
CSEP505: Programming Languages

Lecture 4: Untyped Lambda-Calculus,

Formal Operational Semantics,

…

Dan Grossman

Autumn 2016

Lecture 4 CSE P505 August 2016 Dan Grossman 2

Where are we

• To talk about functions more precisely, we need to define them

as carefully as we did IMP’s constructs

• First try adding functions & local variables to IMP “on the cheap”

– It didn’t work [see last week]

• Now back up and define a language with nothing but functions

– [started last week]

– And then encode everything else

Lecture 4 CSE P505 August 2016 Dan Grossman 3

Review

• Cannot properly model local scope via a global heap of integers

– Functions are not syntactic sugar for assignments to globals

• So let’s build a model of this key concept

– Or just borrow one from 1930s logic

• And for now, drop mutation, conditionals, and loops

– We won’t need them!

• The Lambda calculus in BNF

 Expressions: e ::= x | λx. e | e e

 Values: v ::= λx. e

Lecture 4 CSE P505 August 2016 Dan Grossman 4

That’s all of it! [More review]

 Expressions: e ::= x | λx. e | e e

 Values: v ::= λx. e

A program is an e. To call a function:

 substitute the argument for the bound variable

That’s the key operation we were missing

Example substitutions:

 (λx. x) (λy. y)  λy. y

(λx. λy. y x) (λz. z)  λy. y (λz. z)

(λx. x x) (λx. x x)  (λx. x x) (λx. x x)

Lecture 4 CSE P505 August 2016 Dan Grossman 5

Why substitution [More review]

• After substitution, the bound variable is gone

– So clearly its name didn’t matter

– That was our problem before

• Given substitution we can define a little programming language

– (correct & precise definition is subtle; we’ll come back to it)

– This microscopic PL turns out to be Turing-complete

Lecture 4 CSE P505 August 2016 Dan Grossman 6

Full large-step interpreter

type exp = Var of string

 | Lam of string*exp

 | Apply of exp * exp

exception BadExp

let subst e1_with e2_for x = …(*to be discussed*)

let rec interp_large e =

 match e with

 Var _ -> raise BadExp(* unbound variable *)

 | Lam _ -> e (* functions are values *)

 | Apply(e1,e2) ->

 let v1 = interp_large e1 in

 let v2 = interp_large e2 in

 match v1 with

 Lam(x,e3) -> interp_large (subst e3 v2 x)

 | _ -> failwith "impossible" (* why? *)

Lecture 4 CSE P505 August 2016 Dan Grossman 7

Interpreter summarized

• Evaluation produces a value Lam(x,e3) if it terminates

• Evaluate application (call) by

1. Evaluate left

2. Evaluate right

3. Substitute result of (2) in body of result of (1)

4. Evaluate result of (3)

A different semantics has a different evaluation strategy:

1. Evaluate left

2. Substitute right in body of result of (1)

3. Evaluate result of (2)

Lecture 4 CSE P505 August 2016 Dan Grossman 8

Another interpreter

type exp = Var of string

 | Lam of string*exp

 | Apply of exp * exp

exception BadExp

let subst e1_with e2_for x = …(*to be discussed*)

let rec interp_large2 e =

 match e with

 Var _ -> raise BadExp(*unbound variable*)

 | Lam _ -> e (*functions are values*)

 | Apply(e1,e2) ->

 let v1 = interp_large2 e1 in

 (* we used to evaluate e2 to v2 here *)

 match v1 with

 Lam(x,e3) -> interp_large2 (subst e3 e2 x)

 | _ -> failwith "impossible" (* why? *)

Lecture 4 CSE P505 August 2016 Dan Grossman 9

What have we done

• Syntax and two large-step semantics for the

untyped lambda calculus

– First was “call by value”

– Second was “call by name”

• Real implementations don’t use substitution

– They do something equivalent

• Amazing (?) fact:

– If call-by-value terminates, then call-by-name terminates

– (They might both not terminate)

Lecture 4 CSE P505 August 2016 Dan Grossman 10

What will we do

• Go back to math metalanguage

– Notes on concrete syntax (relates to OCaml)

– Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

• Environments

Next time??

• Small-step

• Play with continuations (“very fancy” language feature)

Lecture 4 CSE P505 August 2016 Dan Grossman 11

Syntax notes

• When in doubt, put in parentheses

• Math (and OCaml) resolve ambiguities as follows:

1. λx. e1 e2 is (λx. e1 e2)

– not (λx. e1) e2

General rule: Function body “starts at the dot” and “ends at the first
unmatched right paren”

Example:

 (λx. y (λz. z) w) q

Lecture 4 CSE P505 August 2016 Dan Grossman 12

Syntax notes

2. e1 e2 e3 is (e1 e2) e3

– not e1 (e2 e3)

General rule: Application “associates to the left”

So e1 e2 e3 e4 is (((e1 e2) e3) e4)

Lecture 4 CSE P505 August 2016 Dan Grossman 13

It’s just syntax

• As in IMP, we really care about abstract syntax

– Here, internal tree nodes labeled “λ” or “apply” (i.e., “call”)

• Previous 2 rules just reduce parens when writing trees as strings

• Rules may seem strange, but they’re the most convenient

– Based on 70 years experience

– Especially with currying

Lecture 4 CSE P505 August 2016 Dan Grossman 14

What will we do

• Go back to math metalanguage

– Notes on concrete syntax (relates to OCaml)

– Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

• Environments

Next time??

• Small-step

• Play with continuations (“very fancy” language feature)

Lecture 4 CSE P505 August 2016 Dan Grossman 15

Inference rules

• A metalanguage for operational semantics

– Plus: more concise (& readable?) than OCaml

– Plus: useful for reading research papers

– Plus: natural support for nondeterminism

• Definition allowing observably different implementations

– Minus: less tool support than OCaml (no compiler)

– Minus: one more thing to learn

– Minus: painful in Powerpoint

Lecture 4 CSE P505 August 2016 Dan Grossman 16

Informal idea

Want to know:

 what values (0, 1, many?) an expression can evaluate to

So define a relation over pairs (e,v):

– Where e is an expression and v is a value

– Just a subset of all pairs of expressions and values

If the language is deterministic, this relation turns out to be a

function from expressions to values

Metalanguage supports defining relations

– Then prove a relation is a function (if it is)

Lecture 4 CSE P505 August 2016 Dan Grossman 17

Making up metasyntax

Rather than write (e,v), we’ll write e  v.

– It’s just metasyntax (!)

• Could use interp(e,v) or « v  e » if you prefer

– Our metasyntax follows PL convention

• Colors are not conventional (slides: green = metasyntax)

– And distinguish it from other relations

First step: define the form (arity and metasyntax) of your relation(s):

e  v

This is called a judgment

Lecture 4 CSE P505 August 2016 Dan Grossman 18

What we need to define

So we can write e  v for any e and v

– But we want such a thing to be “true” to mean e can evaluate

to v and “false” to mean it cannot

Examples (before the definition):

– (λx. λy. y x) ((λz. z) (λz. z))  λy. y (λz. z) in the relation

– (λx. λy. y x) ((λz. z) (λz. z))  λz. z not in the relation

– λy. y  λy. y in the relation

– (λy. y) (λx. λy. y x)  λy. y not in the relation

– (λx. x x) (λx. x x)  λy. y not in the relation

– (λx. x x) (λx. x x)  (λx. x x) (λx. x x) metasyntactically bogus

Lecture 4 CSE P505 August 2016 Dan Grossman 19

Inference rules

–––––––––––– [lam]

 λx. e  λx. e

 e1  λx. e3 e2  v2 e3{v2/x} = e4 e4  v

––– [app]

 e1 e2  v

• Using definition of a set of 4-tuples for substitution

• (exp * value * variable * exp)

• Will define substitution later

e  v e{v/ x} = e’

Lecture 4 CSE P505 August 2016 Dan Grossman 20

Inference rules

–––––––––––– [lam]

 λx. e  λx. e

 e1  λx. e3 e2  v2 e3{v2/x} = e4 e4  v

––– [app]

 e1 e2  v

• Rule top: hypotheses (0 or more)

• Rule bottom: conclusion

• Metasemantics: If all hypotheses hold, then conclusion holds

e  v e{v/x} = e’

Lecture 4 CSE P505 August 2016 Dan Grossman 21

Rule schemas

 e1  λx. e3 e2  v2 e3{v2/x} = e4 e4  v

––– [app]

 e1 e2  v

• Each rule is a schema you “instantiate consistently”

• So [app] “works” “for all” x, e1, e2, e3, e4, v2, and v

• But “each” e1 has to be the “same” expression

• Replace metavariables with appropriate terms

• Deep connection to logic programming (e.g., Prolog)

Lecture 4 CSE P505 August 2016 Dan Grossman 22

Instantiating rules

–––––––––––– [lam]

 λx. e  λx. e

• Two example legitimate instantiations:

• λz. z  λz. z

• x instantiated with z, e instantiated with z

• λz. λy. y z  λz. λy. y z

• x instantiated with z, e instantiated with λy. y z

• Two example illegitimate instantiations:

• λz. z  λy. z

• λz. λy. y z  λz. λz. Z

Must get your rules “just right” so you don’t allow

too much or too little

Lecture 4 CSE P505 August 2016 Dan Grossman 23

Derivations

• Tuple is “in the relation” if there exists a derivation of it

– An upside-down (or not?!) tree where each node is an

instantiation and leaves are axioms (no hypotheses)

• To show e  v for some e and v, give a derivation

– But we rarely “hand-evaluate” like this

– We’re just defining a semantics remember

• Let’s work through an example derivation for

 (λx. λy. y x) ((λz. z) (λz. z))  λy. y (λz. z)

Lecture 4 CSE P505 August 2016 Dan Grossman 24

Which relation?

So exactly which relation did we define

– The pairs at the bottom of finite-height derivations

Note: A derivation tree is like the tree of calls in a large-step

interpreter

– [when relation is a function]

– Rule being instantiated is branch of the match-expression

– Instantiation is arguments/results of the recursive call

Lecture 4 CSE P505 August 2016 Dan Grossman 25

A couple extremes

• This rules are a bad idea because either one adds all pairs to

the relation

–––––––

 e  v

• This rule is pointless because it adds no pairs to the relation

 e  v

–––––––

 e  v

 e1  v1

–––––––

 e  v

Lecture 4 CSE P505 August 2016 Dan Grossman 26

Summary so far

• Define judgment via a collection of inference rules

– Tuple in the relation (“judgment holds”) if a derivation (tree of
instantiations ending in axioms) exists

As an interpreter, could be “nondeterministic”:

• Multiple derivations, maybe multiple v such that e  v

– Our example language is deterministic

– In fact, “syntax directed” (≤1 rule per syntax form)

• Still need rules for e{v/x}=e’

• Let’s do more judgments (i.e., languages) to get the hang of it…

Lecture 4 CSE P505 August 2016 Dan Grossman 27

Call-by-name large-step

• Easier to see the difference than in OCaml

• Formal statement of amazing fact:

 For all e, if there exists a v such that e  v then there exists a v2

such that e N v2

 (Proof is non-trivial & must reason about substitution)

–––––––––––– [lam]

 λx. e N λx. e

 e1 N λx. e3 e3{e2/x} = e4 e4 N v

–––––––––––––––––––––––––––––––––– [app]

 e1 e2 N v

e N v e{v/x} = e’

Lecture 4 CSE P505 August 2016 Dan Grossman 28

IMP

• Two judgments H;e  i and H;s  H2

• Assume get(H,x,i) and set(H,x,i,H2) are defined

• Let’s try writing out inference rules for the judgments…

Lecture 4 CSE P505 August 2016 Dan Grossman 29

What will we do

• Go back to math metalanguage

– Notes on concrete syntax (relates to OCaml)

– Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

• Environments

Next time??

• Small-step

• Play with continuations (“very fancy” language feature)

Lecture 4 CSE P505 August 2016 Dan Grossman 30

Encoding motivation

• Fairly crazy: we left out integers, conditionals, data structures, …

• Turns out we’re Turing complete

– We can encode whatever we need

– (Just like assembly language can)

• Motivation for encodings

– Fun and mind-expanding

– Shows we are not oversimplifying the model

(“numbers are syntactic sugar”)

– Can show languages are too expressive

Example: C++ template instantiation

• Encodings are also just “(re)definition via translation”

Lecture 4 CSE P505 August 2016 Dan Grossman 31

Encoding booleans

The “Boolean Abstract Data Type (ADT)”

• There are 2 booleans and 1 conditional expression

– The conditional takes 3 (curried) arguments

• If 1st argument is one bool, return 2nd argument

• If 1st argument is other bool, return 3rd argument

• Any set of 3 expressions meeting this specification

is a proper encoding of booleans

• Here is one (of many):

– “true” λx. λy. x

– “false” λx. λy. y

– “if” λb. λt. λf. b t f

Lecture 4 CSE P505 August 2016 Dan Grossman 32

Example

• Given our encoding:

– “true” λx. λy. x

– “false” λx. λy. y

– “if” λb. λt. λf. b t f

• We can derive “if” “true” v1 v2  v1

• And every “law of booleans” works out

– And every non-law does not

• By the way, this is OOP

Lecture 4 CSE P505 August 2016 Dan Grossman 33

But…

• Evaluation order matters!

– With , our “if” is not YFL’s if

“if” “true” (λx.x) (λx. x x) (λx. x x) doesn’t terminate

but

“if” “true” (λx.x) (λz. (λx. x x) (λx. x x) z) terminates

– Such “thunking” is unnecessary using N

Lecture 4 CSE P505 August 2016 Dan Grossman 34

Encoding pairs

• The “Pair ADT”

– There is 1 constructor and 2 selectors

– 1st selector returns 1st argument passed to the constructor

– 2nd selector returns 2nd argument passed to the constructor

• This does the trick:

– “make_pair” λx. λy. λz. z x y

– “first” λp. p (λx. λy. x)

– “second” λp. p (λx. λy. y)

• Example:

“snd” (“fst” (“make_pair” (“make_pair” v1 v2) v3))  v2

Lecture 4 CSE P505 August 2016 Dan Grossman 35

Reusing Lambda

• Is it weird that the encodings of Booleans and pairs both used
(λx. λy. x) and(λx. λy. y) for different purposes?

• Is it weird that the same bit-pattern in binary code can represent

an int, a float, an instruction, or a pointer?

• Von Neumann: Bits can represent (all) code and data

• Church (?): Lambdas can represent (all) code and data

• Beware the “Turing tarpit”

Lecture 4 CSE P505 August 2016 Dan Grossman 36

Encoding lists

• Why start from scratch? Can build on bools and pairs:

– “empty-list” is “make_pair” “false” “false”

– “cons” is λh.λt.“make_pair” “true” “make_pair” h t

– “is-empty” is …

– “head” is …

– “tail” is …

• Note:

– Not too far from how lists are implemented

– Taking “tail” (“tail” “empty”) will produce some lambda

• Just like, without page-protection hardware ,

 null->tail->tail would produce some bit-pattern

Lecture 4 CSE P505 August 2016 Dan Grossman 37

Encoding natural numbers

• Known as “Church numerals”

– Will skip in the interest of time

• The “natural number” ADT is basically:

– “zero”

– “successor” (the add-one function)

– “plus”

– “is-equal”

• Encoding is correct if “is-equal” agrees with elementary-school

arithmetic

• [Don’t need “full” recursion, but with “full” recursion, can also just

do lists of Booleans…]

Lecture 4 CSE P505 August 2016 Dan Grossman 38

Recursion

• Can we write useful loops? Yes!

To write a recursive function:

• Write a function that takes an f and call f in place of recursion:

– Example (in enriched language):

λf.λx.if x=0 then 1 else (x * f(x-1))

• Then apply “fix” to it to get a recursive function

 “fix” λf.λx.if x=0 then 1 else (x * f(x-1))

• Details, especially in CBV are icky; but it’s possible and need be

done only once. For the curious:

 “fix” is λf.(λx.f (λy. x x y))(λx.f (λy. x x y))

Lecture 4 CSE P505 August 2016 Dan Grossman 39

More on “fix”

• “fix” is also known as the Y-combinator

• The informal idea:

– “fix”(λf.e) becomes something like

e{(“fix” (λf.e)) / f}

– That’s unrolling the recursion once

– Further unrollings are delayed (happen as necessary)

• Teaser: Most type systems disallow “fix”

– So later we’ll add it as a primitive

– Example: OCaml can never type-check (x x)

Lecture 4 CSE P505 August 2016 Dan Grossman 40

What will we do

• Go back to math metalanguage

– Notes on concrete syntax (relates to OCaml)

– Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

• Environments

Next time??

• Small-step

• Play with continuations (“very fancy” language feature)

Lecture 4 CSE P505 August 2016 Dan Grossman 41

Our goal

Need to define

• Used in [app] rule

• Informally, “replace occurrences of x in e1 with e2”

• Shockingly subtle to get right (in theory or programming)

• (Under call-by-value, only need e2 to be a value, but that doesn’t

make it much easier, so define the more general thing.)

e1{e2/x} = e3

Lecture 4 CSE P505 August 2016 Dan Grossman 42

Try #1[WRONG]

 y != x e1{e2/x} = e3

 –––––––– –––––––– –––––––––––––––––––
 x{e/x} = e y{e/x} = y (λy.e1){e2/x} = λy.e3

 ea{e2/x} = ea’ eb{e2/x} = eb’

 ––––––––––––––––––––––––––––

 (ea eb) {e2/x} = ea’ eb’

e1{e2/x} = e3

• Recursively replace every x leaf with e2

• But the rule for substituting into (nested) functions is wrong: If the

function’s argument binds the same variable (shadowing), we

should not change the function’s body

• Example program: (λx.λx.x) 42

Lecture 4 CSE P505 August 2016 Dan Grossman 43

Try #2 [WRONG]

 y != x e1{e2/x} = e3 y!=x

 –––––––– –––––––– –––––––––––––––––––
 x{e/x} = e y{e/x} = y (λy.e1){e2/x} = λy.e3

ea{e2/x} = ea’ eb{e2/x} = eb’

––––––––––––––––––––––––– –––––––––––––––––
 (ea eb) {e2/x} = ea’ eb’ (λx.e1){e2/x} = λx.e1

• Recursively replace every x leaf with e2, but respect shadowing

• Still wrong due to capture [actual technical term]:

– Example: (λy.e1){y/x}

– Example (λy.e1){(λz.y/x}

– In general, if “y appears free in e2”

e1{e2/x} = e3

More on capture

• Good news: capture can’t happen under CBV or CBN

– If program starts with no unbound (“free”) variables

• Bad news: Can still result from “inlining”

• Bad news: It’s still “the wrong definition” in general

– My experience: The nastiest of bugs in language tools

Lecture 4 CSE P505 August 2016 Dan Grossman 44

Lecture 4 CSE P505 August 2016 Dan Grossman 45

Try #3 [Almost Correct]

• First define an expression’s “free variables”

 (braces here are set notation)

– FV(x) = {x}

– FV(e1 e2) = FV(e1) U FV(e2)

– FV(λy.e) = FV(e) – {y}

• Now require “no capture”:

e1{e2/x} = e3 y!=x y not in FV(e2)

–––––––––––––––––––––––––––––
 (λy.e1){e2/x} = λy.e3

Try #3 in Full

• No mistakes with what is here…

• … but only a partial definition

– What if y is in the free-variables of e2

Lecture 4 CSE P505 August 2016 Dan Grossman 46

 y != x e1{e2/x} = e3 y!=x y not in FV(e2)

 –––––––– –––––––– ––––––––––––––––––––––––––––––––
 x{e/x} = e y{e/x} = y (λy.e1){e2/x} = λy.e3

ea{e2/x} = ea’ eb{e2/x} = eb’

––––––––––––––––––––––––– –––––––––––––––––
 (ea eb) {e2/x} = ea’ eb’ (λx.e1){e2/x} = λx.e1

e1{e2/x} = e3

Lecture 4 CSE P505 August 2016 Dan Grossman 47

Implicit renaming

• But this is a partial definition due to a “syntactic accident”, until…

• We allow “implicit, systematic renaming” of any term

– In general, we never distinguish terms that differ only in
variable names

– A key language-design principle

– Actual variable choices just as “ignored” as parens

– Means rule above can “always apply” with a lambda

• Called “alpha-equivalence”: terms differing only in names of
variables are the same term

e1{e2/x} = e3 y!=x y not in FV(e2)

–––––––––––––––––––––––––––––
 (λy.e1){e2/x} = λy.e3

Try #4 [correct]

• [Includes systematic renaming and drops an unneeded rule]

Lecture 4 CSE P505 August 2016 Dan Grossman 48

 y != x e1{e2/x} = e3 y!=x y not in FV(e2)

 –––––––– –––––––– ––––––––––––––––––––––––––––––––
 x{e/x} = e y{e/x} = y (λy.e1){e2/x} = λy.e3

ea{e2/x} = ea’ eb{e2/x} = eb’

––––––––––––––––––––––––– –––––––––––––––––
 (ea eb) {e2/x} = ea’ eb’ (λx.e1){e2/x} = λx.e1

e1{e2/x} = e3

More explicit approach

• While “everyone in the PL field”:

– Understands the capture problem

– Avoids it by saying “implicit systematic renaming”

 you may find that unsatisfying…

 … especially if you have to implement substitution

 while avoiding capture

• So this more explicit version also works (“fresh z for y”):

– You have to “find an appropriate z”, but one always exists and
__$$tmp appended to a global counter “probably works”

Lecture 4 CSE P505 August 2016 Dan Grossman 49

z not in FV(e1) U FV(e2) U {x} e1{z/y} = e3 e3{e2/x} = e4

–––
 (λy.e1){e2/x} = λz.e4

Lecture 4 CSE P505 August 2016 Dan Grossman 50

Note on metasyntax

• Substitution often thought of as a metafunction, not a judgment

– I’ve seen many nondeterministic languages

– But never a nondeterministic definition of substitution

• So instead of writing:

 e1  λx. e3 e2  v2 e3{v2/x} = e4 e4  v

––– [app]

 e1 e2  v

• Just write:

 e1  λx. e3 e2  v2 e3{v2/x}  v

––––––––––––––––––––––––––––––––– [app]

 e1 e2  v

Lecture 4 CSE P505 August 2016 Dan Grossman 51

What will we do

• Go back to math metalanguage

– Notes on concrete syntax (relates to OCaml)

– Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

• Environments

Next time??

• Small-step

• Play with continuations (“very fancy” language feature)

Lecture 4 CSE P505 August 2016 Dan Grossman 52

Where we’re going

• Done: large-step for untyped lambda-calculus

– CBV and CBN

– Note: infinite number of other “reduction strategies”

– Amazing fact: all equivalent if you ignore termination!

• Now other semantics, all equivalent to CBV:

– With environments (in OCaml to prep for Homework 3)

– Basic small-step (easy)

– Contextual semantics (similar to small-step)

• Leads to precise definition of continuations

Lecture 4 CSE P505 August 2016 Dan Grossman 53

Slide repeat…

type exp = Var of string

 | Lam of string*exp

 | Apply of exp * exp

exception BadExp

let subst e1_with e2_for x = …(*to be discussed*)

let rec interp_large e =

 match e with

 Var _ -> raise BadExp(*unbound variable*)

 | Lam _ -> e (*functions are values*)

 | Apply(e1,e2) ->

 let v1 = interp_large e1 in

 let v2 = interp_large e2 in

 match v1 with

 Lam(x,e3) -> interp_large (subst e3 v2 x)

 | _ -> failwith "impossible" (* why? *)

Lecture 4 CSE P505 August 2016 Dan Grossman 54

Environments

• Rather than substitute, let’s keep a map from variables to values

– Called an environment

– Like IMP’s heap, but immutable and 1 not enough

• So a program “state” is now exp and environment

• A function body is evaluated under the environment where it

was defined!

– Use closures to store the environment

– See also Lecture 1

Lecture 4 CSE P505 August 2016 Dan Grossman 55

No more substitution

type exp = Var of string

 | Lam of string * exp

 | Apply of exp * exp

 | Closure of string * exp * env

and env = (string * exp) list

let rec interp env e =

 match e with

 Var s -> List.assoc s env (* do the lookup *)

 | Lam(s,e2) -> Closure(s,e2,env) (* store env! *)

 | Closure _ -> e (* closures are values *)

 | Apply(e1,e2) ->

 let v1 = interp env e1 in

 let v2 = interp env e2 in

 match v1 with

 Closure(s,e3,env2) -> interp((s,v2)::env2) e3

 | _ -> failwith "impossible"

Lecture 4 CSE P505 August 2016 Dan Grossman 56

Worth repeating

• A closure is a pair of code and environment

– Implementing higher-order functions is not magic or run-time

code generation

• An okay way to think about OCaml

– Like thinking about OOP in terms of vtables

• Need not store whole environment of course

– See Homework 3

Lecture 4 CSE P505 August 2016 Dan Grossman 57

What will we do

• Go back to math metalanguage

– Notes on concrete syntax (relates to OCaml)

– Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

– And revisit function equivalences

• Environments

Next time??

• Small-step

• Play with continuations (“very fancy” language feature)

