CSE P505, Spring 2006, Assignment 4
Due: Tuesday 23 May 2006, 5:00PM

Last updated: May 9. Problem 3 is independent of problems 1 and 2. Consult the posted ML files and
lang.pdf.

1. Complete the functions subtype and typecheck to provide a type-checker for the language defined
in hwdProbl.ml and described in lang.pdf. For subtype t1 t2, return true if t1 is a subtype of
t2, else return false. For typecheck, raise the DoesNotTypecheck exception or return the type of the
expression. The exception carries a string: you may find it useful to use different strings for different
errors, but the strings will not be graded.

For subtyping:
e The only subtype of IntT is itself.
e Subtyping for arrow types is as usual.

e Subtyping for records includes width and permutation as in class. For depth, the subtyping
depends on the field’s access modifier. You must be sound but as expressive as possible. (The
correct rules are for you to figure out.)

For typechecking:

e The “natural” typechecking rules are mostly left to you. See lang.pdf.

o If(el,e2,e3) typechecks if el has a subtype of IntT' and one of e2 and e3 has a subtype of
the other. The supertype of these two types is the type of the whole expression. (This is the rule
in languages like Java; see the extra credit.)

e RecordV e should not typecheck because it should not appear in source programs.
e For Get and Set, be sure to consult the access modifier.

e Call checkType on every explicit type in the program (the result is (), but it may raise an
exception). For RecordE, be sure the field names are unique. Together, these two checks ensure
no record type will ever have repeated fields.

Begin Hints:
e For subtyping, do not include code for reflexivity and transitivity. In other words, create a
straightforward algorithm that is reflexive and transitive, though that may not be obvious.
e The sample solution for subtype is 13 lines (including the 2 lines given to you) and uses List.for_all.

e The typechecker does not need a subsumption rule. Instead you just use subtype whereever
subsumption may be needed. For example, in an applicaton, see if the argument has a subtype
of the type the function expects.

e The sample solution for typecheck is 61 lines, (including the 10 lines given to you) and uses
List.map.

End Hints

2. Consider these two functions in our language (only their types differ):

Lam("x" ,RecordT[("1",IntT,Read)],

RecordE[("11",Get (Var("x"),"1")); ("12",Var("x"))])
Lam("x",RecordT[("1",IntT,Both)],

RecordE[("11",Get (Var("x"),"1")); ("12",Var("x"))1)

In English, describe:

11t happens that means el has exactly type IntT, but in general we always allow subtypes.



e A situation where using the first function would typecheck but the second would not
e A situation where using the second function would typecheck but the first would not

e How to use bounded polymorphism to overcome this code duplication (a few sentences is plenty,
we do not need a full language design and description of the type system)

Begin Hints:
e Bounded polymorphism for types is one topic in Lecture 8, but here think about access modifiers.
End Hints

3. hw4clients.mli describes 3 clients that are passed 3 different interfaces to a “counter” where an
interface has the counter itself and functions for incrementing the counter, permitting decrements on
the counter, decrementing the counter, and printing the counter’s value. hw4clients.ml provides
(trivial) client implementations. You need to change hwdprob3.ml. A Makefile is provided to check
that everything compiles (make) and that it has the right types (make interfaces).

The goal in all cases is to enforce this protocol: A client may not decrement the counter unless it has
previously passed the counter to the function that allows decrements on it. (Once it has been passed
once, any number of decrements are allowed.) Hint: 5—6 lines is enough in each case.

(a) The type of clientl does not enforce the protocol. Write dynamicCheck to have type ’a t1
-> int. It takes a counter interface and produces a new interface also of type ’a t1 that
checks the protocol dynamically by wrapping a couple functions in the old interface and raising
ProtocolViolation as soon as the protocol is violated. It calls client1 with this new interface.
Hint: Use mutation (yes, really)

(b) The type of client?2 enforces the protocol. Write withholdDecr to have type ’a t1 -> int. It
takes a counter interface, produces a new interface (of type a t2) by wrapping the functions in
the old interface, and calls client2 with this new interface.

Hint: The allow-decrement function returns the decrement function.

(c¢) The type of client3 enforces the protocol. Write useTypes to have type a t1 -> int. It takes
a counter interface and produces a new interface (of type ’a t3) by wrapping the functions in
the old interface, and calls client3 with this new interface.

Hint: There is a very easy solution; the type ’a t3 is doing all the hard stuff.

(d) In a few (or less) English sentences, explain how each of the three approaches enforces the protocol.

4. (Extra Credit)

(a) Show that our language does not have least supertypes. That is, demonstrate four types 11, 72, 73, T4,
such that 7 <: 73, 7 <! 74, T2 <: T3, and 7o <: 74, but 73 £: 74 and 74 £: 73. Hint: you may
want to define additional types, which help show your claims.

(b) First, for each of the three approaches in problem (3), explain how to change the client’s type
and the wrapper you wrote so you can pass the client two counters, with the protocol that you
cannot call decrement with a counter until that counter has been passed to the allow-decrements
function. Second, explain why approaches (b) and (c¢) cannot be extended to a list of counters
and what addition to ML’s type system would make this possible.

Turn in:

e Email your solutions to Ben. Include hw4Probl.ml and hw4Prob3.ml as attachments. Put your
solutions to problem 2 and 3d in a text, pdf, or Word document.

e If you are using Seminal, please include your backup files.



