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CSE P505, Spring 2006, Final Examination
6 June 2006

Rules:
e Please do not turn the page until everyone is ready.

e The exam is closed-book, closed-note, except for two sides of one 8.5x11in piece of paper.

Please stop promptly at 8:30.
e You can rip apart the pages, but please write your name on each page.

e There are 100 points total, distributed very unevenly among 7 questions (most of which have
multiple parts).

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.
e The questions are not necessarily in order of difficulty.

e Skip around and focus on the questions worth more points.

If you have questions, ask.

Relax. You are here to learn.
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1. (20 points) Suppose we add division to our IMP expression language. In Caml, the expression syntax
becomes:

type exp =
Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp

Our interpreter (not shown) raises a Caml exception if the second argument to Div evaluates to 0. We
are ignoring statements; assume an IMP program is an expression that takes an unknown heap and
produces an integer.

(a) Write a Caml function nsz (stands for “no syntactic zero”) of type exp->bool that returns false
if and only if its argument contains a division where the second argument is the integer constant
0. Note we are not interpreting the input; nsz is not even passed a heap.

(b) If we consider division-by-zero at run-time a “stuck state” and nsz a “type system” (where true
means “type-checks”), then:
i. Is nsz sound? Explain.
ii. Is nsz complete? Explain.
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. (20 points) Consider this Caml code. It uses strcmp, which has type string->string->bool and
the expected behavior.

exception NoValue

let empty = fun s -> raise NoValue

let extend m x v = fun s -> if strcmp s x then v else m s
let lookup m x = m x

(a) What functionality do these three bindings provide a client?

(b) What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)
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3. (16 points) When we added sums (syntax A e, B e, and match e; with A © — e3|B y — e3) to the
A-calculus, we gave a small-step semantics and had exactly two constructors.

(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-by-
value large-step judgment e |} v with new rules. (Use 4 rules.)

(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that
have exactly three cases:

match ey with Az — ey By —e3|Cz— ey

Explain a possible translation of such a program into an equivalent one that uses only two con-
structors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to
translate match expressions. Do not write inference rules.)
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4. (14 points) Consider a A-calculus with tuples (i.e., “pairs with any number of fields”), so we have
expressions (e1, €, ..., ¢,) and e.i and types 71 * 7o x ... x 7,,. For each of our subtyping rules for records,
explain whether or not an analogous rule for tuples makes sense.
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5. (14 points) Assume a class-based object-oriented language as in class, and a program that contains
the call e.f((C)el) where el is a (compile-time) subtype of C and the whole call type-checks.

(a) If calls are resolved with static overloading, is it possible that removing the cast C (i.e., changing
the call to e.f (e1)) could cause the program to still type-check but behave differently? Explain.

(b) If calls are resolved with static overloading and we have multiple inheritance, is it possible that
removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to no longer
type-check? Explain.

(c) If calls are resolved with multimethods, is it possible that removing the cast C (i.e., changing the
call to e.f(el)) could cause the program to behave differently? Explain.
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6. (9 points) Here are two large-step interpreters for the untyped lambda-calculus. The one on the right
uses parallelism. Recall Thread.join blocks until the thread described by its argument terminates.
Only the lines between the (¥-------——- *) comments differ.

type exp = Var of string | Lam of string*exp | Apply of exp * exp
let subst el_with e2_for x = ... (* unimportant *)
exception UnboundVar

let rec interp e = let rec interp e =
match e with match e with
Var _ -> raise UnboundVar Var x -> raise UnboundVar
| Lam _ -> e | Lam _ -> e
| Apply(el,e2) -> | Apply(el,e2) ->
(H=mmmmmmmm %) O %)

let v2r = ref (Var "dummy") in
let t = Thread.create

let v2 = interp e2 in (fun () -> v2r := interp e2) () in
let vl = interp el in let vl = interp el in
Thread. join t;
let v2 = !v2r in
(#mmmmmmmmmm %) (#mmmmmmmm o %)
match vl with match vl with
Lam(x,e3) -> interp(subst e3 v2 x) Lam(x,e3) -> interp(subst e3 v2 x)
| _ -> failwith "impossible" | _ -> failwith "impossible"

(a) Describe an input to these functions for which the interpreter on the right would raise an exception
and the interpreter on the left would not. (Note: Evaluation of expressions may not terminate.)

(b) Explain why moving the line “let v2r = ref (Var "dummy") in” out to the top-level (and
removing the keyword “in”) would make the interpreter on the right behave unpredictably (even
for inputs with no free variables).
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7. (7 points) You can do this problem in one of Caml, C, C++, Java, or C#. Your choice does not
really change the problem.

(a) Write a short program that will exhaust memory if there is no garbage collector but take almost
no space if there is a garbage-collector.

(b) Write a short program that will exhaust memory even if there is a garbage collector. Create only
small objects.
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