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Cecil
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Cecil
n Inspired by Self:

n A classless object model
n Uniform use of messages for everything

n Inspired by CLOS:
n Multiple dispatching

n Extends both OO and functional programming styles

n Inspired by Trellis:
n Static typechecking
n Optional

n Support mixing dynamically and statically typed code

3

Bindings
n Use let to define (local and global) variables

n add var keyword to allow assignment,
otherwise immutable

n must initialize at declaration
let inc := 1;

let var count := 0;

count := count + inc;

4

Functions
n Use method to define functions

n last expression evaluated is returned
n can overload name for different numbers of 

arguments
let var count := 0;

method foo(a, b, c) {
count := count + 1;
let var d := a + b;
let e := frob(d, c);
d := d + e;
d + 5 }

method frob(x, y) { x - frob(y) + 1 }

method frob(x) { - x / 5 }

5

Closures: first-class functions
n Code in braces is a 0-argument function value

let closure := { factorial(10) + 5 };

n Evaluation of closure delayed until eval is sent:
eval(closure) fi 3628805

n To allow arguments, add &(x,y,z) prefix;
invoke passing extra arguments to eval:

let closure2 := &(n){ factorial(n) + 5 };

...

eval(closure2, 10) fi 3628805

n Like ML's fn, Self's blocks
n anonymous, lexically scoped, first-class

6

Glitch: returning closures
n In current Cecil implementation, by default,

closures cannot safely be returned out of 
their lexically enclosing scope
n a glitch in the Vortex implementation, not the 

Cecil language
n can crash Vortex mysteriously
n prevents currying, compose, closures in data 

structures, ...
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Avoiding the glitch
n To allow a closure to be returned, use &&:

method add_x(x) { &&(y){ x + y } }

let add_2 := add_x(2);

let add_5 := add_x(5);

eval(add_2, 4) fi 6

eval(add_5, 4) fi 9
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Using closures in control 
structures
n As in Self, all traditional (and many non-

traditional) control structures are 
implemented as regular Cecil functions, with
closures passed by callers supporting the 
necessary evaluation-only-on-demand

n For simple lazy or repeated evaluation:
if(test, { then_value }, { else_value })

test1 & { test2 }

while({ test }, { body })
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More examples
n For iteration with arguments:

for(start, stop, &(i){ body })

do(array, &(elem){ body })

do_associations(table, &(key,value){ body })

n For exception handling:
fetch(table, key, { if_absent })

n For 3-way branching:
compare(i, j, {if_lt}, {if_eq}, {if_gt})
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An example
-- this is a factorial method

method factorial(n) {

if(n = 0,

{ 1 },

{ n * factorial(n - 1) }) }

-- call factorial here:

factorial(7)
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Non-local returns
n Support exiting a method early with a non-

local return from a nested closure
n like ^ in Self
n like a return statement in C

{ ...; ^ result }

{ ...; ^ }   -- return void
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Example
method fetch(table, key, if_absent) {

do_associations(table, &(k, v){
if(k = key, { ^ v });

});
eval(if_absent) }

method fetch(table, key) {
fetch(table, key, {

error("key " ||
print_string(key) ||
" not found") }) }

fetch(zips, "Seattle", { 98195 })
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Objects
n To define a new kind of ADT, use an object

declaration
object Point;

n No classes!

n To make a new "instance" of that ADT, use 
an object isa … expression

method new_point() {
object isa Point }

n No special constructors!
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Methods of objects
n To define a method "in" an object, write the 

method outside the object but specialize the 
method to the object by adding @obj after 
the first argument (which acts like the
receiver argument)

method area(p@Point) {
p.x * p.y }

method shift(p@Point, dx, dy) {
p.x := p.x + dx;
p.y := p.y + dy; }
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Fields of objects
n To declare an instance variable, use a field

declaration
n specialize the field to the object "containing" the field
n add var keyword to allow assignment, otherwise immutable
n fields can be given default initial values at declaration
n fields can be given initial values at object creation

n supports immutable, initialized fields!

var field x(p@Point) := 0;

var field y(p@Point) := 0;

method new_point(x0, y0) {

object isa Point { x := x0, y := y0 } }
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Fields accessed by messages
n Field declarations implicitly produce 1 or 2 accessor

methods:
n get accessor: given object, return field contents
n set accessor (for var fields): given object & field�s new 

contents, modify field
n Manipulate field contents solely by invoking these 

methods
var field x(p@Point) := 0;
⇒
method x(p@Point) {

... fetch p.x’s contents, initially 0 ... }
method set_x(p@Point, new_value) {

... update p.x to be new_value ... }

-- increment p.x:
set_x(p, x(p) + 1);
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Syntactic sugar
n For syntactic convenience, any call can be 

written using dot notation:
p.x x(p)

p.x := p.x + 1 set_x(p,x(p)+1)

p.shift(3,4) shift(p, 3, 4)

n Infix & prefix operators (e.g. +) are really 
messages, too

method +(p1@Point, p2) {

new_point(p1.x + p2.x, p1.y + p2.y) }
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Inheritance
n Make new ADTs from old ones via isa

inheritance clause
object ColoredPoint isa Point;

n child/parent, a.k.a. subclass/superclass
n inherit all method & field declarations

n child has own field contents, unlike Self

n can add new methods & fields,
specialized on child object

n can override methods & fields
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Example
object ColoredPoint isa Point;

-- inherit all Point fields and methods

-- add some new ones:

field color(cp@ColoredPoint);

method new_colored_point(x0, y0, c0) {
object isa ColoredPoint {
x := x0, y := y0, color := c0 } }

let p := new_colored_point(3,4,"Blue");

print(p.color); fi "Blue"

p.shift(2,-2); -- invoke inherited method

print(p.x); fi 5
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Overriding of methods
n Child can override inherited method by 

defining its own
object Point;
method draw(p@Point) { … }

object ColoredPoint isa Point;
method draw(p@ColoredPoint) { … }

let p := new_point(3,4);
p.draw;  -- invoke's Point’s draw

let cp := new_colored_point(5,6,"Red");
cp.draw;  -- invokes ColoredPoint's draw
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Resends
n Often, overriding method includes overridden method 

as a subpiece
n Can invoke overridden method from overriding 

method using resend
n called super in some other languages

method draw(p@Point) {
Display.plot_point(p.x, p.y);

}

method draw(p@ColoredPoint) {

Display.set_color(p.color);
resend;

}
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Overriding of fields
n Since fields accessed through accessor

methods, can override accessor methods with 
regular methods, & vice versa

object Origin isa Point;

method x(o@Origin) { 0 }

method y(o@Origin) { 0 }
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Accessing fields
n Because fields accessed through messages, 

like methods, clients can�t tell how message 
implemented
n can differ in different child objects
n can change through program evolution & 

maintenance

let p := ...; -- Point or Origin object

print(p.x); -- how is x implemented?

24

Overloaded methods and 
dynamic dispatching
n Can overload methods two ways:

n same name but different numbers of arguments
n same name & number of arguments,

but different specializer objects

n Specializer-based overloading resolved by 
using run-time class of receiver argument
(a.k.a. dynamic dispatching, message 
sending)
n unlike static overloading, which uses only the 

static type known at the call site
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Multimethods
n Any argument, not just the receiver, can be 

specialized to an object

method =(p1@Point, p2@Point) {
p1.x = p2.x & { p1.y = p2.y } }

method =(cp1@ColoredPoint, cp2@ColoredPoint){

cp1.x = cp2.x & { cp1.y = cp2.y } &
{ cp1.color = cp2.color } }

n A message invokes the
unique most-specific applicable method 

26

Examples
method =(p1@Point, p2@Point) { … }

method =(cp1@ColoredPoint, cp2@ColoredPoint){ … }

let p1 = new_point(...);

let p2 = new_point(...);

let cp1 = new_colored_point(...);

let cp2 = new_colored_point(...);

print(p1 = p2); -- only Point·Point applies

print(p1 = cp2);  -- ditto

print(cp1 = p2);    -- ditto

print(cp1 = cp2);   -- both apply, CP·CP wins
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Method lookup rules
n Find all methods with the right name and number of 

arguments that apply
n A method applies if the actual run-time objects are equal to 

or inherit from all the method's specializers, where present
n Report "message not understood" if no applicable methods

n Pick the applicable method whose specializers are 
uniformly most specific
n A specializer is more specific than another if it inherits from 

the other
n A method overrides another if all of its specializers are at 

least as specific as the other's
n Report "message ambiguous" if no single best method
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Multimethod overriding
n One multimethod overrides another if

n for all the other�s specializers, the first method�s 
corresponding specializers are equal to or inherit from the 
other�s, and

n either:
n at least one of the first�s specializers strictly inherits from the 

other�s, or
n one of the first�s formals is specialized while the other�s is not

method foo(p1@Point, p2@Point) { … }

overridden by
method foo(p1@Point, p2@ColoredPoint) { … }

method foo(p1@ColoredPoint, p2) { … }

overridden by
method foo(p1@ColoredPoint, p2@ColoredPoint) { … }
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Ambiguous methods
n Two methods may be mutually ambiguous:

neither overrides the other

method foo(p1@Point, p2) { … }

ambiguous with
method foo(p1, p2@Point) { … }

method foo(p1@ColoredPoint, p2@Point) { … }

ambiguous with
method foo(p1@Point, p2@ColoredPoint) { … }

30

Resolving ambiguities
n Can resolve ambiguities by defining an 

overriding method

method foo(p1@ColoredPoint, p2@Point) { … }

method foo(p1@Point, p2@ColoredPoint) { … }

method foo(p1@ColoredPoint,

p2@ColoredPoint) { … }
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Directed resends
n Overriding method can choose one or more 

ambiguously inherited methods using a
directed resend

method foo(p1@ColoredPoint, p2@Point) { … }
method foo(p1@Point, p2@ColoredPoint) { … }

method foo(p1@ColoredPoint,
p2@ColoredPoint) {

-- invoke the ColoredPoint · Point one:
resend(p1, p2@Point);
-- invoke the Point · ColoredPoint one:
resend(p1@Point, p2); }

32

Multimethods vs. static overloading

n Multimethods support dynamic overloading:
use dynamic class of arguments to resolve 
overloading

n Static overloading is different:
use static type of arguments known at call 
site to resolve overloading

n Dynamic overloading is more powerful�
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Example in Java
class Point {

…
boolean equals(Point arg) {
return this.x = arg.x && this.y = arg.y; }

}

class ColoredPoint extends Point {

…

boolean equals(ColoredPoint arg) {
return … && this.color = arg.color; }

}

Point p1 = …;      // might be a ColoredPoint

Point p2 = …;      // might be a ColoredPoint

… p1.equals(p2) …  // which method is invoked?
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Second example in Java
class Point {
…
boolean equals(Point arg) {
return this.x = arg.x && this.y = arg.y; }

}
class ColoredPoint extends Point {
…
boolean equals(Point arg) {
return false; }

boolean equals(ColoredPoint arg) {
return … && this.color = arg.color; }

}

Point p1 = …;      // might be a ColoredPoint
Point p2 = …;      // might be a ColoredPoint

… p1.equals(p2) …  // which method is invoked?
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Third example in Java
class Point {

…
boolean equals(Point arg) {
return this.x = arg.x && this.y = arg.y; }

}

class ColoredPoint extends Point {

…

boolean equals(Point arg) {
if (arg instanceof ColoredPoint) {

ColoredPoint cpArg = (ColoredPoint) arg;

return … && this.color = cpArg.color;

} else {
return false;

}

}

}
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Example in MultiJava
n Allow arguments to have specializers

class Point {

…

boolean equals(Point arg) {
return this.x = arg.x && this.y = arg.y; }

}

class ColoredPoint extends Point {

…

boolean equals(Point@ColoredPoint arg) {

return … && this.color = arg.color; }

}
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Some uses for multimethods
n Multimethods useful for binary operations

n 2+ arguments drawn from some abstract domain 
with several possible implementations

n Examples:
n equality over comparable types
n <, >, etc. comparisons over ordered types
n arithmetic over numbers
n union, intersection, etc. over set representations

38

Some more uses
n Multimethods useful for cooperative operations even 

over different types
n Examples:

n display for various kinds of shapes on various kinds of 
output devices

n standard default implementation for each kind of shape
n overridden with specialized implementations for certain devices

n handleEvent for various kinds of services for various kinds 
of events

n operations taking flag constant objects, with different 
algorithms for different flags
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Advantages of multimethods
n Unify & generalize:

n top-level procedures (no specialized arguments)
n regular singly-dispatched methods (specialize first 

argument)
n overloaded methods (resolve overloading 

dynamically, not statically)
n Naturally allow existing objects/classes

to be extended with new behavior
n Avoid tedium & non-extensibility of 

instanceof/cast
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Challenges of multimethods
n Objects don�t contain their methods, so...

n What�s the programming model?
n What�s the encapsulation model?

n How to typecheck definitions and calls of
multimethods?

n How to implement efficiently?
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Multiple inheritance
n Can inherit from several parent objects:

object Shape;
object Rectangle isa Shape;
object Rhombus isa Shape;
object Square isa Rectangle, Rhombus;

object Stream;
object InputStream isa Stream;
object OutputStream isa Stream;
object IOStream isa InputStream, OutputStream;

n MI can be natural in application domain
n MI can be useful for better factoring & reuse of code

n But MI introduces semantic complications....
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Ambiguities
n Can get ambiguities due to MI, just like with MMs

object Rectangle isa Shape;
method area(r@Rectangle) { ... }

object Rhombus isa Shape;
method area(r@Rhombus) { ... }

object Square isa Rectangle, Rhombus;

let s := new_square(4);
... area(s) ... fi ambiguous!

n Can resolve ambiguities by adding overriding 
method, just as with MMs

method area(s@Square) { resend(s@Rectangle) }
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Semantics of
diamond-shaped inheritance?

object Shape;
method is_shape(s@Shape) { ... }

method is_rectangular(s@Shape) { ... }
object Rectangle isa Shape;
method is_rectangular(r@Rectangle) { ... }
method area(r@Rectangle) { ... }

object Rhombus isa Shape;
method area(r@Rhombus) { ... }

object Square isa Rectangle, Rhombus;

let s := new_square(4);

... is_shape(s) ... fi ambiguous?

... is_rectangular(s) ... fi ambiguous?

... area(s) ... fi ambiguous?
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Cecil semantics:
inheritance as a partial ordering

n In Cecil, inheritance graph defines a 
partial ordering over objects
n induces a corresponding partial ordering 

over methods based on their specializers
n this partial ordering on methods defines

the overriding relationship

... is_shape(s) ... fi Shape’s

... is_rectangular(s) ... fi Rectangle’s

... area(s) ... fi ambiguous
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Other options
n Smalltalk, Java, C#: disallow MI

n sacrifices many practical examples
n Self: like Cecil, but without partial order

n some "obvious" ambiguities not resolved
n CLOS: linearize DAG into SI chain

n complex linearization rules,
ambiguities always resolved

n C++: two styles of MI
n non-virtual base classes (the default):

replicate diamonds into trees
n virtual base classes: one shared copy
n very complex, bad default
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Semantics of
inheritance of fields?

object Shape;

field center(s@Shape);

object Rectangle isa Shape;

object Rhombus isa Shape;

object Square isa Rectangle, Rhombus;

let s := new_square(4);

... center(s) ... fi ambiguous?

47

Cecil semantics:
fields are shared

n In Cecil, fields are present once,
independently of along how many paths they 
are inherited
n field accessor methods are treated just like regular 

methods
n field contents are stored once per inheriting object 

... center(s) ...
fi s's contents of Shape’s center field

48

Other options
n Self: slot (i.e., field contents) is shared

n leads to separating prototype & traits objects 

n C++: two styles of MI
n non-virtual base classes (the default):

replicate instance variable
n virtual base classes: one shared copy (like Cecil)
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Mixins
n MI enables new programming idioms, including 

mixins: highly factored abstract objects
n Typically, organize attributes along independent axes

n several possible implementations (mixins) for each axis
n each concrete subclass picks one mixin for each axis

n Example axes for shapes in a user interface:
n colored or not, bordered or not, titled or not, mouse-click 

handler,...
n Different mixin axes have common parent (e.g. 

Shape), leading to diamond-shaped inheritance

object CheckBox isa Square, BorderedShape, ClickableShape, …;
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Java�s approach
n Java supports two flavors of classes:

regular classes and interfaces
n Interfaces include no implementation, just 

�abstract methods�
n no instance variables
n no method bodies

n Allow multiple inheritance only of interfaces
n a class can inherit from at most one regular class
n an interface can inherit only from interfaces

51

Analysis of Java's approach
n Benefits:

n no method bodies in interfaces ⇒
no ambiguities between implementations

n no instance variables in interfaces ⇒
no ambiguities in instance variable offset 
calculations

n still support some multiple inheritance idioms
n primarily for static type checking, not code reuse

n Costs:
n no mixin-style programming
n additional language complexity and library size


