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CSEP505: Programming Languages
Lecture 5: Continuations, Types

Dan Grossman
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Expressions: e ::= x | Ax. e | e e
Values: v ::= Ax. e

el W Ax.e3 e2 V¥ v2 e3{v2/ix} Vv

[lam] [app]
M.e WAx. e ele2Vv

e3{v2/x} is the “capture-avoiding substitution of v2 for x in €3”

» Capture is an insidious error in program rewriters

» Formally avoided via “systematic renaming (alpha conversion)”
— Ensure free variables in v2 are not binders in e3
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Untyped Lambda Calculus

Small-step CBV

* Go back to math metalanguage
— Notes on concrete syntax (relates to OCaml)
— Define semantics with inference rules
* Lambda encodings (show our language is mighty)
» Define substitution precisely
— And revisit function equivalences
* Environments

Now:
*  Small-step
» Play with continuations (“very fancy” language feature)

Then: On to types
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+ Left-to-right small-step judgment e— e’

el > el’ e2 — e2’

ele2 — el’e2 ve2 - ve2’ (ax.e)Vv— e{v/x}

* Need an “outer loop” as usual: e * @’
— *means “0 or more steps”
— Don't usually bother writing rules, but they’re easy:

el — e2 e2 »* e3

e—*e el —»* e3
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In OCaml

type exp =
V of string | L of string*exp | A of exp * exp
let subst el with e2 for s = ..

let rec interp one e =
match e with
V _ -> failwith "interp one" (*unbound var¥*)
| L _ -> failwith "interp one" (*already done¥*)
| A(L(sl,el), L(s2,e2)) -> subst el (L(s2,e2)) sl
| A(L(sl,el),e2) -> A(L(sl,el),interp one e2)
| A(el,e2) -> A(interp one el, e2)

let rec interp small e =
match e with
V _ -> failwith "interp small" (*unbound var¥)
| L_ >e
| A(el,e2) -> interp small (interp_one e)
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Unrealistic, but...

* Foralleandv,
eV vifandonly ife —*v

» Small-step distinguishes infinite-loops from stuck programs

» It's closer to a contextual semantics that can define continuations
— We'll stick to OCaml for this
— And we’ll do it much less efficiently than is possible

« For the curious: read about Landin’s SECD machine
[19601]

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 6




Rethinking small-step

* An e is atree of calls, with variables or lambdas at the leaves

+ Find the next function call (or other “primitive step”) to do
« Doit
* Repeat (“new” next primitive step could be various places)

» Let’s move the first step out and produce a data structure
describing where the next “primitive step” occurs

— Called an evaluation context
— Think call stack
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Compute the context

(* represent "where" the next step "is" ¥)

type ectxt = Hole

| ALeft of ectxt * exp

| ARight of exp * ectxt (*exp a value*)

let rec split e = (*return ctxt & what’s in it¥)
match e with
A(L(sl,el), L(s2,e2)) -> (Hole,e)

| A(L(sl,el),e2) -> let (ctx2,e3) = split e2 in
(ARight (L(sl,el) ,ctx2), e3)

| A(el,e2) -> let (ctxl,e3) = split el in
(ALeft (ctxl,e2), e3)

| _ -> raise BadArgument
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Fill a context

* We can also take a context and fill its hole with an expression to

make a new program (expression)

type ectxt = Hole
| ALeft of ectxt * exp
| ARight of exp * ectxt (*exp a value¥*)
let rec fill ctx e = (* plug the hole ¥*)
match ctx with
Hole -> e

| ALeft(ctx2,e2) -> A(fill ctx2 e, e2)
| ARight(e2,ctx2) -> A(e2, fill ctx2 e)
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So what?

* Haven’t done much yet:

- e = (let ctxt,e2 = split e in fill ctxt e2)
+ Butwe can rewrite interp_small with them

— A step has three parts: split, substitute, fill

let rec interp_small e =
match e with

V _ -> failwith "interp small" (*unbound var¥*)
| L_ ->e
| A ->

match split e with
(ctx, A(L(s3,e3),v)) ->

interp small (fill ctx (subst e3 v s3))
| _ -> failwith "bad split"
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Again, so what?

«  Well, now we “have our hands” on a context
— Could save and restore them
— (like Homework 2 with heaps, but this “is” the call stack)
— It's easy given this semantics!

« Sufficient for:
— Exceptions
— Cooperative threads / coroutines
— “Time travel” with stacks
— setjmp/longjmp

» Also (not shown): No need to resplit each time — “keep track”
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Language w/ continuations

* New expression: Letcc gets current context (“grab the stack”)
* Now 2 kinds of values, but use application to use both

— Could instead have 2 kinds of application + errors
* New kind stores a context (that can be restored)

type exp =
V of string
| L of string*exp
| A of exp * exp
| Letcc of string * exp (* new *)
| Cont of ectxt (* new *)
and ectxt = Hole (* no change *)
| ALeft of ectxt * exp
| ARight of exp * ectxt
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Split with Letcc

» Old: All values were some L (s, e)
* New: Values can also be Cont ¢

» Old: active expression (thing in the hole) always some
A(L(sl,el), L(s2,e2))
* New: active expression (thing in the hole) can be:
- A(vl,v2)
— Letcc(s,e)

* So split looks quite different to implement these changes

— Not really that different
» f£ill does not change at all
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Split with Letcc

let isValue e =
match e with

L _ -> true | Cont _ -> true | _ -> false

let rec split e =
match e with
Letcc(sl,el) -> (Hole,e) (* new *)
| A(el,e2) ->
if isValue el && isValue e2
then (Hole,e)
else if isValue el
then let (ctx2,e3) = split e2 in
(ARight (el,ctx2) ,e3)
else let (ctxl,e3) = split el in
(ALeft (ctxl,e2), e3)
| -> failwith "bad args to split"
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All the action

+ Letcc creates a Cont that “grabs the current context”
« A where body is a Cont “ignores current context”

let rec interp_small e =
match e with
V _ -> failwith "interp small" (*unbound var¥*)
| L _ ->e
| _ -> match split e with
(ctx, A(L(s3,e3), v)) ->
interp small(fill ctx (subst e3 v s3))
| (ctx, Letcc(s3,e3)) ->
interp small (fill ctx
(*woah!!1#*) (subst e3 (Cont ctx) s3))
| (ctx, A(Cont ctx2, v)) ->

interp_small (£fill ctx2 v) (*woah!!!¥)
| _ -> failwith "bad split"
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Toy Examples

[In language with addition too and explicit “throw”]

1 + (letcc k. 2 + 3) —>* 6

1 + (letcc k. 2 + (throw k 3)) —* 4

1 + (letcc k. (throw k (2+43))) —* 6

1 + (letcc k. (throw k (throw k (throw k 2))) —*3

Also note evaluation-order matters, even without mutation (1)
letcc k. (throw k 1) + (throw k 2)
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Example Uses

« Continuations for exceptions is “easy”
- Letcc(x,e) fortry, Apply (Var x, v) forraisevine
« Coroutines can yield to each other
— Pass around a yield function that takes an argument
* “how to restart me”

— Body of yield applies the “old how to restart me” passing the

“new how to restart me”
» Can generalize to cooperative thread-scheduling
« With mutation can really do strange stuff
— The “goto of functional programming”
— Example of “time travel” to “old stack”...
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“Time Travel”

OCaml doesn’t have first-class continuations, but if it did:

let valOf x = match x with None -> failwith ""

| Some y -> vy

let x = ref true (*avoids infinite loop*)
let g = ref None
let y = ref (1 + 2 + (letcc k -> (g := Some k);
let z = if !x
then (x := false;
throw (valOof (!'g)) 7;
42)
else 'y

(* what is z bound to and why? ¥*)
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A lower-level view

+ If you're confused, think call-stacks
— What if YFL had these operations:
* Store current stack in x (cf. Letcc)
* Replace current stack with stack in x

— Need to “fill the stack’s hole” with something different and/or
when state is different or you’ll have an infinite loop

+ Implementing (e.g., compiling) Letcc
— You do not actually split/fill at each step

— Cannot just do setjmp/longjmp because a continuation can
get returned from a function and used later!

— Can actually copy stacks (expensive)

Or can avoid stacks (put stack-frames in heap)
« Just share and rely on garbage collection

— Or...
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The CPS-Transform

There’s a subset of lambda-calculus called “continuation-passing
style” (CPS). It's amazing:

— Every call is [essentially] a tail-call
— It can do everything full lambda-calculus can

— In fact, one can automatically translate full lambda-calculus
into CPS

* CPS(e) (ax.x) evaluates to 42 if and only if e does

« Different translations fix different evaluation orders
The translation is a powerful compiler technique
— And it motivates/explains a powerful programming idiom
— And it makes letcc and throw O(1) operations
— And it's mind-bending...
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CPS transformation

A CPS transformation is a metafunction from expressions to
expressions

Intuition: never return; always call the continuation you're
given as an argument

An int expression becomes an
(int -> answer_type) -> answer_type

— Example: CPS(73) = (Ak. k 73)

— Convert entire program this way and then “main” is some
(Ak. e) that you can call with (Ax. x)
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Without further ado [but slowly ©]

A call-by-value CPS transformation for this source language

Expressions: e ::= x | Ax. e | ee | c | e + e
Values: v ::= Ax. e | ¢

CPS(c)= Ak. k
CPS(x)= Ak. k x (anyk!=Xx)
CPS(Ax.e) = Ax. CPS(e)
or Ax. Ak. CPS(e) k (any k not in FV(e))
CPS(e1 + e2) = Ak. CPS(el) (any k,x1 notin FV(el+e2))
(Ax1. CPS(e2)

(Ax2. k (x1 + x2)))

(any k,f not in FV(el e2))

Q

CPS(el e2) = Ak. CPS(el)

Af. CPS(e2)
Ax. £ x k (why not k (f x)?)
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Everything is a tail-call

» For all e, CPS(e) is in this sublanguage and stays in it during
evaluation:
e :@:

alaalaaal a(a+a)
a::=x | Ax. e | ¢

» Aninterpreter for the target of CPS doesn’t need a call-stack
because every call is a tail-call

» Essentially, the program itself is encoding the conceptual call-
stack in nested continuations (lambdas bound to k variables)
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Programming this way

« Even if your compiler doesn’t use the CPS transform, you can
program directly (“manually”) in CPS (a “style” or “idiom”)
— So you are manually using only tail-calls by using “clever”
(but mechanical) lambdas for continuations

— Moves “deep recursion” from the stack to the heap

* See examples in cps_examples.ml
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Back to first-class continuations

* Next “amazing” thing: If we add (back) 1letcc and throw:

— CPS(e) works fine

— It “compiles away” letcc and throw to constant-time
operations (!!)

— “The continuations” are just lambdas bound to variables

+ See next slide...
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CPS transformation for continuations

+ Old news:
CPS(c) = Ak. k c
CPS(x) = Ak. k x (anyk!=Xx)

CPS(Ax.e) = Ax. CPS(e) or Ax. Ak. CPS(e) k
CPS(el e2) = Ak. CPS(el) (Af. CPS(e2) (Ax. £ x k))

* Now:
CPS(letcc my k. e) = Amy k. CPS(e) my k

CPS(throw el e2) = Ak. CPS(el) CPS(e2) (doesn’tuse k!l)
(easier to understand but verbose:

Ak. CPS(el) (Af. CPS(e2) (Ax. f x)) )
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Really small examples

The rule:
CPS(letcc my k. e) = Amy k. CPS(e) my k

Example #1:
CPS(letcc my k. 42) =
Amy k. (Ak. k 42) my k

Example #2:

CPS(letcc my k. my k) =
Amy k. (Ak. k my k) my k
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Back to programming

* You can use this idea in “manual” CPS too

* See OCaml example for “fast-escape from recursion”
— Same idea for exceptions
» And a compiler using CPS can implement exceptions this
way
— Time travel works too [not shown]
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Another “real-world” use

* A great way to think about some of web programming
— Each step in a web session is an evaluation context
send (pagel) ;
receive (form_input) ;
if .. then send(page2); .. send(page3); ..
— But want to program in “direct style” and have the different
steps be automatically “checkpointed”
» To support the back button and session saving
» Compile program into something using continuations
» Then encode continuation in a URL or some other hack

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 29

Where are we

Finished major parts of the course

» Functional programming

* IMP, loops, modeling mutation

« Lambda-calculus, modeling functions
* Formal semantics

« Contexts, continuations

A mix of super-careful definitions for things you know and using
our great care to describe more novel things (state monad,
continuations)

Major new topic: Types!
— Continue using lambda-calculus as our model
— But no need to understand continuations for rest of lecture
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Types Intro

Naive thought: More powerful PL is better

* Be Turing Complete

* Have really flexible things (lambda, continuations, ...)
» Have conveniences to keep programs short

By this metric, types are a step backward
— Whole point is to allow fewer programs
— A “filter” between parse and compile/interp
— Why a great idea?
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Why types

1. Catch “stupid mistakes” early
¢« 3 + "hello"
¢ print string "hi" * "mom"
«  But may be too early (code not used, ...)

2. “Safety”: Prevent getting stuck / going haywire

* Know evaluation cannot ever get to the point where the
next step “makes no sense”

+ Alternative: language makes everything make sense
+ Example: ClassCastException
* Example: MethodNotFoundException
* Example: 3 + "hi" becomes "3hi" or 0

+ Alternative: language can do whatever ?!
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Digression/sermon

Unsafe languages have operations where under some situations
the implementation “can do anything”

IMP with unsafe C arrays has this rule (any H2;s2!):

H;el W {v1,...,vn} He2 Vi i>n

H; el[il=e2 ¥ H2;s2

Abstraction, modularity, encapsulation are impossible because one
bad line can have arbitrary global effect

An engineering disaster (cf. civil engineering)
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Why types, continued

3. Enforce a strong interface (via an abstract type)
» Clients can’t break invariants
« Clients can’t assume an implementation
* Requires safety

4. Allow faster implementations
*  Smaller interfaces enable optimizations
+ Don't have to check for impossible cases
*  Orthogonal to safety

5. Static overloading (e.g., with +)
* Not super interesting
+ Late-binding very interesting (come back to this?)
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Why types, continued

6. Novel uses

* A powerful way to think about many conservative program
analyses/restrictions

+ Examples: race-conditions, manual memory management,
security leaks, ...

» Deep similarities among different analyses suggests types
are a good way to think about and define what you're
checking

We'll focus on safety and strong interfaces

* And later discuss the “static types or not” debate
(it's really a continuum)
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Our plan

*  Simply-typed lambda-calculus
+ Safety = (preservation + progress)
+ Extensions (pairs, datatypes, recursion, etc.)
» Digression: static vs. dynamic typing
+ Digression: Curry-Howard Isomorphism
* Subtyping
* Type Variables:
— Generics (V), Abstract types (3)
» Type inference (maybe)
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Adding integers

Adding integers to the lambda-calculus:

Expressions: e:=x|Ax.e|ee]c
Values: v :i=Ax.e|c

Could add + and other primitives or just parameterize “programs” by
them: Aplus. Aminus. ... e

— Like Pervasives in OCaml
— Agreat idea for keeping language definitions small
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Stuck

* Key issue: can a program e “get stuck” (small-step):
- e—*el
— elis not avalue
— There is no e2 such that el — e2

* “What is stuck” depends on the semantics:

el > el’ e2 - e2’

ele2 — el’e2 ve2 »> ve2’ (ax.e)Vv — e{v/x}

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 38

STLC Stuck

e S::=cv|xv|(Ax.e) y| Se | (Ax.e) S

» It's unusual to define these explicitly, but good for understanding

* Most people don'’t realize “safety” depends on the semantics:
— We can add “cheat” rules to “avoid” being stuck

*  With el + e2, would also be stuck when:
— el or e2is itself stuck
— elore2is alambda
— el ore2is avariable
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Sound and complete

Definition: A type system is sound if it never accepts a program that
can get stuck

Definition: A type system is complete if it always accepts a program
that cannot get stuck

Soundness and completeness are desirable

But impossible (undecidable) for lambda-calculus

— If e has no constants or free variables, then e (3 4)
gets stuck iff e terminates

— As is any non-trivial property for a Turing-complete PL
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What to do

» Old conclusion: “strong types for weak minds”
— Need an unchecked cast (a back-door)

* Modern conclusion:
— Make false positives rare and false negatives impossible (be
sound and expressive)
— Make workarounds reasonable

— Justification: false negatives too expensive, have compile-
time resources for “fancy” type-checking

* Okay, let's actually try to do it...
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Wrong attempt

T ::=int | function
A judgment:

(for which we “hope” there’s an efficient algorithm)

|-c ¢ int |- (Ax.e) : function

|-e1 : function |-e2 : int

|-e1 e2 : int
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So very wrong

|-c : int I-(}xx.e) :function

}—el : function |—e2 : int

I-el e2 : int

1. Unsound: (Ax.y) 3
Disallows function arguments: (Ax. x 3) (Ay.y)
3. Types not preserved: (Ax. (Ay.y)) 3

* Resultis not an int

N

Lecture 5 CSE P505 Autumn 2016 Dan Grossman

43

Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to distinguish functions according to argument and result
types

For(1): T::=. | MNx:t andr|-e: T
— A type-checking environment (called a context)
For(2): t::=int | 1>

— Arrow is part of the (type) language (not meta)
— Aninfinite number of types
— Just like OCaml
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Examples and syntax

* Examples of types
int - int
(int - int) - int
int - (int - int)

» Concretely — is right-associative

—ie,1l- 12> 13is 11— (12— 13)
— Just like OCaml
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STLC in one slide

Expressions: e ::=x | Ax. e | e e | ¢
Values: v ::= Ax. e | ¢
Types: 1 =int | 11
Contexts: [ ::= | Mx:t
el - el’ e2 . e2’

ele2 .el’ e2 ve2 .ve2' (Ax.e)v- e{v/x}

Mhe: « lbe : int Flx : Fx)

Mx:tl |—e:1:2 r }—el:tl—» 2 I }-e2:1:1
r |-(}xx.e):tl—> 12 r I-el e2:12
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