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Where are we 

• To talk about functions more precisely, we need to define them 

as carefully as we did IMP’s constructs  

 

• First try adding functions & local variables to IMP “on the cheap” 

– It didn’t work [see last week] 

 

• Now back up and define a language with nothing but functions 

– [started last week] 

– And then encode everything else 
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Review 

• Cannot properly model local scope via a global heap of integers 

– Functions are not syntactic sugar for assignments to globals 

• So let’s build a model of this key concept 

– Or just borrow one from 1930s logic 

• And for now, drop mutation, conditionals, and loops 

– We won’t need them! 

• The Lambda calculus in BNF 

   Expressions: e ::= x | λx. e | e e 

   Values:         v ::= λx. e 
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That’s all of it! [More review] 

   Expressions: e ::= x | λx. e | e e 

   Values:         v ::= λx. e 

A program is an e.  To call a function: 

   substitute the argument for the bound variable 

That’s the key operation we were missing 

 

Example substitutions: 

   (λx. x) (λy. y)      λy. y 
 

(λx. λy. y x) (λz. z)      λy. y (λz. z) 
 

(λx. x x) (λx. x x)       (λx. x x) (λx. x x) 
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Why substitution [More review] 

• After substitution, the bound variable is gone  

– So clearly its name didn’t matter 

– That was our problem before 

 

• Given substitution we can define a little programming language 

–  (correct & precise definition is subtle; we’ll come back to it) 

– This microscopic PL turns out to be Turing-complete 
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Full large-step interpreter 

type exp = Var of string  

         | Lam of string*exp  

       | Apply of exp * exp 

exception BadExp 

let subst e1_with e2_for x = …(*to be discussed*) 

let rec interp_large e = 

  match e with 

   Var _ -> raise BadExp(* unbound variable *) 

 | Lam _ -> e (* functions are values *) 

 | Apply(e1,e2) -> 

    let v1 = interp_large e1 in 

    let v2 = interp_large e2 in 

    match v1 with 

      Lam(x,e3) -> interp_large (subst e3 v2 x) 

    | _ -> failwith "impossible" (* why? *) 
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Interpreter summarized 

• Evaluation produces a value Lam(x,e3) if it terminates 
 

• Evaluate application (call) by 

1. Evaluate left 

2. Evaluate right 

3. Substitute result of (2) in body of result of (1)  

4. Evaluate result of (3) 
 

A different semantics has a different evaluation strategy: 

1. Evaluate left 

2. Substitute right in body of result of (1) 

3. Evaluate result of (2) 
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Another interpreter 

type exp = Var of string  

         | Lam of string*exp  

       | Apply of exp * exp 

exception BadExp 

let subst e1_with e2_for x = …(*to be discussed*) 

let rec interp_large2 e = 

  match e with 

   Var _ -> raise BadExp(*unbound variable*) 

 | Lam _ -> e (*functions are values*) 

 | Apply(e1,e2) -> 

    let v1 = interp_large2 e1 in 

    (* we used to evaluate e2 to v2 here *) 

    match v1 with 

      Lam(x,e3) -> interp_large2 (subst e3 e2 x) 

    | _ -> failwith "impossible" (* why? *) 
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What have we done 

• Syntax and two large-step semantics for the        

untyped lambda calculus 

– First was “call by value” 

– Second was “call by name” 
 

• Real implementations don’t use substitution 

– They do something equivalent 
 

• Amazing (?) fact: 

– If call-by-value terminates, then call-by-name terminates 

– (They might both not terminate) 
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What will we do 

• Go back to math metalanguage 

– Notes on concrete syntax (relates to OCaml) 

– Define semantics with inference rules 

• Lambda encodings (show our language is mighty) 

• Define substitution precisely 

• Environments  

 

Next time?? 

• Small-step 

• Play with continuations (“very fancy” language feature) 
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Syntax notes 

• When in doubt, put in parentheses 

 

• Math (and OCaml) resolve ambiguities as follows: 

 

1. λx. e1 e2 is (λx. e1 e2) 

– not (λx. e1) e2 

 

General rule: Function body “starts at the dot” and “ends at the first 
unmatched right paren” 

 

Example:  

   (λx. y (λz. z) w) q 

 



Lecture 4 CSE P505 August 2016  Dan Grossman 12 

Syntax notes 

 

2. e1 e2 e3 is (e1 e2) e3 

– not e1 (e2 e3) 

 

General rule: Application “associates to the left” 

 

So e1 e2 e3 e4 is (((e1 e2) e3) e4) 
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It’s just syntax 

• As in IMP, we really care about abstract syntax 

– Here, internal tree nodes labeled “λ” or “apply” (i.e., “call”) 

 

• Previous 2 rules just reduce parens when writing trees as strings 

 

• Rules may seem strange, but they’re the most convenient  

– Based on 70 years experience 

– Especially with currying 
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What will we do 

• Go back to math metalanguage 

– Notes on concrete syntax (relates to OCaml) 

– Define semantics with inference rules 

• Lambda encodings (show our language is mighty) 

• Define substitution precisely 

• Environments  

 

 

Next time?? 

• Small-step 

• Play with continuations (“very fancy” language feature) 
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Inference rules 

• A metalanguage for operational semantics 

– Plus: more concise (& readable?) than OCaml 

– Plus: useful for reading research papers 

– Plus: natural support for nondeterminism 

• Definition allowing observably different implementations 

– Minus: less tool support than OCaml (no compiler) 

– Minus: one more thing to learn 

– Minus: painful in Powerpoint  

 



Lecture 4 CSE P505 August 2016  Dan Grossman 16 

Informal idea 

Want to know: 

  what values (0, 1, many?) an expression can evaluate to 

 

So define a relation over pairs (e,v): 

– Where e is an expression and v is a value 

– Just a subset of all pairs of expressions and values 

 

If the language is deterministic, this relation turns out to be a 

function from expressions to values 

 

Metalanguage supports defining relations 

– Then prove a relation is a function (if it is) 
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Making up metasyntax 

Rather than write (e,v), we’ll write e  v. 

– It’s just metasyntax (!) 

• Could use  interp(e,v) or « v  e »  if you prefer 

– Our metasyntax follows PL convention 

• Colors are not conventional (slides: green = metasyntax) 

– And distinguish it from other relations 

 

First step: define the form (arity and metasyntax) of your relation(s): 

 

e  v 

This is called a judgment 
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What we need to define 

So we can write e  v for any e and v 

– But we want such a thing to be “true” to mean e can evaluate 

to v and “false” to mean it cannot 

 

Examples (before the definition): 

– (λx. λy. y x) ((λz. z) (λz. z))  λy. y (λz. z) in the relation 

– (λx. λy. y x) ((λz. z) (λz. z))  λz. z  not in the relation 

– λy. y  λy. y in the relation 

– (λy. y) (λx. λy. y x)  λy. y not in the relation 

– (λx. x x) (λx. x x)  λy. y not in the relation 

– (λx. x x) (λx. x x)  (λx. x x) (λx. x x) metasyntactically bogus 
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Inference rules 

–––––––––––– [lam]  

 λx. e   λx. e 

 

 e1  λx. e3     e2  v2     e3{v2/x} = e4      e4  v 

–––––––––––––––––––––––––––––––––––––––––   [app] 

                                  e1 e2  v 

• Using definition of a set of 4-tuples for substitution  

• (exp * value * variable * exp) 

• Will define substitution later 

 

e  v  e{v/ x} = e’ 
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Inference rules 

–––––––––––– [lam]  

 λx. e   λx. e 

 

 e1  λx. e3     e2  v2     e3{v2/x} = e4      e4  v 

–––––––––––––––––––––––––––––––––––––––––   [app] 

                                  e1 e2  v 

• Rule top: hypotheses (0 or more) 

• Rule bottom: conclusion 

• Metasemantics: If all hypotheses hold, then conclusion holds 

 

e  v  e{v/x} = e’ 
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Rule schemas 

 e1  λx. e3     e2  v2     e3{v2/x} = e4      e4  v 

–––––––––––––––––––––––––––––––––––––––––   [app] 

                                   e1 e2  v 

• Each rule is a schema you “instantiate consistently” 

• So [app] “works” “for all” x, e1, e2, e3, e4, v2, and v 

• But “each” e1 has to be the “same” expression 

• Replace metavariables with appropriate terms 

• Deep connection to logic programming (e.g., Prolog) 
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Instantiating rules 

–––––––––––– [lam]  

 λx. e   λx. e 

• Two example legitimate instantiations: 

• λz. z   λz. z 

• x instantiated with z, e instantiated with z 

• λz. λy. y z  λz. λy. y z 

• x instantiated with z, e instantiated with λy. y z 

• Two example illegitimate instantiations: 

• λz. z   λy. z 

• λz. λy. y z  λz. λz. Z 
 

Must get your rules “just right” so you don’t allow  

too much or too little 
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Derivations 

• Tuple is “in the relation” if there exists a derivation of it 

– An upside-down (or not?!) tree where each node is an 

instantiation and leaves are axioms (no hypotheses) 

 

• To show e  v for some e and v, give a derivation  

– But we rarely “hand-evaluate” like this 

– We’re just defining a semantics remember 

 

• Let’s work through an example derivation for 

 (λx. λy. y x) ((λz. z) (λz. z))  λy. y (λz. z) 
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Which relation? 

So exactly which relation did we define 

– The pairs at the bottom of finite-height derivations 

 

 

Note: A derivation tree is like the tree of calls in a large-step 

interpreter  

– [when relation is a function] 

– Rule being instantiated is branch of the match-expression 

– Instantiation is arguments/results of the recursive call 

 



Lecture 4 CSE P505 August 2016  Dan Grossman 25 

A couple extremes 

• This rules are a bad idea because either one adds all pairs to 

the relation 

––––––– 

 e   v 

 

• This rule is pointless because it adds no pairs to the relation 

 e   v 

––––––– 

 e   v 

 e1  v1 

––––––– 

 e   v 
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Summary so far 

• Define judgment via a collection of inference rules 

– Tuple in the relation (“judgment holds”) if a derivation (tree of 
instantiations ending in axioms) exists 

 

As an interpreter, could be “nondeterministic”: 

• Multiple derivations, maybe multiple v such that e  v 

– Our example language is deterministic 

– In fact, “syntax directed” (≤1 rule per syntax form) 

 

• Still need rules for e{v/x}=e’ 

 

• Let’s do more judgments (i.e., languages) to get the hang of it… 
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Call-by-name large-step 

• Easier to see the difference than in OCaml 

• Formal statement of amazing fact: 

 For all e, if there exists a v such that e  v then there exists a v2 

such that e N v2 

 (Proof is non-trivial & must reason about substitution) 

–––––––––––– [lam]  

 λx. e N λx. e 

 

 e1 N λx. e3     e3{e2/x} = e4      e4 N v 

–––––––––––––––––––––––––––––––––– [app] 

                          e1 e2 N v 

 

e N v  e{v/x} = e’ 
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IMP 

• Two judgments H;e  i and H;s  H2 

• Assume get(H,x,i) and set(H,x,i,H2) are defined 

• Let’s try writing out inference rules for the judgments… 
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What will we do 

• Go back to math metalanguage 

– Notes on concrete syntax (relates to OCaml) 

– Define semantics with inference rules 

• Lambda encodings (show our language is mighty) 

• Define substitution precisely 

• Environments  

 

Next time?? 

• Small-step 

• Play with continuations (“very fancy” language feature) 
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Encoding motivation 

• Fairly crazy: we left out integers, conditionals, data structures, … 
 

• Turns out we’re Turing complete 

– We can encode whatever we need 

– (Just like assembly language can)   
 

• Motivation for encodings 

– Fun and mind-expanding 

– Shows we are not oversimplifying the model 

(“numbers are syntactic sugar”) 

– Can show languages are too expressive 

Example: C++ template instantiation 
 

• Encodings are also just “(re)definition via translation” 
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Encoding booleans 

The “Boolean Abstract Data Type (ADT)” 

• There are 2 booleans and 1 conditional expression 

– The conditional takes 3 (curried) arguments 

• If 1st argument is one bool, return 2nd argument 

• If 1st argument is other bool, return 3rd argument 
 

• Any set of 3 expressions meeting this specification    

is a proper encoding of booleans 
 

• Here is one (of many): 

– “true”   λx. λy. x 

– “false”  λx. λy. y 

– “if”        λb. λt. λf. b t f 
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Example 

• Given our encoding: 

– “true”   λx. λy. x 

– “false”  λx. λy. y 

– “if”        λb. λt. λf. b t f 

 

• We can derive “if” “true” v1 v2  v1  

 

• And every “law of booleans” works out 

– And every non-law does not 

 

• By the way, this is OOP 
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But… 

• Evaluation order matters! 

– With , our “if” is not YFL’s if 

  

“if” “true” (λx.x) (λx. x x) (λx. x x) doesn’t terminate 

but 

“if” “true” (λx.x) (λz. (λx. x x) (λx. x x) z) terminates 

 

– Such “thunking” is unnecessary using N  



Lecture 4 CSE P505 August 2016  Dan Grossman 34 

Encoding pairs 

• The “Pair ADT” 

– There is 1 constructor and 2 selectors 

– 1st selector returns 1st argument passed to the constructor 

– 2nd selector returns 2nd argument passed to the constructor 

• This does the trick: 

– “make_pair”   λx. λy. λz. z x y 

– “first”              λp. p (λx. λy. x) 

– “second”        λp. p (λx. λy. y) 

 

• Example: 

“snd” (“fst” (“make_pair” (“make_pair” v1 v2) v3))  v2  
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Reusing Lambda 

• Is it weird that the encodings of Booleans and pairs both used 
(λx. λy. x) and(λx. λy. y) for different purposes? 

  

• Is it weird that the same bit-pattern in binary code can represent 

an int, a float, an instruction, or a pointer? 
 

• Von Neumann: Bits can represent (all) code and data 

 

• Church (?): Lambdas can represent (all) code and data 

 

• Beware the “Turing tarpit” 
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Encoding lists 

• Why start from scratch? Can build on bools and pairs: 
 

– “empty-list”  is “make_pair” “false” “false” 

– “cons”          is     λh.λt.“make_pair” “true” “make_pair” h t 

– “is-empty”    is … 

– “head”          is … 

– “tail”               is … 
 

• Note: 

– Not too far from how lists are implemented 

– Taking “tail” (“tail” “empty”) will produce some lambda 

• Just like, without page-protection hardware ,  

  null->tail->tail would produce some bit-pattern 
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Encoding natural numbers 

• Known as “Church numerals” 

– Will skip in the interest of time 
 

• The “natural number” ADT is basically: 

– “zero” 

– “successor” (the add-one function) 

– “plus” 

– “is-equal” 
 

• Encoding is correct if “is-equal” agrees with elementary-school 

arithmetic 

 

• [Don’t need “full” recursion, but with “full” recursion, can also just 

do lists of Booleans…] 
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Recursion 

• Can we write useful loops? Yes! 

 

To write a recursive function: 

• Write a function that takes an f  and call f in place of recursion: 

– Example (in enriched language): 

λf.λx.if x=0 then 1 else (x * f(x-1)) 

• Then apply “fix” to it to get a recursive function 

 “fix” λf.λx.if x=0 then 1 else (x * f(x-1)) 
 

• Details, especially in CBV are icky; but it’s possible and need be 

done only once.  For the curious: 

 “fix” is λf.(λx.f (λy. x x y))(λx.f (λy. x x y)) 
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More on “fix” 

• “fix” is also known as the Y-combinator 
 

• The informal idea: 

– “fix”(λf.e) becomes something like  

e{(“fix” (λf.e)) / f} 

 

– That’s unrolling the recursion once  

– Further unrollings are delayed (happen as necessary) 
 

• Teaser: Most type systems disallow “fix”  

– So later we’ll add it as a primitive 

– Example: OCaml can never type-check (x x) 
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What will we do 

• Go back to math metalanguage 

– Notes on concrete syntax (relates to OCaml) 

– Define semantics with inference rules 

• Lambda encodings (show our language is mighty) 

• Define substitution precisely 

• Environments  

 

Next time?? 

• Small-step 

• Play with continuations (“very fancy” language feature) 
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Our goal 

Need to define 

 

 

• Used in [app] rule 

• Informally, “replace occurrences of x in e1 with e2” 

• Shockingly subtle to get right (in theory or programming) 

 

• (Under call-by-value, only need e2 to be a value, but that doesn’t 

make it much easier, so define the more general thing.) 

 

 

e1{e2/x} = e3 
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Try #1[WRONG] 

                           y != x               e1{e2/x} = e3 

 ––––––––      ––––––––       ––––––––––––––––––– 
  x{e/x} = e       y{e/x} = y        (λy.e1){e2/x} = λy.e3 

 

    ea{e2/x} = ea’        eb{e2/x} = eb’ 

          –––––––––––––––––––––––––––– 

                  (ea eb) {e2/x} = ea’ eb’ 

e1{e2/x} = e3 

 

• Recursively replace every x leaf with e2 

• But the rule for substituting into (nested) functions is wrong: If the 

function’s argument binds the same variable (shadowing), we 

should not change the function’s body 

• Example program: (λx.λx.x) 42 
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Try #2 [WRONG] 

                           y != x             e1{e2/x} = e3     y!=x 

 ––––––––      ––––––––       ––––––––––––––––––– 
  x{e/x} = e       y{e/x} = y        (λy.e1){e2/x} = λy.e3 

 

ea{e2/x} = ea’      eb{e2/x} = eb’     

–––––––––––––––––––––––––      ––––––––––––––––– 
         (ea eb) {e2/x} = ea’ eb’          (λx.e1){e2/x} = λx.e1 

• Recursively replace every x leaf with e2,   but respect shadowing 

• Still wrong due to capture [actual technical term]: 

– Example: (λy.e1){y/x}  

– Example (λy.e1){(λz.y/x} 

– In general, if “y appears free in e2” 

e1{e2/x} = e3 



More on capture 

• Good news: capture can’t happen under CBV or CBN 

– If program starts with no unbound (“free”) variables 

 

• Bad news: Can still result from “inlining” 

 

• Bad news: It’s still “the wrong definition” in general 

– My experience: The nastiest of bugs in language tools 
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Try #3 [Almost Correct] 

• First define an expression’s “free variables” 

 (braces here are set notation) 

– FV(x) = {x}  

– FV(e1 e2) = FV(e1) U FV(e2) 

– FV(λy.e) = FV(e) – {y} 
 

• Now require “no capture”: 

e1{e2/x} = e3   y!=x    y not in FV(e2) 

––––––––––––––––––––––––––––– 
          (λy.e1){e2/x} = λy.e3 



Try #3 in Full 

• No mistakes with what is here… 

• … but only a partial definition 

– What if y is in the free-variables of e2 
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                          y != x             e1{e2/x} = e3     y!=x     y not in FV(e2) 

 ––––––––      ––––––––       –––––––––––––––––––––––––––––––– 
  x{e/x} = e       y{e/x} = y                   (λy.e1){e2/x} = λy.e3 

 

ea{e2/x} = ea’      eb{e2/x} = eb’     

–––––––––––––––––––––––––      ––––––––––––––––– 
         (ea eb) {e2/x} = ea’ eb’          (λx.e1){e2/x} = λx.e1 

e1{e2/x} = e3 
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Implicit renaming 

• But this is a partial definition due to a “syntactic accident”, until… 
 

• We allow “implicit, systematic renaming” of any term 

– In general, we never distinguish terms that differ only in 
variable names 

– A key language-design principle 

– Actual variable choices just as “ignored” as parens 

– Means rule above can “always apply” with a lambda 
 

• Called “alpha-equivalence”: terms differing only in names of 
variables are the same term 

e1{e2/x} = e3   y!=x    y not in FV(e2) 

––––––––––––––––––––––––––––– 
        (λy.e1){e2/x} = λy.e3 



Try #4 [correct] 

• [Includes systematic renaming and drops an unneeded rule] 
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                          y != x             e1{e2/x} = e3     y!=x     y not in FV(e2) 

 ––––––––      ––––––––       –––––––––––––––––––––––––––––––– 
  x{e/x} = e       y{e/x} = y                      (λy.e1){e2/x} = λy.e3 

 

ea{e2/x} = ea’      eb{e2/x} = eb’     

–––––––––––––––––––––––––      ––––––––––––––––– 
         (ea eb) {e2/x} = ea’ eb’          (λx.e1){e2/x} = λx.e1 

e1{e2/x} = e3 



More explicit approach 

• While “everyone in the PL field”: 

– Understands the capture problem 

– Avoids it by saying “implicit systematic renaming” 

     you may find that unsatisfying… 

     … especially if you have to implement substitution  

          while avoiding capture 
 

• So this more explicit version also works (“fresh z for y”): 

 

 

 

– You have to “find an appropriate z”, but one always exists and 
__$$tmp appended to a global counter “probably works” 
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z not in FV(e1) U FV(e2) U {x}   e1{z/y} = e3  e3{e2/x} = e4 

––––––––––––––––––––––––––––––––––––––––––––––– 
                                (λy.e1){e2/x} = λz.e4 
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Note on metasyntax 

• Substitution often thought of as a metafunction, not a judgment 

– I’ve seen many nondeterministic languages 

– But never a nondeterministic definition of substitution 

• So instead of writing: 

 e1  λx. e3     e2  v2     e3{v2/x} = e4      e4  v 

–––––––––––––––––––––––––––––––––––––––––   [app] 

                                 e1 e2  v 

• Just write: 

 e1  λx. e3     e2  v2     e3{v2/x}   v 

–––––––––––––––––––––––––––––––––   [app] 

                              e1 e2  v 
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What will we do 

• Go back to math metalanguage 

– Notes on concrete syntax (relates to OCaml) 

– Define semantics with inference rules 

• Lambda encodings (show our language is mighty) 

• Define substitution precisely 

• Environments  

 

Next time?? 

• Small-step 

• Play with continuations (“very fancy” language feature) 
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Where we’re going 

• Done: large-step for untyped lambda-calculus 

– CBV and CBN 

– Note: infinite number of other “reduction strategies” 

– Amazing fact: all equivalent if you ignore termination! 

 

• Now other semantics, all equivalent to CBV: 

– With environments (in OCaml to prep for Homework 3) 

– Basic small-step (easy) 

– Contextual semantics (similar to small-step) 

• Leads to precise definition of continuations 
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Slide repeat… 

type exp = Var of string  

         | Lam of string*exp  

       | Apply of exp * exp 

exception BadExp 

let subst e1_with e2_for x = …(*to be discussed*) 

let rec interp_large e = 

  match e with 

   Var _ -> raise BadExp(*unbound variable*) 

 | Lam _ -> e (*functions are values*) 

 | Apply(e1,e2) -> 

    let v1 = interp_large e1 in 

    let v2 = interp_large e2 in 

    match v1 with 

      Lam(x,e3) -> interp_large (subst e3 v2 x) 

    | _ -> failwith "impossible" (* why? *) 
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Environments 

• Rather than substitute, let’s keep a map from variables to values 

– Called an environment 

– Like IMP’s heap, but immutable and 1 not enough 

• So a program “state” is now exp and environment 

• A function body is evaluated under the environment where it 

was defined! 

– Use closures to store the environment 

– See also Lecture 1 
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No more substitution 

type exp = Var of string  

         | Lam of string * exp  

         | Apply of exp * exp 

         | Closure of string * exp * env 

and env = (string * exp) list 
 

let rec interp env e = 

  match e with 

   Var s -> List.assoc s env (* do the lookup *) 

 | Lam(s,e2) -> Closure(s,e2,env) (* store env! *)  

 | Closure _ -> e (* closures are values *) 

 | Apply(e1,e2) -> 

    let v1 = interp env e1 in 

    let v2 = interp env e2 in 

    match v1 with 

      Closure(s,e3,env2) -> interp((s,v2)::env2) e3 

     | _ -> failwith "impossible" 
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Worth repeating 

• A closure is a pair of code and environment 

– Implementing higher-order functions is not magic or run-time 

code generation 

• An okay way to think about OCaml 

– Like thinking about OOP in terms of vtables 

• Need not store whole environment of course 

– See Homework 3 
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What will we do 

• Go back to math metalanguage 

– Notes on concrete syntax (relates to OCaml) 

– Define semantics with inference rules 

• Lambda encodings (show our language is mighty) 

• Define substitution precisely 

– And revisit function equivalences 

• Environments  

 

Next time?? 

• Small-step 

• Play with continuations (“very fancy” language feature) 


