Name:

CSE P505, Autumn 2016
Sample Exam Questions

Notes:

Most of these questions are from old exams given in slightly different classes, so don’t worry too much
if one or two problems feel only tangentially related to what you learned. Others were written a bit
quickly, so they may be more “study problems” than “exam problems” but they are still in the style
of exam problems.

All of these problems were written assuming “closed notes” (but allowing each student to bring one
sheet of paper with anything wanted on it). Our exam is “open notes” as explained elsewhere.

The actual exam will cover some of the same topics and some different ones. There will be roughly 10
questions on the exam, so not everything can be covered. The real exam will cover Haskell and related
topics, but none of these sample questions do.

Name:

1. (a) Write a function wgo_helpl such that this function:
let wgol max 1lst = wgo_helpl O max 1st

behaves as follows: If 1st is a list of integers [i1;i2;...;in], then wgol returns the sum of a
prefix of the list i1 ... ij such that:
e The sum is less than max.
o Either the sum of the next-larger prefix i1 ... ij i is not less than max or there is no
next-larger prefix (i.e., the entire list has a sum less than max).
Do not define any other helper functions. Note wgo stands for, “without going over.”
(b) What is the type of wgo_help1?
(¢) Write a function wgo_help2 such that this function:

let wgo2 max lst = wgo_help2 (fun x -> x < max) (fun x y -> x+y) 0 1lst

has the same observable behavior as wgol. Do not define any other functions. wgo_help2 should
not contain an explicit addition.

(d) What is the type of wgo_help2?
(e) Rewrite wgol and wgo?2 to be shorter.

Solution:

(a) let rec wgo_helpl acc max lst =
match 1st with
[—> acc
| hd::tl -> if acc+hd < max
then wgo_helpl (acc+hd) max tl
else acc

(b) int -> int -> int list -> int
(c) let rec wgo_help2 f g acc 1lst =
match 1lst with
[1 -> acc
| hd::tl -> if £ (g hd acc)
then wgo_help2 f g (g hd acc) tl
else acc

(d) (’a => bool) -> (°b -> ’a -> ’a) -> ’a -> ’b list -> ’a Note that it also works to use
(g acc hd), which changes the type of the second argument to ’a -> ’b -> ’a. Substantial
partial credit was given for a type with only one type variable.

(e) let wgol = wgo_helpl O

let wgo2 max = wgo_help2 (fun x -> x < max) (fun x y -> x+y) O

Name:

. Consider this OCaml code. It uses strcmp, which has type string->string->bool and the expected
behavior.

exception NoValue

let empty = fun s -> raise NoValue

let extend m x v = fun s -> if strcmp s x then v else m s
let lookup m x = m x

(a)
(b)

What functionality do these three bindings provide a client?

What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)

Solution:

(a)

They provide maps from strings to values (where the client chooses the type of the values). empty
is the empty-map; calling lookup with it and any string raises an exception. extend creates a
larger map from a smaller one (m) by having x map to v (shadowing any previous mapping for x)
and otherwise using the map m.
(We didn’t ask how the code works: A map is represented by a OCaml function from strings to
values, so lookup is just function application. extend creates a new function that uses m, x, and
v as free variables: If the string it is passed is not equal to x, then it just applies the smaller map
m to s.)

empty : ’a -> ’b

extend : (string -> ’a) -> string -> ’a -> (string -> ’a)

lookup : (’a -> ’b) -> ’a -> ’b

Name:

3. (a) Consider this OCaml code:

type t = A of int | B of (int->int)
let x = 2
let fy=x+y
let ansl = (let x = 3 in

let a = A (f 4) in

let x = 5 in

match a with A x > x | Bx -> x 6)
let ans2 = (let x = 3 in

let b =B f in

let x = 5 in

match b with A x -> x | B x -> x 6)

After evaluating this code, what values are ans1 and ans2 bound to?
(b) Consider this OCaml code:

let rec g x =
match x with
0 ->1
| hd::tl -> (fun y -> hd + y):: (g t1)
i. What does this function do?
ii. What is this function’s type?
iii. Write a function h that is the inverse of g. That is, fun x -> h (g x) would return a value
equivalent to its input.

Solution:

(a) ans1 is bound to 6 and ans2 is bound to 8.

(b) This function takes a list of integers and returns a list of functions where the i*" element in the
output list returns the sum of its input and the i** element of the input list.
(c¢) int list -> ((int -> int) list)

(d) let rec h x =
match x with
0 -1
| hd::t1 -> (hd 0)::(h t1)

Name:

. Consider the following OCaml code.

let catch_alll t1 t2 = try t1 () with x -> t2 (O

let catch_all2 t1 t2 = try t1 () with x -> t2

(a) Under what conditions, if any, does using catch_alll raise an exception?
(b) Under what conditions, if any, does using catch_all2 raise an exception?
(¢) What type does OCaml give catch_all1?

)

(d) What type does OCaml give catch_all2?

Solution:

(a) when calling its first argument raises an exception and calling its second argument raises an
exception

(b) never

—
¢]
~

OCaml: (unit - a) — (unit - a) = «
(d) OCaml: (unit = a) = a = «

Name:

. Here is our OCaml abstract syntax for IMP with one new kind of statement described below:

type exp = Int of int | Var of string | Plus of exp * exp | Times of exp * exp
type stmt = Skip | Assign of string * exp | Seq of stmt * stmt

| If of exp * stmt * stmt | While of exp * stmt
| CompareAndSwap of string * exp * exp

Recall that in the semantics the expression in an if-statement or while-statement is true if it is not
ZEero.

In this problem, we consider a new kind of statement in IMP. The semantics of CompareAndSwap (s,el,e2)
is as follows:

e If evaluating el under the current heap produces the same value that variable s holds under the
current heap, then update the heap so s holds the value that e2 evaluates to under the current
heap.

e Otherwise make no change to the heap.

In OCaml, write a translation from IMP-including-compare-and-swap statements to IMP-not-including-
compare-and-swap statements. In other words, write a function translate of type stmt -> stmt such
that (1) the result contains no compare-and-swap statements and (2) the result is equivalent to the
argument.

Note: Some of you might recognize compare-and-swap as related to concurrency, but this problem has
nothing to do with concurrency.

Solution:

let rec translate s =
match s with

Skip -> s

Assign(str,e) -> s

Seq(sl,s2) -> Seq(translate sl1, translate s2)

If(e,s1,s82) -> If(e, translate sl1, translate s2)

While(e,s) -> While(e, translate s)

CompareAndSwap(str,el,e2) -> If(Plus(el,Times(Int(-1),Var(str))),
Skip,
Assign(str,e2))

Name:

6. (a) Why do we not have this rule in our IMP statement semantics?

Hy; sy | HiHy; so || HoHy 5 s3 || Hs
Hy ; s15(s2;83) | Hs

(b) Why do we not have this rule in our IMP statement semantics?

Hy; s9 | HiHy 5 81 | Hy
Hy 5 s1;382 | Ha

Solution:

(a) It is unnecessary because we can use one of the rules we have twice to derive the same result.

(b) Tt is not what we “want” — the purpose of a sequence of statements is to execute the statements
in order. This rule would make our language non-deterministic in a way we don’t want because
it lets us execute the two parts of a sequence in either order.

Name:

7. Consider this OCaml syntax for a A-calculus:

type exp = Var of string

| Lam of string * exp
| Apply of exp * exp
| Int of int

| Pair of exp * exp

| First of exp

|

Second of exp

(a) Write an OCaml function swap of type exp->exp that changes all Pair expressions by switch-
ing the order of the subexpressions, changes all First expressions into Second expressions, and
changes all Second expressions into First expressions.

(b) True or false: Given an implementation of the A-calculus, interp(swap(e)) is always that same
as interp(e).

(¢) True or false: Given an implementation of the A-calculus, if interp(swap(e)) returns Int 4, then
interp(e) returns Int .

Solution:

(a) let swap e =
match e with
Var _ -> e
| Lam(s,e) -> Lam(s,swap e)
| Apply(el,e2) -> App(swap el, swap e2)
| Int _ > e
| Pair(el,e2) -> Pair(swap e2, swap el)
| First e -> Second (swap e)
| Second e -> First (swap e)

(b) False. For example First 3 becomes Second 3, which is not the same.

(¢) True. We consistently swap everything.

Name:

. In this problem we define a small language that manipulates a stack of strings. You are given the
syntax and the informal semantics.

The language syntax is a command list. A program state contains a command list and a stack of
strings (the stack “grows to the right”):

string str = (any string)
command ¢ == push str| pop | dup | swap
command-list st ==]| c:lst
stack stk = | stk, str

Informally, the commands behave as follows:

e push str makes a bigger stack with str on top.
e pop makes a smaller stack by removing the top element.
e dup (short for duplicate) makes a bigger stack by placing a copy of the top stack-element on top.

e swap swaps the order of the top two elements on the stack.

A command list executes the commands in order.

(a) Give large-step inference rules for the judgment stk;;ist |} stke, meaning, “running lst starting
from stk; produces stke.” One rule is given to you as an example. You need to write down 4
other rules.

stky, str; st |} stko

stky; (push str)::lst || stke

(b) The semantics can get stuck, i.e., there exists stacks stk; and command-lists Ist such that we
cannot derive stk;;lst |} stk for any stke. In English, describe why there may be not be a
derivation.

(c) Give a complete derivation that concludes -; (push “pl”)::dup::swap::[] | -, “pl”, “pl”

Solution:

(a)

stky; st | stko stky, str, str; Ist || stko stky, strg, stry; st || stke
stky, str; pop::lst |} stks stky, str; dup::lst || stke stky, stry, stro; swap::lst | stko
stk; [] 4 stk

(b) Evaluation could require popping or duplicating when the stack is empty or swapping when the
stack has zero or one elements.

()

.’ 44p177, “plﬁ; |:| \U/ ., “p177’ chln
.’ “plﬂ, “plﬂ; SWap::H ll .’ “plﬂ, “plﬂ
-, “pl”; dup:iswap::[]) -, “pl”, “pl”
;s (push “p1”):dup::swap::[] |} -, “pl”, “pl”

Name:

9. When we added sums (syntax A e, B e, and match e; with A x — e3|B y — e3) to the A-calculus, we
gave a small-step semantics and had exactly two constructors.

(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-by-
value large-step judgment e |} v with new rules. (Use 4 rules.)

(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that
have exactly three cases:

match e; with Az — ey By —e3|Cz— ey

Explain a possible translation of such a program into an equivalent one that uses only two con-
structors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to
translate match expressions. Do not write inference rules.)

Solution:

(a)

elv el v
Ael Av BelBuw
er dAvr ex{vi/x} | vo er $Bor es{vi/y} oo
match e; with A z — e3|B y — es | va match e; with A z — e3|B y — e3 | va

(b) One solution: Replace every B e with B(A e) and C e with B(B e). Replace every:
match e; with Az — ey By —e3 |[Cz— ey

with:
match e; with A x — e3 |[B ¢ — (match ¢ with Ay — e3 |[B 2z — ¢e4)

10

10.

Name:

Suppose we add division to our IMP expression language. In OCaml, the expression syntax becomes:

type exp =
Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp

Our interpreter (not shown) raises a OCaml exception if the second argument to Div evaluates to 0.
We are ignoring statements; assume an IMP program is an expression that takes an unknown heap
and produces an integer.

(a) Write an OCaml function nsz (stands for “no syntactic zero”) of type exp->bool that returns
false if and only if its argument contains a division where the second argument is the integer
constant 0. Note we are not interpreting the input; nsz is not even passed a heap.

(b) If we consider division-by-zero at run-time a “stuck state” and nsz a “type system” (where true
means “type-checks”), then:

i. Is nsz sound? Explain.
ii. Is nsz complete? Explain.

Solution:

let rec nsz e =

match e with
Int _ -> true
Var _ -> true
Plus(el,e2) -> nsz el && nsz e2
Times(el,e2) -> nsz el && nsz e2
Div(el,Int 0) -> false
Div(el,e2) -> nsz el && nsz e2

The type system is not sound: It may accept a program that would get stuck at run-time. For example,
Div(3,x) would get stuck for any heap that mapped x to 0.

The type system is complete: All programs it rejects will get stuck at run-time under any heap. That is
because expression evaluation always evaluates all subexpressions, so the division-by-zero will execute.
(Substantial partial credit for explaining that code that doesn’t execute leads to incompleteness. It
just happens that IMP ezpressions do not have code that doesn’t execute.)

11

Name:

11. (a) Recall this typing rule, one of the three rules we added for sums:

I'ke:m
I'FAe:m + 1

Explain this rule in English. In particular, what expressions can this typing rule be used for and
what types can it give to such expressions?

(b) Recall this typing rule for functions:

Fx:mbe:m

I'FXx.e:m1 — 1

Explain this rule in English. In particular, what expressions can this typing rule be used for and
what types can it give to such expressions?

(c) Suppose we changed the typing rule for functions to the following:

Fx:mbe:mn

I'FXx.e:mm— m

Explain why this change would not violate type safety. Explain why it is a bad idea anyway.

Solution:

(a) This typing rule applies to any expression that uses “tag” A with a subexpression that type-
checks under some context. The overall expression then type-checks under the same context. If
the subexpression has type 71, then the overall expression has type m + 75 for any type 7o.

(b) The typing rule applies to any lambda expression, provided the body type-checks when extending
the context to map x to some type 71. If the body can have type 7o, then the function can have
type 71 — To.

(c) This change would require the argument and result type for every function to be the same type.
As examples, we could have int — int and (int * int) — (int * int), but not (int % int) — int. This is
type-safe: Before the change, only safe programs were accepted and the change causes the type-
system to accept only strictly fewer programs. Nonetheless, it is a bad idea because functions
that take and return value of different types are useful and we would not want to program in a
language that did not allow such functions.

12

Name:

12. For all subproblems, assume the simply-typed A calculus.

(a) Give aT, e, e, and 7 such that T ey : 7 and I'F e : 7 and e; # es.
(b) Give aT'1, I's, e, and 7 such that 'y Fe:7and 'y ke : 7 and T’y # Is.

(¢c) GiveaTl, e, m,and 7o such that T'-e:7m and T Fe: 7 and 71 # 7.

Solution:
(a) T = z:int,y:int, e; =z, e3 = y, T = int.

(b) I'y = z:int, I'y = z:int, y:int, e = z, 7 = int.

(¢) =+ e=Ax. x, 1 =int = int, 72 = (int — int) — (int — int)

13

Name:

13. Suppose you design a new type system for Java to prevent null-pointer dereferences. However, due to
poor design, your type system has the strange property that there are exactly 47 programs that your
type system accepts; it rejects all others.

Explain your answers briefly.

(a) Is it possible that your type system is sound with respect to null-pointer dereferences?
(b) Is it possible that your type system is complete with respect to null-pointer dereferences?

(c) Is it definitely the case given just the information above that your type system is sound with
respect to null-pointer dereferences?

(d) Is it definitely the case given just the information above that your type system is complete with
respect to null-pointer dereferences?

Solution:

(a) Yes, soundness means the type system accepts no programs that dereference null. That might be
the case for the 47 accepted programs.

(b) No, completeness means the type system rejects no programs that definitely do not dereference
null. There are an infinite number of such programs, and we are rejecting all but 47 of them.

(¢) No, some of the 47 programs might be able to dereference null.

(d) No, it is not even possible (see part (b)).

14

Name:

14. Consider a A-calculus with tuples (i.e., “pairs with any number of fields”), so we have expressions
(e1,€2,...,e,) and e.i and types 7y * T * ... x T7,,. For each of our subtyping rules for records, explain
whether or not an analogous rule for tuples makes sense.

Solution:

e The permutation rule does mot make sense. Tuple fields are accessed by position so subsuming
string*int to int*string would allow e.2 to have type string when it should not.

e The width and depth rules do make sense for the same reasons as records: Forgetting about
fields on the right means only that fewer expressions of the form e.i will type-check. Assuming
tuple-fields are read-only just like record fields, covariant subtyping is correct.

15

15.

Name:

Assume a typed lambda-calculus with records, references, and subtyping. For each of the following,
describe exactly the conditions under which the subtyping claim holds.

Example question: {ly:71, lo:me} < {l1:73, lo:7y}
Example answer: “when 7 < 73 and 7 < 74"

Your answer should be “fully reduced” in the sense that if you say 7 < 7/, then 7 or 7/ or both should
be 7; for some number i where 7; appears in the question.

Note: We did not discuss much (at all?) in P505 that references are like records with one mutable
field.

(a) ({lirm1,lome}) —int < ({l1:73,l0:74}) — int
(b) {llt(Tl ref)} S {11:7'2}
() (m—om) = (m—=m) < (5—7)— (77 > 78)

(d) (7'1 — 7'2) ref < (Tg — T4) ref

Solution:

when 73 < 71 and 74 < 719

o~
=

when 75 has the form 73 ref, 73 < 7, and 7, < 73

when 7 < 75, 76 < 0, ™7 < 73, and 74 < T3

—
o

—
(oW

when 7 < 713, 73 <711, 0o <7y, and 74 < T

16

Name:

16. Consider these definitions in a class-based OO language:

class C1 { class Main {
int g() { return 0; } int m1(Cl x) { return x.f() }
int £ { return g(O; } int m2(C2 x) { return x.f() }
} int m3(D1 x) { return x.f() }
class C2 extends C1 { int m4(D2 x) { return x.f() }
int g0 { return 1; } }
}
class D1 {
private Cl1 x = new C1();
int g() { return 0; }

int £() { return x.fQ; }
}
class D2 extends D1 {

int g() { return 1; %}
}

Assume this is not the entire program, but the rest of the program does not declare subclasses of the
classes above.

Explain your answers:

(a) True or false: Changing the body of m1 to return 0 produces an equivalent m1.
(b) True or false: Changing the body of m2 to return 1 produces an equivalent m2.
(¢) True or false: Changing the body of m3 to return O produces an equivalent m3.
(d) True or false: Changing the body of m4 to return 1 produces an equivalent m4.
(e) How do your answers change if the rest of the program might declare subclasses of the classes
above (excluding Main)?
Solution:

(a) false: If m1 is passed an instance of €2, it will return 1.

(b) true: there are no subtypes of C2, so any call to m2 will pass an instance of C2, and late-binding
ensures the £ method of a C2 returns 1.

(¢) true: Any call to m3 will pass an instance of D1 or D2. The f methods for both are the same:
return the result of C1’s £ method.

(d) false: same reason as previous question

(e) All claims become false because calls to £ in Main could resolve to methods defined in subclasses
we do not see above.

17

17.

Name:

Consider a typical class-based OOP language like we did in class. Suppose somewhere in a program
that type-checks we have e.m((D) (new C())) where C is a subclass/subtype of D. Notice the argument
in the method call is an explicit upcast. Consider modifying the program by removing this explicit
upcast, i.e., replacing the call with e.m(new C(Q)).

Explain your answers briefly.
(a) If every class in the program has at most one method named m, can this change cause the program
not to type-check?
(b) If every class in the program has at most one method named m, can this change cause the program

to produce a different result?

Solution:

(a) No. The program type-checked when the argument had type D and it can still have type D via
subsumption since C<D.

(b) No, the same method would still be called with the same object.

18

Name:

18. Suppose we extend a class-based object-oriented language with a keyword null, which has type
NullType, which is a subtype of any type.

(a)
(b)

Explain why the subtyping described above is backwards. How does some popular language you
know deal with this?

With static overloading or multimethods (the issue is the same), show how null can lead to
ambiguities. [WE DIDN’T STUDY THESE TOPICS.]

Solution:

(a)

null has no fields or methods, so width subtyping suggests it should be a supertype of other
types. Indeed, trying to access a member leads to a “stuck” (message not understood) state.
Most languages make this a run-time error (raise an exception in Java or C#; lead to arbitrary
behavior in C++).

Suppose class C has two methods void m(A) and void m(B) where A and B are not subtypes of
each other. Then a call that passes null is ambiguous since there are no grounds to prefer one
method over the other.

19

Name:

. THIS PROBLEM ALSO PROBABLY COVERS MATERIAL WE WON'T GET TO.

Consider this code in a class-based OOP language with multiple inheritance. A subclass overrides a
method by defining a method with the same name and arguments.

class A {3}
class B extends A { unit m1() { print "miB" } }
class C extends B { unit m1() { print "miC" } }
class D extends A {1
class E extends C, D { }

class Main {
unit m2(c¢) { print "m2D"; }
unit m2(C ¢) { print "m2C"; c.m1() }
unit m2(B b) { print "m2B"; b.m1() }
unit main() {
E e = new EQ;

e.m1(); // 0
(B)e).m1O; // 1
self.m2(e); // 2
self.m2((D)e); // 3
self.m2((C)e); // 4
self.m2((B)e); // 5
}
}

(a) Assume the language has static overloading. For each of the lines 0-5, determine if the method
call is ambiguous (“no best match”) or not. If it is not, what does executing the call print?

(b) Assume the language has multimethods. For each of the lines 0-5, determine if the method call
is ambiguous (“no best match”) or not. If it is not, what does executing the call print?

Solution:

mlC
mlC
ambiguous
m2D
m2C m1C
m2B m1C

mlC
mlC
ambiguous

(a)

ambiguous
ambiguous

TR W N~ O Uk WD +~= O

ambiguous

20

