere in a program
that type-checks we have e.m((D)(new C())) where C is a subclass/subtype of D. Notice the argument
in the method call is an explicit upcast. Consider modifying the program by removing this explicit
upcast, i.e., replacing the call with e.m(new C()).

Explain your answers briefly.

(a) If every class in the program has at most one method named m, can this change cause the program
not to type-check?

(b) If every class in the program has at most one method named m, can this change cause the program
to produce a different result?

18

Name:

18. Suppose we extend a class-based object-oriented language with a keyword null, which has type
NullType, which is a subtype of any type.

(a) Explain why the subtyping described above is backwards. How does some popular language you
know deal with this?

(b) With static overloading or multimethods (the issue is the same), show how null can lead to
ambiguities. [WE DIDN’T STUDY THESE TOPICS.]

19

Name:

19. THIS PROBLEM ALSO PROBABLY COVERS MATERIAL WE WON’T GET TO.

Consider this code in a class-based OOP language with multiple inheritance. A subclass overrides a
method by defining a method with the same name and arguments.

class A { }

class B extends A { unit m1() { print "m1B" } }

class C extends B { unit m1() { print "m1C" } }

class D extends A { }

class E extends C, D { }

class Main {

unit m2(D c) { print "m2D"; }

unit m2(C c) { print "m2C"; c.m1() }

unit m2(B b) { print "m2B"; b.m1() }

unit main() {

E e = new E();

e.m1(); // 0

((B)e).m1(); // 1

self.m2(e); // 2

self.m2((D)e); // 3

self.m2((C)e); // 4

self.m2((B)e); // 5

}

}

(a) Assume the language has static overloading. For each of the lines 0–5, determine if the method
call is ambiguous (“no best match”) or not. If it is not, what does executing the call print?

(b) Assume the language has multimethods. For each of the lines 0–5, determine if the method call
is ambiguous (“no best match”) or not. If it is not, what does executing the call print?

20

