
1

1

Object-Oriented
Programming

2

Object-Oriented Programming
n = Abstract Data Types

n package representation of data structure together with operations
on the data structure

n encapsulate internal implementation details
n + Inheritance

n support defining new ADT as incremental change to previous
ADT(s)

n share operations across multiple ADTs
n + Subclass Polymorphism

n allow variables to hold instances of different ADTs
n + Dynamic Binding

n run-time support for selecting right implementation of operation,
depending on argument(s)

3

Some OO languages
n Simula 67: the original
n Smalltalk-80: popularized OO
n C++: OO for the hacking masses
n Java, C#: cleaned up, more portable variants of C++
n CLOS: powerful OO part of Common Lisp
n Self: very pure OO language
n Cecil, MultiJava, EML: OO languages from my

research group
n Emerald, Kaleidoscope: other OO languages from UW

4

Abstract data types
n User-defined data structures along with user-defined operations

n Support good specification of interface to ADT, hiding distracting
implementation details

n Prevent undesired dependencies between client and ADT, allowing
implementation to change w/o affecting clients

n Allow language to be extended with new types, raising &
customizing the level of the language

n Called a class in OO languages
n data structures called objects, or instances of the class
n operations called methods; data called instance variables

n Modules have similar benefits

5

Inheritance
n Most recognizable aspect of OO languages & programs
n Define new class as incremental modification of existing class

n new class is subclass of the original class (the superclass)
n by default, inherit superclass�s methods & instance vars
n can add more methods & instance vars in subclass
n can override (replace) methods in subclass

n but not instance variables, usually

6

Example
class Rectangle {

Point center;

intheight, width;
intarea() { return height * width; }
void draw(OutputDevice out) { ... }
void m ove(Pointnew_c) { center = new_c; }
...

}
class ColoredRectangle extends Rectangle {

// center, height, & width inherited
Color color;
// area, move, etc. inherited
void draw(OutputDevice out) { ... } // override!

}

2

7

Benefits of inheritance
n Achieve more code sharing by factoring code into common

superclass
n superclass can be abstract

n no direct instances, just reusable unit of implementation

n encourages development of rich libraries of related data structures

n May model real world scenarios well
n use classes to model different things
n use inheritance for classification of things:

subclass is a special case of superclass

8

Pitfalls of inheritance
n Inheritance often overused by novices
n Code gets fragmented into small factored

pieces
n Simple extension & overriding may be too

limited
n e.g. exceptions in real-world classification

hierarchies

9

Subclass polymorphism
n Allow instance of subclass to be used wherever instance of

superclass expected
n client code written for superclass also works/is reusable for all

subclasses

void client(Rectangle r) {
… r.draw(screen) …

}

ColoredRectangle cr= ...;
… client(cr) …
// legal, because ColoredRectangle is a subclass of Rectangle

// but what version of draw is invoked?

10

Dynamic binding
n When invoke operations on object, invoke

appropriate operation for dynamic class of object, not
static class/type

ColoredRectangle cr= … ;
Rectangle r = cr; // OK, because CR subclass of R
r.draw(); // invokes ColoredRectangle::draw!

n Also known as
message passing,
virtual function calling,
generic function application

11

Method lookup
n Given a message obj.msg(args) …

n Start with run-time class C of obj
(the receiver)
n if msg is defined in C, then invoke it
n otherwise, recursively search in superclass of C
n if never find match, report run-time error
⇒ type checker guarantees this won�t happen

12

Dynamic dispatching vs.
static overloading
n Like overloading:

n multiple methods with same name, in different classes
n use class/type of argument to resolve to desired method

n Unlike overloading:
n resolve using run-time class of argument,

not static class/type
n consider only receiver argument, in most OO languages

n C++ & Java: regular static overloading on arguments, too
n CLOS, Cecil, MultiJava: resolve using all arguments (multiple

dispatching)

3

13

Example
n Without dynamic binding, use "typecase" idiom:

forallShape s in scene.shapes do
ifs.is_rectangle() then rectangle(s).draw();
else ifs.is_square() then square(s).draw();
else ifs.is_circle() then circle(s).draw();
else error(“unexpected shape”);
end

end

n With dynamic binding, send message:
forallShape s in scene.shapes do

s.draw();
end

n What happens if a new Shape subclass is added?

14

Benefits of dynamic binding
n Allows subclass polymorphism and dynamic dispatching to class-

specific methods
n Allows new subclasses to be added without modifying clients
n Allows more factoring of common code into superclass, since

superclass code can be �parameterized� by �sends to self� that
invoke subclass-specific operations
n "Template method" design pattern

15

Pitfalls of dynamic binding
n Tracing flow of control of code is harder

n control can pop up and down the class hierarchy

n Adds run-time overhead
n space for run-time class info
n time to do method lookup

n but only an array lookup (or equivalent),
not a search

16

Issues in
object-oriented language design
n Object model:

n hybrid vs. pure OO languages
n class-based vs. classless (prototype-based) languages
n single inheritance vs. multiple inheritance

n Dispatching model:
n single dispatching vs. multiple dispatching

n Static type checking:
n types vs. classes
n subtyping
n subtype-bounded polymorphism

17

Self

18

Self
n A purely object-oriented language,

developed as a Smalltalk successor in 1986/7
n Every thing is an object

n including primitives like numbers, booleans, etc.
n no classes, only prototypes
n first-class functions (aka blocks) are objects
n even methods are objects

n Every action is a message
n operations on primitives
n control structures
n access & assignment to instance variables

n Scoping is inheritance
n Theme: simplicity (uniformity) yields power

4

19

Self objects
n An object is just a list of slots

n A slot is a key/value pair
n The contents of a slot is (a reference to) another

object
n Example: (| x = 3. y = 4. |)

x

y

3

4

20

Accessing slots
n The only thing you can do with an object is

send it a message
n To fetch the contents of an object's slot, send

the slot's name as a message to the object
n Example:

let aPoint = (| x = 3. y = 4. |)

aPoint x "send x to aPoint, yielding 3"

21

Methods
n A method is just a special kind of object stored in a

slot
n Special because it has code that runs when it's looked up in

a slot

n Example:
let aPoint =

(| x = 3.

y = 4.

distanceToOrigin = (
(self x squared + self y squared) sqrt)

|)

aPoint distanceToOrigin "yields 5"

22

Syntax of messages
n Unary messages: a simple identifier written after the receiver

n right-associative
n aPoint distanceToOrigin
n self x
n self x squared
n (…) sqrt

n Binary messages: punctuation symbol(s) written between its
two arguments

n any sequence of punctuation symbols allowed; user-defined operators
J

n lower precedence than unary messages
n all binary messages have same precedence and are left-associative L

n x squared + y squared
n 3 + 4 * 5 yields 35 L

n Keyword messages: later�

23

Sends to self
n In a method, the name of the receiver of the

message is self
n If no receiver specified, then it's implicitly
self

n E.g.
n self x squared can be written x squared
n distanceToOrigin = (

(x squared + y squared) sqrt)

n Makes method calls as concise as (traditional)
instance variable access

24

Making new objects
n Can make new objects by:

n writing them down explicitly (as we've done), or
n cloning an existing object (the prototype)

n a shallow copy of the object

n Example:
let otherPoint = aPoint clone.

x

y

3

4
d2o

(…) sqrt

x

y

d2o

5

25

Mutable slots
n Slots initialized with = are immutable
n Slots initialized with <- are mutable
n To change a slot named x, send the object the x:

message with the new value
n returns the receiver, e.g. for additional updates

n Example:
let aPoint = (| x <- 3. y <- 4. |).

aPoint x: 5. "updates aPoint's x slot to refer to 5"
aPoint x "yields 5"
aPoint y: aPoint y + 1. "increments y"
(aPoint x: 0) y: 0. "sets aPoint to be the origin"

26

Assignment slots
n When a mutable slot named x is declared, two slots

are created in the object:
n one named x referring to the slot's (current) contents
n one named x: referring to the assignment primitive

n Example: (| x <- 3. y <- 4. |)

x: <-

y

3

4

x

y: <-

27

Keyword messages
n A keyword message is an identifier followed

by a colon
n It takes an argument after the colon
n aPoint x: 5

n The message is x:
n The receiver is (the result of evaluating) aPoint
n The argument is (the result of evaluating) 5

n Also have keyword messages that can take
more than one argument (later�)

28

Methods with arguments
n A method object can take one or more arguments by

declaring slots whose names begin with colons
n One argument slot for each argument that can be accepted

according to the slot name
n 1 for binary messages
n 1 or more for keyword messages

n Example:
(| …

+ = (| :p | (clone x: x + p x) y: y + p y)

|)

n Shorthand: put argument name in slot name
+ p = ((clone x: x + p x) y: y + p y)

29

A scenario�
n We define the first point as

let aPoint =

(| x = 3.

y = 4.

distanceToOrigin = (…)

+ p = (…)

… "lots of other methods on points"
|)

n Then we make lots of other points via cloning
� aPoint clone � p3 + p9 �

n Then we want to add a new method to all points
n how?

30

Inheritance
n Introduce sharing through inheritance
n Put shared slots (e.g. methods) into one object

(called a traits object)
n Put object-specific slots (e.g. instance vars) into

another object (called a prototype object)
n Have the prototype inherit the traits

n By adding a slot marked as a parent slot using an asterisk

n Clone the prototype to make new objects
n They'll also inherit the same traits object

6

31

Example
let pointTraits =

(| distanceToOrigin = (…)

+ p = (…)

… "lots of other methods on points"
|)

let pointProto =
(| x <- 0. "default initial coordinates"

y <- 0.

parent* = pointTraits. "inherit shared code"
|)

let p1 = (pointProto clone x: 3) y: 4.

32

The result

(…) sqrtd2o

+

… clone …

x: <-

y

x

y: <-

parent

x: <-

y

x

y: <-

parent

3

4

0

0

pointTraits

pointProto p1

33

Message lookup, revisited
n If a message msg is sent to an object:

n If the object contains a slot named msg, get the
object referenced by the slot

n If it's the assignment primitive, do an assignment to the
corresponding data slot

n If it's a method, run its body and return the result (more
later)

n Otherwise, just return the contents
n Otherwise, look for a slot marked as a parent slot

n If found, then recursively look up the message in the
object referred to by the parent slot

(Parents can contain their own parent slots, etc.)
n Otherwise, report a "message not understood" error

34

Invoking a method
n To run a method object:

n Clone the method object to make a method
activation object

n a stack frame!

n Initialize the argument slots of the cloned method
to the argument objects

n Evaluate the expression(s) in the body
n Return the result of the last expression

n But what about self?

35

Self
n self is an implicit argument slot of every

method
n What is the self argument?

n The original object that received the message?
n Or the object containing the method?
n Or something else?

n Consider a message p1 + p1; in the +
method inherited from pointTraits, what's
self bound to?

36

Local slots
n Methods can have slots

n E.g. argument slots
n Plus regular slots which act like local variables

n Sends to implicit self actually start the message
lookup in the currently executing method activation
object
n The self slot of the method is a parent slot, so that lookup

continues to search the receiver if a message to implicit self
doesn't match a local slot

n The method activation is a refinement of the receiver

n Example:
+ = (| ":self*" :p | … x + p x …)

7

37

Multiple arguments
n To send a message with multiple arguments, use

extended keyword messages
n Interleave keyword message part with argument expressions
n In Self, the first keyword message part must start with a

lower-case letter; the rest must start with an upper-case
letter

n Example:
n pointTraits newX: x Y: y

n message/slot name: newX:Y:
n receiver: pointTraits
n arguments: x and y

n pointTraits = (| newX: x Y: y = (…). … |)

38

Summary, so far
n Saw syntax & semantics of declaring objects,

sending messages, inheritance, assignment

n Didn't see classes�
n Didn't see constructors�
n Didn't see static methods & variables vs.

instance methods & variables�
n Didn't see different syntax for accessing

instance variables vs. calling methods�

39

What do classes usually offer?
n Can define the methods and instance variables of its instances

n Self lets each object be self-sufficient & self-describing
n Self programmers use shared traits objects as a way to share

things across all instances of a class
n (Doesn't work as well for instance variables)

n Can inherit from other classes
n Self allows individual objects to inherit directly from other objects

n Self inheritance is used for both class inheritance and class instantiation

n Can have static/class methods and instance variables
n Self programmers can define separate objects (e.g. factories) if

they want these things
n Can define constructors

n Self programmers define regular methods which use clone to do
this

40

Benefits of prototype model
n Self is much simpler by not having separate class and

instance concepts
n Also:

n makes singleton objects natural
n avoids the problem of "what's the class of a class? and

what's its class? and �"
n no metaclasses

n allows instances to inherit run-time state from other
instances

n allows inheritance to be changed at run-time, by making
parent slots assignable

n called dynamic inheritance

41

Benefits of uniform messaging
n Traditionally, instance variables and methods

are accessed differently
n Self accesses them both via messages

n Easy to change implementation from data to code
or vice versa, without affecting clients

n Easy to override data, and override code with data
n Still syntactically concise

n C#'s attributes are a clumsy version of this

42

Benefits of uniform objects
n Primitive values are first-class objects

n Inherit from predefined traits objects, etc., for
their behavior

n Send them messages just like other objects
n To make this work using expected syntax, syntax

of "operations" are available to all objects

n Can add user-defined methods on them, just
like other objects

8

43

First-class functions
n Self includes first-class functions as objects

n Called "blocks"
n Written like a method, except use […]

instead of (…)
n Invoke a block by sending it the value

message (or value: if it takes an argument,
or value:With:With: if it takes 3
arguments)
n [| :arg1. :arg2 | code] means
(| value: arg1 With: arg2 = (code) |)

44

Lexical scoping
n Blocks can be nested in methods

n Can access slots of lexically enclosing method

n Implemented by giving block activation
objects an implicit anonymous parent slot
that inherits from the lexically enclosing
method activation object

n Lexical scoping is just inheritance!

45

Control structures using blocks
n Self has no built-in control structures
n Instead, use objects, messages, and blocks to

program them all, entirely in (extensible) user
code

n Example:
let true =
(| parent* = boolTraits.

ifTrue: trueBlock False: falseBlock = (
trueBlock value) |)

let false = (| … falseBlock value … |)

(x < 0) ifTrue: ['neg'] False: ['non-neg']

46

Iterators
n To preserve abstraction of collections, each

defines one (or more) iterator methods
n Most basic: do:

n aList do: [|:elem| elem print.].

n Others: keysAndValuesDo:, includes:,
includesKey:, filterBy:, map:, �

47

Example: association list
let assocListTraits = (|

parent* = orderedCollectionTraits. "lots of cool methods"
assoc = (| key. value. next. |). "implicit <-nil"
assocsDo: aBlock = (

| assoc <- head |
[assoc != nil] whileDo: [

aBlock value: assoc.
assoc: assoc next.]).

keysAndValuesDo: aBlock = (
assocsDo: [|:assoc|

aBlock value: assoc key With: assoc value]). |).
at: k Put: v = ("should check for existing assoc, too"

assocsDo: [|:assoc|
(assoc key = k) ifTrue: [

assoc value: v. ^self]]. "^ does early return"
head: ((assoc clone key: k) value: v) next: head.).

let assocListProto = (| parent* = assocListTraits.
head. |).

48

A client
let phoneBook = assocListProto clone.

phoneBook at: 'Sylvia' Put: '123-4567'.

phoneBook at: 'Andrei' Put: 'unlisted'.

…

phoneBook keysAndValuesDo: [|:name. :number|

('calling ' + name + '...').print.

number makeCrankCall.

].

9

49

Top-level environment
n There's a distinguished object that's the top-

level environment
n It defines or inherits slots for all "global"

names, e.g. pointTraits, assocListProto, �
n A Self read-eval-print interpreter executes

expressions in the context of this object
n It's the implicit self of the read-eval-print loop

50

Updating existing objects
n Introduce (true) primitives to modify existing

objects
n obj _AddSlots: (| slots |)

n adds slots to obj, replacing any that already exist

n obj _DefineSlots: (| slots |)

n like _AddSlots:, plus removes all others from obj

n No need for special let construct
n let pointTraits = (|…|) is really
_AddSlots: (| pointTraits = (|…|) |)

51

Object-Oriented
Programming

52

Object-Oriented Programming
n = Abstract Data Types

n package representation of data structure together with operations
on the data structure

n encapsulate internal implementation details
n + Inheritance

n support defining new ADT as incremental change to previous
ADT(s)

n share operations across multiple ADTs
n + Subclass Polymorphism

n allow variables to hold instances of different ADTs
n + Dynamic Binding

n run-time support for selecting right implementation of operation,
depending on argument(s)

53

Some OO languages
n Simula 67: the original
n Smalltalk-80: popularized OO
n C++: OO for the hacking masses
n Java, C#: cleaned up, more portable variants of C++
n CLOS: powerful OO part of Common Lisp
n Self: very pure OO language
n Cecil, MultiJava, EML: OO languages from my

research group
n Emerald, Kaleidoscope: other OO languages from UW

54

Abstract data types
n User-defined data structures along with user-defined operations

n Support good specification of interface to ADT, hiding distracting
implementation details

n Prevent undesired dependencies between client and ADT, allowing
implementation to change w/o affecting clients

n Allow language to be extended with new types, raising &
customizing the level of the language

n Called a class in OO languages
n data structures called objects, or instances of the class
n operations called methods; data called instance variables

n Modules have similar benefits

10

55

Inheritance
n Most recognizable aspect of OO languages & programs
n Define new class as incremental modification of existing class

n new class is subclass of the original class (the superclass)
n by default, inherit superclass�s methods & instance vars
n can add more methods & instance vars in subclass
n can override (replace) methods in subclass

n but not instance variables, usually

56

Example
class Rectangle {

Point center;

intheight, width;
intarea() { return height * width; }
void draw(OutputDevice out) { ... }
void m ove(Pointnew_c) { center = new_c; }
...

}
class ColoredRectangle extends Rectangle {

// center, height, & width inherited
Color color;
// area, move, etc. inherited
void draw(OutputDevice out) { ... } // override!

}

57

Benefits of inheritance
n Achieve more code sharing by factoring code into common

superclass
n superclass can be abstract

n no direct instances, just reusable unit of implementation

n encourages development of rich libraries of related data structures

n May model real world scenarios well
n use classes to model different things
n use inheritance for classification of things:

subclass is a special case of superclass

58

Pitfalls of inheritance
n Inheritance often overused by novices
n Code gets fragmented into small factored

pieces
n Simple extension & overriding may be too

limited
n e.g. exceptions in real-world classification

hierarchies

59

Subclass polymorphism
n Allow instance of subclass to be used wherever instance of

superclass expected
n client code written for superclass also works/is reusable for all

subclasses

void client(Rectangle r) {
… r.draw(screen) …

}

ColoredRectangle cr= ...;
… client(cr) …
// legal, because ColoredRectangle is a subclass of Rectangle

// but what version of draw is invoked?

60

Dynamic binding
n When invoke operations on object, invoke

appropriate operation for dynamic class of object, not
static class/type

ColoredRectangle cr= … ;
Rectangle r = cr; // OK, because CR subclass of R
r.draw(); // invokes ColoredRectangle::draw!

n Also known as
message passing,
virtual function calling,
generic function application

11

61

Method lookup
n Given a message obj.msg(args) …

n Start with run-time class C of obj
(the receiver)
n if msg is defined in C, then invoke it
n otherwise, recursively search in superclass of C
n if never find match, report run-time error
⇒ type checker guarantees this won�t happen

62

Dynamic dispatching vs.
static overloading
n Like overloading:

n multiple methods with same name, in different classes
n use class/type of argument to resolve to desired method

n Unlike overloading:
n resolve using run-time class of argument,

not static class/type
n consider only receiver argument, in most OO languages

n C++ & Java: regular static overloading on arguments, too
n CLOS, Cecil, MultiJava: resolve using all arguments (multiple

dispatching)

63

Example
n Without dynamic binding, use "typecase" idiom:

forallShape s in scene.shapes do
ifs.is_rectangle() then rectangle(s).draw();
else ifs.is_square() then square(s).draw();
else ifs.is_circle() then circle(s).draw();
else error(“unexpected shape”);
end

end

n With dynamic binding, send message:
forallShape s in scene.shapes do

s.draw();
end

n What happens if a new Shape subclass is added?

64

Benefits of dynamic binding
n Allows subclass polymorphism and dynamic dispatching to class-

specific methods
n Allows new subclasses to be added without modifying clients
n Allows more factoring of common code into superclass, since

superclass code can be �parameterized� by �sends to self� that
invoke subclass-specific operations
n "Template method" design pattern

65

Pitfalls of dynamic binding
n Tracing flow of control of code is harder

n control can pop up and down the class hierarchy

n Adds run-time overhead
n space for run-time class info
n time to do method lookup

n but only an array lookup (or equivalent),
not a search

66

Issues in
object-oriented language design
n Object model:

n hybrid vs. pure OO languages
n class-based vs. classless (prototype-based) languages
n single inheritance vs. multiple inheritance

n Dispatching model:
n single dispatching vs. multiple dispatching

n Static type checking:
n types vs. classes
n subtyping
n subtype-bounded polymorphism

