
1

1

Object-Oriented
Programming

2

Object-Oriented Programming
n = Abstract Data Types

n package representation of data structure together with
operations on the data structure

n encapsulate internal implementation details
n + Inheritance

n support defining new ADT as incremental change to previous
ADT(s)

n share operations across multiple ADTs
n + Subclass Polymorphism

n allow variables to hold instances of different ADTs
n + Dynamic Binding

n run-time support for selecting right implementation of
operation, depending on argument(s)

3

Some OO languages
n Simula 67: the original
n Smalltalk-80: popularized OO
n C++: OO for the hacking masses
n Java, C#: cleaned up, more portable variants

of C++
n CLOS: powerful OO part of Common Lisp
n Self: very pure OO language
n Cecil, MultiJava, EML: OO languages from

my research group
n Emerald, Kaleidoscope: other OO languages

from UW

4

Abstract data types
n User-defined data structures along with user-defined

operations
n Support good specification of interface to ADT, hiding

distracting implementation details
n Prevent undesired dependencies between client and ADT,

allowing implementation to change w/o affecting clients
n Allow language to be extended with new types, raising &

customizing the level of the language
n Called a class in OO languages

n data structures called objects, or instances of the class
n operations called methods; data called instance variables

n Modules have similar benefits

5

Inheritance
n Most recognizable aspect of OO languages &

programs
n Define new class as incremental modification of

existing class
n new class is subclass of the original class (the superclass)
n by default, inherit superclass�s methods & instance vars
n can add more methods & instance vars in subclass
n can override (replace) methods in subclass

n but not instance variables, usually

6

Example
class Rectangle {

Point center;
int height, width;
int area(){ return height * width; }
void draw(OutputDevice out){ ... }
void m ove(Point new_c){ center = new_c; }
...

}
class ColoredRectangle extends Rectangle {

// center, height, & width inherited
Color color;
// area, move, etc. inherited
void draw(OutputDevice out){ ... } // override!

}

2

7

Benefits of inheritance
n Achieve more code sharing by factoring code into

common superclass
n superclass can be abstract

n no direct instances, just reusable unit of implementation

n encourages development of rich libraries of related data
structures

n May model real world scenarios well
n use classes to model different things
n use inheritance for classification of things:

subclass is a special case of superclass

8

Pitfalls of inheritance
n Inheritance often overused by novices
n Code gets fragmented into small

factored pieces
n Simple extension & overriding may be

too limited
n e.g. exceptions in real-world classification

hierarchies

9

Subclass polymorphism
n Allow instance of subclass to be used wherever

instance of superclass expected
n client code written for superclass also works/is reusable for

all subclasses

void client(Rectangle r) {
… r.draw(screen) …

}

ColoredRectangle cr= ...;
… client(cr) …
// legal, because ColoredRectangle is a subclass of Rectangle

// but what version of draw is invoked?

10

Dynamic binding
n When invoke operations on object, invoke

appropriate operation for dynamic class of
object, not static class/type

ColoredRectangle cr = … ;
Rectangle r = cr; // O K, because CR subclass of R
r.draw(); // invokes ColoredRectangle::draw!

n Also known as
message passing,
virtual function calling,
generic function application

11

Method lookup
n Given a message obj.msg(args) …

n Start with run-time class C of obj
(the receiver)
n if msg is defined in C, then invoke it
n otherwise, recursively search in superclass of C
n if never find match, report run-time error
⇒ type checker guarantees this won�t happen

12

Dynamic dispatching vs.
static overloading
n Like overloading:

n multiple methods with same name, in different classes
n use class/type of argument to resolve to desired method

n Unlike overloading:
n resolve using run-time class of argument,

not static class/type
n consider only receiver argument, in most OO languages

n C++ & Java: regular static overloading on arguments, too
n CLOS, Cecil, MultiJava: resolve using all arguments (multiple

dispatching)

3

13

Example
n Without dynamic binding, use "typecase" idiom:

forallShape sin scene.shapesdo
ifs.is_rectangle() then rectangle(s).draw();
else ifs.is_square() then square(s).draw();
else ifs.is_circle() then circle(s).draw();
else error(“unexpected shape”);
end

end

n With dynamic binding, send message:
forallShape s in scene.shapes do
s.draw();

end

n What happens if a new Shape subclass is added?

14

Benefits of dynamic binding
n Allows subclass polymorphism and dynamic

dispatching to class-specific methods
n Allows new subclasses to be added without modifying

clients
n Allows more factoring of common code into

superclass, since superclass code can be
�parameterized� by �sends to self� that invoke
subclass-specific operations
n "Template method" design pattern

15

Pitfalls of dynamic binding
n Tracing flow of control of code is harder

n control can pop up and down the class
hierarchy

n Adds run-time overhead
n space for run-time class info
n time to do method lookup

n but only an array lookup (or equivalent),
not a search

16

Issues in
object-oriented language design
n Object model:

n hybrid vs. pure OO languages
n class-based vs. classless (prototype-based) languages
n single inheritance vs. multiple inheritance

n Dispatching model:
n single dispatching vs. multiple dispatching

n Static type checking:
n types vs. classes
n subtyping
n subtype-bounded polymorphism

