CSE P505, Spring 2006, Assignment 2
Due: Tuesday 25 April 2006, 5:00PM

Last updated: Apr 21. Problem 2(f) is pretty tricky. You may use the Caml standard library as you wish.

1. Change the large-step IMP interpreter (provided in lecture 2; see imp.ml) to support saving and
restoring entire heaps. In particular, implement two new statement forms:

e saveheap str is like assignment except insted of putting an integer in str, it puts the (entire)
current heap.

e restoreheap str takes the heap stored in str and makes it the current heap.
A heap variable can store an int or a heap, so we need these “cheating rules”:

e If = holds a heap, then the expression x evaluates to 0.

e If z holds an int, then the statement restoreheap z has no effect (it is like a skip).
Begin Hints:

e This problem does not require much programming.

e Change the type heap to be mutually recursive with a new datatype you define. (To define
mutually recursive types in Caml, use type t1 = ... and t2 =)

End Hints

2. You will implement three semantics for the silly Logo language described in logo.pdf by completing
the code skeletons in logo.ml.

(a) Complete the Caml type move such that move list is a good representation of a Logo program.

(b) Complete the Caml function makePoly : int->float->move. It takes a side-count and a side-
length and returns a move that “makes the regular polygon with side-count sides and side-length
side lengths”. More precisely, the move (which should use a loop) does side-count forward and
turn operations such that it visits each vertex of a regular polygon that starts at the current state
and has one side “straight ahead from the current direction”. The final state is the same as the
start state (except for rounding errors).

(c) Complete the Caml function interpLarge : move list -> (float * float) list, a large-
step interpreter for Logo. It returns the list of places visited in the order they were visited. A
home or forward operation always adds to this list, a turn operation never does.

Begin Hints:

e Just complete the recursive helper function loop, which should produce the places-visited list
in reverse order. loop takes the current move-list, the current state, and the reversed list of
places already visited.

e A program starting with a for-loop with ¢ > 0 can be evaluated by evaluating its body
appended to the program where 7 is decremented.

End Hints
(d) Complete the Caml function:

interpSmall : move list -> (float * float) list

a small-step interpreter for Logo, by completing its helper functions loop and

interpSmallStep : move list -> float -> float -> float ->
move list * float * float * float

interpSmallStep takes a move list and a current state (z then y then dir) and returns a new
move list and new state by “taking one small step”. It raises an exception if passed the empty
move list. loop uses interpSmallStep to build the places-visited list in reverse order by checking
if the returned state has a different x or y than the passed state.
Begin Hints:

e Use the same “trick” for for-loops as in your large-step interpreter.
End Hints

(e) In a Caml comment, explain two (related) ways your small-step and large-step interpreters are
not equivalent, i.e., ways Logo programs may produce different traces with the two interpreters.
Begin Hints:

e Think of useless moves.
End Hints

(f) Complete the Caml function

interpTrans : move list -> float -> float -> float ->
(float * float) list * float
(¥ i.e., move list -> (float -> float -> float -> (float * float) list * float) *)
a translational semantics for Logo (like we did for IMP). The returned function takes a program
state and returns a list of places visited and the d in the resulting state. The returned function
may use Caml functions, lists, and arithmetic, but not the move type.
Begin Hints:

e The empty move-list becomes a function that ignores two of its three arguments.

e A move-list starting with a non-loop becomes a function that “does the first move”, passes
the “new state” to the function that is the translation of the list tail, and then returns a
(possibly-longer) trace and the tail’s computed direction. We do not recommend building the
trace in reverse order.

e For move-lists starting with for-loops, you should use a recursive Caml function that takes an
integer 7 and returns a function of type (float->float->float -> (float*float) list * float).
If i = 0, it just uses the translation of the tail of the list, else it “composes” the translation
of the loop-body with the recursive function applied to ¢ — 1. This “composing” (which we
recommend putting in a helper function) is unusual: Roughly, one appends the two traces
using the first element of the first trace as the initial x and y for the second function, but you
need a special case when the first trace is empty. In any case, the second function’s direction
result is the composition’s direction result.

End Hints
3. (Extra Credit)

(a) In a new file, further extend the large-step IMP interpreter to support the statement pop str. The
values stored to str are conceptually in a stack and pop removes the shallowest stack element (so
subsequent variable accesses will see the next stack element). In a Caml comment, describe any
corner cases not well explained by this definition and how you resolve them.

(b) Write canonicalize : heap -> heap such that if heaps hy and hy are indistinguishable via
lookups, updates, restores, and pops, then the results of calling canonicalize on them are
structurally equivalent (Caml’s = operator returns true) and indistinguishable from h; and hs.

Turn in:

e Email your source code to Ben as attachments.
e If you are using Seminal, please include your backup files.
e Put your code in files imp.ml and logo.ml.

e If you do the extra credit, put it in imp2.ml.

