Name:

CSE P505, Spring 2006, Final Examination
6 June 2006

Rules:
e Please do not turn the page until everyone is ready.

e The exam is closed-book, closed-note, except for two sides of one 8.5x11in piece of paper.

Please stop promptly at 8:30.
e You can rip apart the pages, but please write your name on each page.

e There are 100 points total, distributed very unevenly among 7 questions (most of which have
multiple parts).

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.
e The questions are not necessarily in order of difficulty.

e Skip around and focus on the questions worth more points.

If you have questions, ask.

Relax. You are here to learn.

Name:

For your reference (page 1 of 2):

skip|z:=e]|s;s|if e s s|whilee s

s =
e == i|lz|letelexe
i@ e {..,-2,-1,0,1,2,...})
(SL’ S {Xl,XZ,...,y1,y27‘..,21,22,.‘.,...})
H:el iand H; s | H
ADD MULT
CONST VAR Hi;e | a H;e | e Hi;e | a H;er | co
H;cl c H;z | H(x) H;e+e | ¢ +e H;eixey | ¢ *xco
ASSIGN SEQ
SKIP Hiel i H;s | H' H"; sy | H
H; skip | H H;z:=¢ | Hz—1i H; 5138 | H
IF1l IF2 WHILE
H:;el i i£#0 H;s | H H;ell 0 H; sy | H H ; if e (s;while e s) skip | H’
H:ifes sy | H H;ifes sy 4 H H ; whilees | H'
e == Ar.e|zxz]|ee
v o= An.e
’e J v and substitution‘
FV(@) = {2}
e Az. e e v es{va/x v
1 ¢ s e bve eslwa/o} FV(ey ea) = FV(ey)UFV(ep)
Ax.e || Ax.e eres | v FV(a.e) = FV(e)— {z}
y#£a ei{e/at=e1 efe/at=¢) efe/at=ei yFz ygrVie

ale/ey =e yle/a}=y

(er e2){e/z} = €] €

(\y. e1){e/z} = My. €}

clz| AT e|eel| Aa. e eT]

e u=
T u= int|7T—7]|a|VYar
v = clArToe|Aa.e
r == |To7 | T,

e—eandlke:T

e—¢e e—¢ e—¢e

e ey — € e ve—uve e[r] — €'[7] (Az:7. e)v — e{v/x} (Aa. e)[r] — e{r/a}
'kz:T(x) T'ke:int

NembFe:m 'kn Nate:n I'key:mo— 11 T'hex:im F'kFe:Var T'km

T'EAzm.e:m —m 't Aa. e:Va.r

IF'Fejes:m Tk elr]: ni{r/a}

Name:

e == Xr.e|lx|eel|c]|(ee)]|el|e2|Ae]|Be]|matchewith Ax—elBxz—e]|letrec fz. e
| {ll :61,...,ln :en} ‘ e.li
v == Ax.elc| () |Av|Bu|{l=v,...,l,=v}
T o= int|ro7|rx7|74+7|{li=7,...,l, =7}
e— e
€1 — €} ey — €
e1 e3 — €] ea v ey — v € (A\z. e) v — efv/z} (letrec f x. e) v — e{v/x}{(letrec f z. e)/f}
e — €} ey — € e—e e— ¢
(e1,e2) — (€], e2) (v,e2) — (v, eh) el—el e2—e'.2 (v1,v2).1 — vy (v1,v2).2 — vy
e—¢€ e—¢ e1 — €]
Ae—Ae Be—Be¢ match e; with A z — e3|B y — e3 — match €] with Az — e3|B y — e3

(match (A v) with A — e3|B y — e3) — ea{v/z} (match (B v) with A z — e3|B y — e3) — es{v/y}

{li=vi,.. . lp=v}.li = v
e — el
{llzvlauwlifl:wfbli:€i7~~«,ln:€n}—>{ll:Ulwu,lifl:Uifl,lizegauwln:@n}
’Fl—e:TandTlng
Nz:mke:m 'Feg:m—mn I'Fey:m
T'kc:int Ptax:T(x) T'FXXz.e:m — 1 I'Fejey:m
Lfimm—mz:mbe:n ke :m I'iep:m F'Fe:mxm F'e:m*xm
T'kFletrec fx.e:1 — It (e1,e9): 71 %72 I'tel:mn T'Fe2:m
I'kFe:m I'Fe:m I'kel:m+1m Ie:mbey:m3 ly:mbFes:Ts
F'FAe:1+m I'FBe:m +m FI—(matchelwithAx—>eg|By—>eg):7'3
ke :m Tke,:T, labels distinct Tke:{li=m,...,ln="n} 1<i:<n
Fl—{llzel,...,ln:en}:{11:7'17...,171:7'”} I‘I—e.li:ﬂ-
T'ke:r <7 71 < Ty Ty < T3 T3 < T1 To < Ty
T'ke: 7 T<T 1 < T3 T — Tog < T3 — Ty

{li=m1,.. lp=mp, =1} < {li="1,..., ln,="n}

{11:7'17‘..,li:Ti,lj:Tj,...,ln:Tn} é {11:7'1,...,lj:Tj,li:Ti,..‘,ln:Tn}
7 <7l
{11:7'1,...,[1':7'2',...,ln:Tn} § {11:7'1,...,li:’l'i/,...,ln:’rn}

Name:

1. (20 points) Suppose we add division to our IMP expression language. In Caml, the expression syntax
becomes:

type exp =
Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp

Our interpreter (not shown) raises a Caml exception if the second argument to Div evaluates to 0. We
are ignoring statements; assume an IMP program is an expression that takes an unknown heap and
produces an integer.

(a) Write a Caml function nsz (stands for “no syntactic zero”) of type exp->bool that returns false
if and only if its argument contains a division where the second argument is the integer constant
0. Note we are not interpreting the input; nsz is not even passed a heap.

(b) If we consider division-by-zero at run-time a “stuck state” and nsz a “type system” (where true
means “type-checks”), then:
i. Is nsz sound? Explain.
ii. Is nsz complete? Explain.

Name:

. (20 points) Consider this Caml code. It uses strcmp, which has type string->string->bool and
the expected behavior.

exception NoValue

let empty = fun s -> raise NoValue

let extend m x v = fun s -> if strcmp s x then v else m s
let lookup m x = m x

(a) What functionality do these three bindings provide a client?

(b) What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)

Name:

3. (16 points) When we added sums (syntax A e, B e, and match e; with A © — e3|B y — e3) to the
A-calculus, we gave a small-step semantics and had exactly two constructors.

(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-by-
value large-step judgment e |} v with new rules. (Use 4 rules.)

(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that
have exactly three cases:

match ey with Az — ey By —e3|Cz— ey

Explain a possible translation of such a program into an equivalent one that uses only two con-
structors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to
translate match expressions. Do not write inference rules.)

Name:

4. (14 points) Consider a A-calculus with tuples (i.e., “pairs with any number of fields”), so we have
expressions (e1, €, ..., ¢,) and e.i and types 71 * 7o x ... x 7,,. For each of our subtyping rules for records,
explain whether or not an analogous rule for tuples makes sense.

Name:

5. (14 points) Assume a class-based object-oriented language as in class, and a program that contains
the call e.f((C)el) where el is a (compile-time) subtype of C and the whole call type-checks.

(a) If calls are resolved with static overloading, is it possible that removing the cast C (i.e., changing
the call to e.f (e1)) could cause the program to still type-check but behave differently? Explain.

(b) If calls are resolved with static overloading and we have multiple inheritance, is it possible that
removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to no longer
type-check? Explain.

(c) If calls are resolved with multimethods, is it possible that removing the cast C (i.e., changing the
call to e.f(el)) could cause the program to behave differently? Explain.

Name:

6. (9 points) Here are two large-step interpreters for the untyped lambda-calculus. The one on the right
uses parallelism. Recall Thread.join blocks until the thread described by its argument terminates.
Only the lines between the (¥-------——- *) comments differ.

type exp = Var of string | Lam of string*exp | Apply of exp * exp
let subst el_with e2_for x = ... (* unimportant *)
exception UnboundVar

let rec interp e = let rec interp e =
match e with match e with
Var _ -> raise UnboundVar Var x -> raise UnboundVar
| Lam _ -> e | Lam _ -> e
| Apply(el,e2) -> | Apply(el,e2) ->
(H=mmmmmmmm %) O %)

let v2r = ref (Var "dummy") in
let t = Thread.create

let v2 = interp e2 in (fun () -> v2r := interp e2) () in
let vl = interp el in let vl = interp el in
Thread. join t;
let v2 = !v2r in
(#mmmmmmmmmm %) (#mmmmmmmm o %)
match vl with match vl with
Lam(x,e3) -> interp(subst e3 v2 x) Lam(x,e3) -> interp(subst e3 v2 x)
| _ -> failwith "impossible" | _ -> failwith "impossible"

(a) Describe an input to these functions for which the interpreter on the right would raise an exception
and the interpreter on the left would not. (Note: Evaluation of expressions may not terminate.)

(b) Explain why moving the line “let v2r = ref (Var "dummy") in” out to the top-level (and
removing the keyword “in”) would make the interpreter on the right behave unpredictably (even
for inputs with no free variables).

Name:

7. (7 points) You can do this problem in one of Caml, C, C++, Java, or C#. Your choice does not
really change the problem.

(a) Write a short program that will exhaust memory if there is no garbage collector but take almost
no space if there is a garbage-collector.

(b) Write a short program that will exhaust memory even if there is a garbage collector. Create only
small objects.

10

