Formal Semantics

Why formalize?

- _n ML is tricky, particularly in corner cases
 - generalizable type variables?
 - polymorphic references?
 - exceptions?
- Some things are often overlooked for any language evaluation order? side-effects? errors?
- Therefore, want to formalize what a language's definition really is
 - Ideally, a clear & unambiguous way to define a language

 - Programmers & compiler writers can agree on what's supposed to happen, for *all* programs Can try to prove rigorously that the language designer got all the corner cases right

Aspects to formalize

- Syntax: what's a syntactically well-formed program? EBNF notation for a context-free grammar
- Static semantics: which syntactically well-formed programs are semantically well-formed? which programs type-check?
 - typing rules, well-formedness judgments
- **Dynamic semantics**: what does a program evaluate to or do when it runs?
 - operational, denotational, or axiomatic semantics
- Metatheory: properties of the formalization itself
 - E.g. do the static and dynamic semantics match? i.e., is the static semantics **sound** w.r.t. the dynamic semantics?

Approach

- _n Formalizing full-sized languages is very hard, tedious
 - n many cases to consider
 - lots of interacting features
- Better: boil full-sized language down into essential core, then formalize and study the
 - cut out as much complication as possible, without losing the key parts that need formal study
 - hope that insights gained about core will carry back to full-sized language

The lambda calculus

- The essential core of a (functional) programming language
 - Developed by Alonzo Church in the 1930's
 - Before computers were invented!
- n Outline:
 - _n Untyped: syntax, dynamic semantics, cool properties
 - n Simply typed: static semantics, soundness, more cool properties
 - _n Polymorphic: fancier static semantics

Untyped 1-calculus: syntax

n (Abstract) syntax:

e := xvariable

> function/abstraction | 1*x. e*

(@ fn x => e)

call/application $|e_1e_2|$

- _n Freely parenthesize in concrete syntax to imply the right abstract syntax
- $_{\rm n}\,$ The trees described by this grammar are called term trees

Free and bound variables

- n 1x. e binds x in e
- n An occurrence of a variable x is **free** in e if it's not bound by some enclosing lambda

```
freeVars(x)
                " X
freeVars(1x. e) " freeVars(e) – {x}
freeVars(e_1 e_2) " freeVars(e_1)" freeVars(e_2)
```

n e is closed iff freeVars(e) = {}

a-renaming

- First semantic property of lambda calculus: bound variables in a term tree can be renamed (properly) without affecting the semantics of the term tree
 - n a-equivalent term trees
 - $(1X_1. X_2 X_1)$ a $(1X_3. X_2 X_3)$
 - n cannot rename free variables
- n **term** e: e and all a-equivalent term trees
 - _n Can freely rename bound vars whenever helpful

Evaluation: b-reduction

- Define what it means to "run" a lambda-calculus program by giving simple reduction/rewriting/simplification rules
 - " e_1 fi $_{
 m b}$ e_2 " means " e_1 evaluates to e_2 in one step"
- One case:

 - "if vous see a lambda applied to an argument expression, rewrite it into the lambda body where all free occurrences of the formal in the body have been replaced by the argument expression"
- n Can do this rewrite anywhere inside an expression

Examples

10

Substitution

n When doing substitution, must avoid changing the meaning of a variable occurrence

```
[xfi e]x " e
     [x \text{fi } e]y " y \text{ if } x " y
     [x \text{fi } e](1x. e_2) " (1x. e_2)
     [x_1 e](1y. e_2) " (1y. [x_1 e]e_2) if x , y
                                                 and v not free in e
     [x \text{fi } e](e_1 \, e_2) \ " \ ([x \text{fi } e]e_1) \, ([x \text{fi } e]e_2)
_{n} can use a-renaming to ensure "y not free in e"
```

Result of reduction

- _n To fully evaluate a lambda calculus term, simply perform b-reduction until you can't any more
 - $_{\rm n}$ fi $_{\rm b}^{*}$ " reflexive, transitive closure of fi $_{\rm b}$
- n When you can't any more, you have a value, which is a normal form of the input term
 - Does every lambda-calculus term have a normal form?

Reduction order

- _n Can have several lambdas applied to an argument in one expression
 - Each called a redex
- _n Therefore, several possible choices in reduction
 - ⁿ Which to choose? Must we do them all?
 - Does it matter?
 - _n To the final result?
 - To how long it takes to compute?
 - .. To whether the result is computed at all?

Two reduction orders

- n Normal-order reduction (a.k.a. call-by-name, lazy evaluation)
 - n reduce leftmost, outermost redex
- n Applicative-order reduction (a.k.a. call-by-value, eager evaluation)
 - n reduce leftmost, outermost redex whose argument is in normal form (i.e., is a value)

Amazing fact #1: Church-Rosser Theorem, Part 1

_n Thm. If e_1 fi $_{\rm b}^*$ e_2 and e_1 fi $_{\rm b}^*$ e_3 , then \$ e_4 such that e_2 fi $_b^*$ e_4 and e_3 fi $_b^*$ e_4

- n Corollary. Every term has a unique normal form, if it has one
 - n No matter what reduction order is used!

15

Existence of normal forms?

- Does every term have a normal form?
- n Consider: (1x. x x) (1y. y y)

Amazing fact #2: Church-Rosser Theorem, Part 2

- _n If a term has a normal form, then normal-order reduction will find it!
 - Applicative-order reduction might not!
- _n Example:
 - $_{1}$ $(1X_{1}, (1X_{2}, X_{2})) ((1X, XX) (1X, XX))$

Weak head normal form

- Mhat should this evaluate to? (1y. (1x. xx) (1x. xx))
 - Normal-order and applicative-order evaluation run forever
 - But in regular languages, wouldn't evaluate the function's body until we called it
- "Head" normal form doesn't evaluate arguments until function expression is a lambda
- "Weak" evaluation doesn't evaluate under lambda
 - With these alternative definitions of reduction:

 - Correspond more closely to real languages (particularly "weak")

Amazing fact #3:

1-calculus is Turing-complete!

- _n But the 1-calculus is too weak, right?
 - _n No multiple arguments!
 - _n No numbers or arithmetic!
 - n No booleans or if!
 - _n No data structures!
 - _n No loops or recursion!

Multiple arguments: currying

Encode multiple arguments via curried functions, just as in regular ML

$$1(x_1, x_2). e \Rightarrow 1x_1. (1x_2. e) ("1x_1. x_2. e)$$

 $f(e_1, e_2) \Rightarrow (fe_1) e_2$

20

Church numerals

Encode natural numbers using stylized lambda terms

```
zero " 1s. 1z. z
one " 1s. 1z. s z
two " 1s. 1z. s (s z)
...
n " 1s. 1z. s<sup>n</sup> z
```

- n A unary encoding using functions
 - _n No stranger than binary encoding

21

Arithmetic on Church numerals

 Successor function: take (the encoding of) a number, return (the encoding of) its successor

I.e., add an s to the argument's encoding succ " 1n. 1s. 1z. s(n s z)

```
Succ zero fi_b

1s. 1z. s(zero s z) fi_b^*

1s. 1z. sz = one

Succ two fi_b

1s. 1z. s(two s z) fi_b^*

1s. 1z. s(s(sz)) = three
```

22

Addition

- To add x and y, apply succ to y x times
 - Key idea: x is a function that, given a function and a base, applies the function to the base x times
 "a number is as a number does"

plus " 1x. 1y. x succ y

plus two three ${\rm fi}_{\rm b}^*$ two succ three ${\rm fi}_{\rm b}^*$ succ (succ three) = five

Multiplication is repeated addition, similarly

Booleans

ⁿ Key idea: true and false are **encoded** as functions that do different things to their arguments, i.e., make a choice

```
if" 1b. 1t. 1e. b t e
true" 1t. 1e. t
false" 1t. 1e. e
if false four six fi b*
false four six fi b*
six
```

Combining numerals & booleans

- _n To complete Peano arithmetic, need an isZero predicate
 - Key idea: call the argument number on a successor function that always returns false (not zero) and a base value that's true (is zero) isZero " 1n. n (1x. false) true

```
isZero zero fi ...
  zero (1x. false) true fi ,*
true
isZero two fi ,*
  two (1x. false) true fi .
  (1x. false) ((1x. false) true) fi b*
```

Data structures

- Try to encode simple pairs

 ... Can build more complex data structures out of them Key idea: a pair is a function that remembers its two input values, and passes them to a client function on demand
- First and second are client functions that just return one or the other remembered value mkPair " 1f. 1s. 1x. x f s first " 1p. p(1f. 1s. f) second " 1p. p(1f. 1s. s)

second (mkPair true four) fi b* second (1x. x true four) fi (1x. x true four) (1f. 1s. s) fii b* (1f. 1s. s) true four fii b* four

Loops and recursion

- n 1-calculus can write infinite loops
 - n E.g. (1x. xx) (1x. xx)
- n What about useful loops?
 - n I.e., recursive functions?
- n Ill-defined attempt:

if (isZero n) one (times n (fact (minus n one)))

- n Recursive reference isn't defined in our simple short-hand notation
- _n We're trying to define what recursion means!

Amazing fact # N: Can define recursive funs non-recursively!

_n Step 1: replace the bogus self-reference with an explicit argument

> factG " 1**f**. 1n. if (isZero n) one (times n (f (minus n one)))

Step 2: use the paradoxical Y combinator to "tie the knot'

fact " Y factG

Now all we need is a magic Y that makes its non-recursive argument act like a recursive function...

28

Y combinator

```
n A definition of Y:
```

Y'' 1f. (1x. f(x x)) (1x. f(x x))

n When applied to a function f.

 $f(x, f(x, x)) (1x, f(x, x)) \text{ fi }_{b}$ $f((1x, f(x, x)) (1x, f(x, x))) = f(Yf) \text{ fi }_{b}^{*}$ $f(f(Yf)) \text{ fi }_{b}^{*} f(f(Yf))) \text{ fi }_{b}^{*} \dots$

- n Applies its argument to itself as many times as
- "Computes" the **fixed point** of *f*
 - . Often called fix

Y for factorial

fact two fi .* (Y factG) two fi b* factG (Y factG) two fi b* if (isZero two) one
(times two ((Y factG) (minus two one))) fi *
times two ((Y factG) one) fi *
times two (factG (Y factG) one) fi * times two (if (isZero one) one (times one ((Y factG) (minus one one)))) fi b times two (times one ((Y factG) zero)) fi b times two (times one (factG (Y factG) zero)) fi b times two (times one (if (isZero zero) one (times zero ((Y factG) (minus zero one))))) fi ,* times two (times one one) fi b* two

Some intuition (?)

- $_{\scriptscriptstyle \rm n}$ Y passes a recursive call of a function to the function
- ⁿ Will lead to infinite reduction, unless one recursive call chooses to ignore its recursive function argument
 - I.e., have a base case that's not defined recursively
 - Relies on normal-order evaluation to avoid evaluating the recursive call argument until needed

31

Summary, so far

- _n Saw untyped 1-calculus syntax
- $_{\rm n}$ Saw some rewriting rules, which defined the semantics of 1-terms
 - $_{\scriptscriptstyle \rm n}$ a-renaming for changing bound variable names
 - _n b-reduction for evaluating terms
 - Normal form when no more evaluation possible
 - n Normal-order vs. applicative-order strategies
- Saw some amazing theorems
- Saw the power of 1-calculus to encode lots of higher-level constructs

32

Simply-typed lambda calculus

- n Now, let's add static type checking
- Extend syntax with types:

$$t ::= t_1 \text{ fi } t_2 \mid$$

$$e ::= 1x \cdot t \cdot e \mid x \mid e_1 \cdot e_2$$

ⁿ (The dot is just the base case for types, to stop the recursion. Values of this type will never be invoked, just passed around.)

33

Typing judgments

- Introduce a compact notation for defining typechecking rules
- _n A typing judgment: $G \vdash e : t$
 - "In the typing context ${\tt G}$, expression e has type t"
- n A typing context: a mapping from variables to their types
 - _n Syntax: $G ::= \{\} \mid G, X : t$

24

Typing rules

- Give typechecking rule(s) for each kind of expression
- n Write as a logical inference rule

$$premise_1 \dots premise_n \quad (n \neq 0)$$

conclusion

- $_{\scriptscriptstyle \rm n}$ Whenever all the premises are true, can deduce that the conclusion is true
- n If no premises, then called an "axiom"
- Each premise and conclusion has the form of a typing judgment

35

Typing rules for simply-typed 1-calculus

$$\frac{\mathsf{G}, x \, t_1 \models e \colon t_2}{\mathsf{G} \models (1x \colon t_1 \cdot e) \colon t_1 \text{ fi} \quad t_2} [\mathsf{T-ABS}]$$

$$\frac{\mathsf{G} \models x \colon \mathsf{G}(x)}{\mathsf{G} \models x \colon \mathsf{G}(x)} [\mathsf{T-VAR}]$$

$$\mathsf{G} \models e_1 \colon t_2 \text{ fi} \quad t \quad \mathsf{G} \models e_2 \colon t_2}{[\mathsf{T-APF}]}$$

Examples

Typing derivations

- _n To prove that a term has a type in some typing context, chain together a tree of instances of the typing rules, leading back to axioms
 - _n If can't make a derivation, then something isn't true

Examples

Formalizing variable lookup $_{n}$ What does G(x) mean?

- $_{\rm n}$ What if $_{\rm G}$ includes several different types for x?

 $\texttt{G} = \textbf{\textit{x}}: \ , \ \textbf{\textit{y}}: \ , \ \textbf{\textit{x}}: \ \texttt{fi} \ \ , \ \textbf{\textit{x}}: \ , \ \textbf{\textit{y}}: \ \texttt{fi} \ \ \texttt{fi}$

- _n Can this happen?
- _n If it can, what should it mean?
 - Any of the types is OK?
 - Just the leftmost? rightmost?
 - _n None are OK?

An example

- $_{\rm n}$ What context is built in the typing derivation for this expression? $1x: t_1. (1x: t_2. x)$
- Mhat should the type of x in the body be?
- _n How should G(x) be defined?

Formalizing using judgments

- [T-VAR-1] $G, x:t \mid x:t$

 $G \mid x:t \mid x,y$ ----- [T-VAR-2] $G, y: t_2 \mid x: t$

 $_{n}$ What about the $G = \{\}$ case?

Type-checking self-application

Mhat type should I give to x in this term?

1x:?. (x x)

_n What type should I give to the f and x's in Y?

Y'' 1f?. (1x?. f(xx)) (1x?. f(xx))

43

Amazing fact #*N*+1: All simply-typed 1-calculus exprs terminate!

- Cannot express looping or recursion in simply-typed 1-calculus
 - Requires self-application, which requires recursive types, which simply-typed 1-calculus doesn't have
- So all programs are guaranteed to never loop or recur, and terminate in a finite number of reduction steps!
 - (Simply-typed 1-calculus could be a good basis for programs that must be guaranteed to finish, e.g. typecheckers, OS packet filters, ...)

44

Adding an explicit recursion operator

- ⁿ Several choices; here's one: add an expression "fix e"
- $_{\rm n}\,$ Define its reduction rule:

fix $e_{\text{fi}} e_{\text{fi}}$

Define its typing rule:

45

Defining reduction precisely

 $_{\rm n}$ Use inference rules to define ${\rm fi}_{\rm \ b}$ redexes precisely

$$\frac{e_{1} \text{ fi. }_{b} e_{2} \text{ fi. }_{b} [\text{E-ABS}]}{(1x: c e_{I}) e_{2} \text{ fi. }_{b} [x: e_{2}] e_{I}} = \frac{e_{2} \text{ fi. }_{b} e_{I} (\text{fix } e)}{\text{fix } e \text{ fi. }_{b} e_{I} \text{ fix } e^{2}} [\text{E-APP1}]$$

$$\frac{e_{1} \text{ fi. }_{b} e_{I}'}{e_{I} e_{2} \text{ fi. }_{b} e_{I}' e_{2}} [\text{E-APP2}]$$

$$\frac{e_{1} \text{ fi. }_{b} e_{I}'}{1x: c e_{I} \text{ fi. }_{b} 1x: c e_{I}'} [\text{E-BODY}] \text{ optional}$$

46

Formalizing evaluation order

- $_{\rm n}$ Can specify evaluation order by identifying which computations have been fully evaluated (have no redexes left), i.e., **values** ν
 - n one option:

$$v ::= 1x:t.e$$

_n another option:

V ::= 1x:t, V

m what's the difference?

Example: call-by-value rules $v := 1x \pm e$

$$\frac{\left(1x: t e_{j}\right) \mathbf{v_{2}} \text{ fi }_{b} \left[x \text{ fi } \mathbf{v_{2}}\right] e_{I}}{\left(1x: t e_{J}\right) \mathbf{v_{2}} \text{ fi}_{b} \left[x \text{ fi } \mathbf{v_{2}}\right] e_{I}} = \frac{\left[\text{E-ABS}\right]}{\text{fix } \mathbf{v} \text{ fi }_{b} \mathbf{v} \left(\text{fix } \mathbf{v}\right)}$$

$$\frac{e_{I} \text{ fi }_{b} e_{I}^{'}}{e_{I} e_{2} \text{ fi }_{b} e_{I}^{'} e_{2}} \left[\text{E-APP1}\right] = \frac{e_{2} \text{ fi }_{b} e_{2}^{'}}{\mathbf{v_{1}} e_{2} \text{ fi }_{b} \mathbf{v_{1}} e_{2}^{'}} \left[\text{E-APP2}\right]$$

Type soundness

- _n What's the point of a static type system?
 - _n Identify inconsistencies in programs
 - Early reporting of possible bugs
 - Document (one aspect of) interfaces precisely
 - _n Provide info for more efficient compilation
- Most assume that type system "agrees with" evaluation semantics, i.e., is sound
 - n Two parts to type soundness: preservation and progress

Preservation

- _n Type preservation: if an expression has a type, and that expression reduces to another expression/value, then that other expression/value has the same
 - If G $\vdash e$: t and e fi b e', then G $\vdash e'$: t
- n Implies that types correctly "abstract" evaluation, i.e., describe what evaluation will produce

Progress

- n If an expression successfully typechecks, then either the expression is a value, or evaluation can take a step
 - n If $G \vdash e$: t, then e is a v or p e' s.t. e fi p e'
- Implies that static typechecking guarantees successful evaluation without getting stuck
 - "well-typed programs don't go wrong"

51

Soundness

- Soundness = preservation + progress
 - If $G \vdash e$: t, then e is a v or e's.t. e_{fi} e'and e': t
 - n preservation sets up progress, progress sets up preservation
- Soundness ensures a very strong match between evaluation and typechecking

52

Other ways to formalize semantics

- n We've seen evaluation formalized using small-step (structural) operational semantics
- n An alternative: big step (natural) operational semantics
 - _n Judgments of the form $e \downarrow \nu$
 - "Expression e evaluates **fully** to value v"

Big-step call-by-value rules

$$\frac{e_{j} \Downarrow (1x.\varepsilon.e) \Downarrow (1x.\varepsilon.e)}{(1x.\varepsilon.e) e_{2} \Downarrow v_{2} \quad ([xi \ v_{2}]e) \Downarrow v} = \frac{e_{j} \Downarrow (1x.\varepsilon.e) \quad e_{2} \Downarrow v_{2} \quad ([xi \ (fix \ (1x.\varepsilon.e))]e) \Downarrow v}{(fix \ (fix \ (2)) \Downarrow v)} = \frac{e_{j} \Downarrow (1x.\varepsilon.e) \quad ([xi \ (fix \ (2x.\varepsilon.e))]e) \Downarrow v}{(fix \ e_{j}) \Downarrow v} = \frac{e_{j} \Downarrow (1x.\varepsilon.e)}{([xi \ (fix \ (2x.\varepsilon.e))]e) \Downarrow v} = \frac{e_{j} \Downarrow (1x.\varepsilon.e)}{([xi \ (2x.\varepsilon.e))]e} = \frac{e_{j} \thickspace (1x.\varepsilon.e)}$$

- Simpler, fewer tedious rules than small-step; "natural" Cannot easily prove soundness for non-terminating programs
- Typing judgments are "big step"; why?

Yet another variation

- Real machines and interpreters don't do substitution of values for variables when calling functions
 - Expensive!
- Instead, they maintain environments mapping variables to their values
 - n A.k.a. stack frames
- n We can formalize this
 - For big step, judgments of the form $r \mid e \lor v$ where r is a list of x = v bindings
 - "In environment \mathbf{r} , expr. e evaluates fully to value \mathbf{v} "

55

Explicit environment rules

$$\frac{r \mid (1 \times t \mid e) \mid (1 \times t \mid e)}{r \mid (1 \times t \mid e) \mid (1 \times t \mid e)} \text{ [E-ABS]}$$

$$\frac{r \mid e_i \mid (1 \times t \mid e) \quad r \mid e_2 \mid v_2 \quad \mathbf{r}, \mathbf{x} = \mathbf{v}_2 \mid e \mid \forall v}{r \mid (e_i \mid e_2) \mid \forall v} \text{ [E-APP]}$$

$$\frac{r \mid e_i \mid (1 \times t \mid e) \quad \mathbf{r}, \mathbf{x} = (\mathbf{fix} \ (1 \times t \mid e)) \mid e \mid \forall v}{r \mid (\mathbf{fix} \mid e_i) \mid v} \text{ [E-FIX]}$$

- Problems handling fix, since need to delay evaluation of recursive call
- Wrong! specifies dynamic scoping!

56

Explicit environments with closure values

$$V ::= <1x: t e, r>$$

$$\frac{r \mid (1x: t e) \mid <(1x: t e), r>}{r \mid (2x: t e), r} [E-ABS]$$

$$\frac{r \mid e_1 \mid <(1x: t e), r > r \mid e_2 \mid v_2 \quad r', x = v_2 \mid e \mid v}{r \mid (e_1 e_2) \mid v} [E-APP]$$

- n Does static scoping, as desired
- n Allows formal reasoning about explicit environments
- We found a bug in implementation of substitution via environments
- Makes proofs much more complicated

57

Other semantic frameworks

- We've seen several examples of operational semantics
 - _n Like specifying an interpreter, or a virtual machine
- n An alternative: *denotational semantics*
 - Specifies the meaning of a term via translation into another (well-specified) language, usually mathematical functions
 Like specifying a compiler!
 - More "abstract" than operational semantics
- n Another alternative: axiomatic semantics
 - $_{\scriptscriptstyle \rm II}$ Specifies the result of expressions and effect of statements on properties known before and after
 - Suitable for formal verification proofs

58

Richer languages

- To gain experience formalizing language constructs, consider:
 - n ints, bools
 - n let
 - n records
 - n tagged unions
 - n recursive types, e.g. lists
 - _n mutable refs

59

Basic types

n Enrich syntax:

$$\begin{array}{l} t ::= \dots \mid \text{int} \mid \text{bool} \\ e ::= \dots \mid 0 \mid \dots \mid \text{true} \mid \text{false} \\ \mid e_1 + e_2 \mid \dots \\ \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \\ v ::= \dots \mid 0 \mid \dots \mid \text{true} \mid \text{false} \end{array}$$

Add evaluation rules

_n E.g., using big-step operational semantics

$$\frac{e_{i} \ \forall \ v_{i} \quad e_{i} \ \forall \ v_{j} \quad v_{j} \ v_{j} \ v_{j} \ in \ Int \quad v = v_{i} + v_{j} }{(e_{i} + e_{i}) \ \forall \ v_{j} \ in \ Int \quad v = v_{j} + v_{j}} \ [\text{E-PLUS}]$$

$$\frac{e_{i} \ \forall \ true \qquad e_{i} \ \forall \ v_{j} }{(\text{if} \ e_{i} \ then \ e_{j} \ else \ e_{j} \ \forall \ v_{j}} \ [\text{E-IF-true}]$$

$$\frac{e_{i} \ \forall \ true \qquad e_{j} \ \forall \ v_{j} }{(\text{if} \ e_{i} \ then \ e_{j} \ else \ e_{j} \ \forall \ v_{j}} \ [\text{E-IF-false}]$$

- $_{\scriptscriptstyle \rm I\! I}$. If no old rules need to be changed, then orthogonal
- + and if might not always reduce; evaluation can get **stuck**

61

Add typing rules

$$\frac{-\frac{-1}{G \mid 0: \text{int}} \text{[T-INT]}}{\frac{-1}{G \mid true: \text{bool}} \text{[T-TRUE]}}$$

$$\frac{-\frac{-1}{G \mid e_i: \text{int}} \quad -\frac{-1}{G \mid e_i: \text{bool}} \quad -\frac{-1}{G \mid e_i: \text{bool}} \quad -\frac{-1}{G \mid e_i: \text{bool}} \quad -\frac{-1}{G \mid e_i: \text{then } e_i: \text{then }$$

_n Type soundness: if *e* typechecks, then can't get stuck

:2

Let

$$e ::= ... \mid \text{let } x = e_1 \text{ in } e_2$$

$$\frac{e_1 \Downarrow v_1 \qquad ([x \text{ii } v_1] e_2) \Downarrow v_2}{(\text{let } x = e_1 \text{ in } e_2) \Downarrow v_2} \text{ [E-LET]}$$

$$G \not\models e_1 \colon t_1 \qquad G, x \colon t_1 \not\models e \colon t_2$$

$$G \not\models (\text{let } x = e_1 \text{ in } e_2) \colon t_2 \text{ [T-LET]}$$

63

Records

n Syntax:

$$t ::= ... \mid \{n_i : t_i, ..., n_n : t_n\}$$

$$e ::= ... \mid \{n_i = e_i, ..., n_n = e_n\} \mid \# n e$$

$$v ::= ... \mid \{n_i = v_i, ..., n_n = v_n\}$$

64

Evaluation and typing

$$\frac{e_{I} \Downarrow v_{I} \quad \dots \quad e_{n} \Downarrow v_{n}}{\{n_{I}=e_{J} \dots, n_{n}=e_{n}\} \Downarrow \{n_{I}=v_{J} \dots, n_{n}=v_{n}\}} \text{ [E-RECORD]}$$

$$\frac{e \Downarrow \{n_{I}=v_{J} \dots, n_{n}=v_{n}\}}{(\#n_{I}e) \Downarrow v_{I}} \text{ [E-PROJ]}$$

$$\frac{G \models e_{I} : t_{I} \quad \dots \quad G \models e_{n} : t_{n}}{G \models \{n_{I}=e_{J} \dots, n_{n}=e_{n}\} : \{n_{I}:t_{J} \dots, n_{n}:t_{n}\}} \text{ [T-RECORD]}$$

$$\frac{G \models e : \{n_{I}:t_{J} \dots, n_{n}:t_{n}\}}{G \models (\#n_{I}e) : t_{I}} \text{ [T-PROJ]}$$

65

Tagged unions

 $_{\scriptscriptstyle \rm I\!\!I}$ A union of several cases, each of which has a tag

_n Type-safe: cannot misinterpret value under tag

$$\begin{array}{l} F ::= ... \mid < n_1 \cdot t_p ..., \ n_n \cdot t_n > \\ e ::= ... \mid < n = e > \\ \mid case \ e \ of < n_1 = x_1 > = > \ e_1 ... < n_n = x_n > = > \ e_n \\ V ::= ... \mid < n = v > \end{array}$$

_n Example:

```
val u:<a:int, b:bool> =
    if ... then <a=3> else <b=true>
    case u of
    <a=j> => j+4
    <b=t> => if t then 8 else 9
```

Evaluation and typing

$$\frac{e \ \forall \ v}{\langle n=e \rangle \ \forall \ \langle n=v \rangle} \quad \text{[E-UNION]}$$

$$\frac{e \ \forall \ \langle n=e \rangle \ \forall \ \langle n=v \rangle}{(\text{case } e \ \text{of } \langle n_i=x_j>=>e_i \dots \langle n_n=x_p>=>e_n) \ \forall \ v} \quad \text{[E-CASE]}$$

$$\frac{G \ \mid \ e_i : \ t_i}{G \ \mid \ \langle n_i=e \rangle \ : \ \langle n_i; t_p \dots , n_n; t_p \rangle} \quad \text{[T-UNION]}$$

$$\frac{G \ \mid \ e_i : \ \langle n_i; t_p \dots , n_n; t_p \rangle}{G \ \mid \ \langle n_i=e \rangle \ : \ \langle n_i; t_p \dots , n_n; t_p \rangle} \quad \text{[T-CASE]}$$

$$\frac{G \ \mid \ e_i : \ \langle n_i = v_i \rangle}{G \ \mid \ \langle \text{case } e \ \text{of } \langle n_i=x_i>=>e_i \dots \langle n_n=x_p>=>e_n \rangle} : \ t} \quad \text{[T-CASE]}$$

$$\text{Where get the full type of the union in T-UNION?}$$

Lists

- n Use tagged unions to define lists: int_list " <nil: unit, cons: {hd:int, tl:int_list}>
- But int list is defined recursively
 - As with recursive function definitions, need to carefully define what this means

68

Recursive types

- n Introduce a recursive type: mX. t
 - n t can refer to X to mean the whole type, recursively int_list " mL.<nil: unit, cons: {hd:int, tl:L}>
 - This type means the infinite tree of "unfoldings" of the recursive reference
 - If £contains a union type with non-recursive cases (base cases for the recursively defined type), then can have finite values of this "infinite" type

<nil=()> <cons={hd=3, tl=<nil=()>}> <cons={hd=3, tl=<cons={hd=4, tl=<nil=()>}>}>

69

Folding and unfolding

- What values have recursive types?
 What can we do with a value of recursive type?
 - Can take a value of the body of the recursive type, and "fold" it up to make a recursive type

int_list " mL.<nil: unit, cons: {hd:int, tl:L}>
<nil=()> : <nil: unit, cons: {hd:int, tl:int_list}>
fold <nil=()> : int_list

- n Can "unfold" it to do the reverse
 - Exposes the underlying type, so operations on it typecheck
- Can introduce fold & unfold expressions, or can make when to do folding & unfolding implicit

70

Typing of fold and unfold

$$\frac{G \mid e : [X \text{fi} (mX.t)]t}{G \mid (\text{fold } e) : mX. t} [\text{T-FOLD}]$$

$$\frac{G \mid e : mX. t}{G \mid (\text{unfold } e) : [X \text{fi} (mX.t)]t} [\text{T-UNFOLD}]$$

Evaluation ignores fold & unfold

71

Using recursive values and types

References and mutable state

Syntax:
$$\begin{array}{c} \varepsilon ::= \dots \mid \varepsilon \text{ ref} \\ e ::= \dots \mid \text{ref } e \mid ! \ e \mid e_1 := e_2 \\ v ::= \dots \mid \text{ref } v \mid e_1 := e_2 \\ \end{array}$$
 Typing:
$$\begin{array}{c} \circ \mid e : \varepsilon \\ \hline \circ \mid (\text{ref } e) : \varepsilon \text{ ref} \end{array} \text{[T-REF]}$$

$$\begin{array}{c} \circ \mid e : \varepsilon \text{ for } e \mid e_1 : \varepsilon \text{ for } e \mid e_2 : \varepsilon \text{ for } e \mid e_$$

Evaluation of references

$$\frac{e \Downarrow v}{(\text{ref } e) \Downarrow (\text{ref } v)} \begin{bmatrix} \text{E-REF} \end{bmatrix}$$

$$\frac{e \Downarrow (\text{ref } v)}{(! \ e) \Downarrow v} \begin{bmatrix} \text{E-DEREF} \end{bmatrix}$$

$$\frac{e_I \Downarrow (\text{ref } v_I) \quad e_2 \Downarrow v_2}{(e_I := e_J) \Downarrow \text{unit}} \begin{bmatrix} \text{E-ASSIGN} \end{bmatrix}$$

But where'd the assignment go?

Example

(let
$$r = ref 0$$
 in (let $x = (r := 2)$ in (! r)))

Stores

- $_{\rm n}$ Introduce a $\it store \; {\rm s}$ to keep track of the contents of references
 - n A map from *locations* to values
 - "ref $\it e^{t}$ allocates a new location and initializes it with (the result of evaluating) $\it e$

 - result of evaluating) e^{it} ! e^{it} looks up the contents of the location (resulting from evaluating) e^{it} in the store " e_i := e_i " updates the location (resulting from evaluating) e_i to hold (the result of evaluating) e_2 returning the updated store
- Evaluation now passes along the current store in which to evaluate expressions
 - $_{\text{\tiny n}}$ Big-step judgments of the form $<\!e_{\!\scriptscriptstyle ,\text{S}}\!> \Downarrow <\!v_{\!\scriptscriptstyle ,\text{S}}\!>$

Big-step semantics with stores

Semantics of references

 $_{\scriptscriptstyle \rm n}$ Add locations 1as a new kind of value (not "ref ν ")

n New semantics

Example again

(let r = ref 0 in (let x = (r := 2) in (! r)))

79

Summary, so far

- Now have also seen simply typed 1-calculus
 - ⁿ Saw inference rules, derivations
 - Saw several ways to formalize operational semantics and typing rules
- Saw many extensions to this core language
 - _n Typical of how real PL theorists work
 - n Usually orthogonal to underlying semantics
 - ⁿ References required redoing underlying semantics
- Mould you want to use this language?
 - _n If it had suitable syntactic sugar?

80

Polymorphic types

- Simply typed 1-calculus is "simply typed", i.e., it has no polymorphic or parameterized types
- "Good" programming languages have polymorphic types
 - And there are tricky issues relating to polymorphic types
- So we'd like to capture the essense of polymorphic types in our calculus
 - _n So we'll really understand it

81

Polymorphic 1-calculus

- n Also known as System F
- $_{\scriptscriptstyle \rm n}$ Extend type syntax with a forall type

$$t \colon := \dots \mid "X. \ t \mid X$$

Now can write down the types of polymorphic values

82

Values of polymorphic type

- Introduce explicit notation for values of polymorphic type and their instantiations
 - n A polymorphic value: L X. e
 - $_{\text{\tiny II}}$ L $\!X\!.$ $\!e\!$ is a function that, given a type $t\!,$ gives back $\!e\!$ with $t\!$ substituted for $\!X\!$
 - $_{\scriptscriptstyle \mathrm{n}}$ Use such values by instantiating them: $\emph{e}[\,\emph{t}]$
 - $_{\scriptscriptstyle \mathrm{L}}$ e[t] is like function application
- n Syntax:

$$e ::= ... \mid LX. e \mid e[t]$$

 $v ::= ... \mid LX. e$

83

An example

Another example

```
(* fun doTwice f x = f (f x);
   doTwice: ('a->'a)->'a->'a*)
doTwice " L'a. 1f:'afi 'a. 1x:'a. f (f x)
            : " 'a. ('afi 'a)fi 'afi 'a
doTwice [int] succ 3 fi b
   (1f:intfi int. 1x:int. f(f x)) succ 3 fi _{b}^{*}
   succ (succ 3) fi ,*
```

Yet another example

```
map " L'a. L'b. fix (1map:('afi 'b)fi 'a listfi 'b list.
   1f:'afi 'b. 1lst:'a list.
    fold (case (unfold lst) of
      old (case (umoid 150, 5.)
<nil=n> => <nil=()>
<cons=r> => <cons={hd=f (#hd r),
tl=map f (#tl r)}>))
           : "'a. "'b. ('afi 'b)fi 'a listfi 'b list
```

map [int] [bool] isZero [3,0,5] fi * [false,true,false]

 $_{\tt n}$ ML infers what the $_{\tt L}$ ${\cal T}$ and [t] should be

Evaluation and typing rules

iluation: $e^{\downarrow} (LX_i e_i) \quad ([X_{1}^{fi} t]e_i) \stackrel{\downarrow}{\downarrow} v$ [E-INST]

A final example

```
(* fun cool f = (f 3, f true) *)
cool " 1f:(L'a. 'afi 'a). (f [int] 3, f [bool] true)
       : (L'a. 'afi 'a)fi (int * bool)
    (id [int] 3, id [bool] true) fi <sub>b</sub>*
    ((1x:int. x) 3, (1x:bool. x) true) fi _{\rm b}
    (3, true)
```

- n Note: L inside of 1 and fi
 - n Can't write this in ML; not "prenex" form

(e[t]) ↓ v _n Typing:

_n Evaluation:

G, *X*::type | *e* : *t* G ├ (L*X. e*): "*X. t* $G \models e : "X. t'$ $\frac{}{\mathsf{G} \, \mid \, (e[t]) : [\lambda \mathsf{fi} \, t]t'} [\mathsf{T-INST}]$

87

Different kinds of functions

- n 1x. e is a function from values to values
- п LX. e is a function from *types* to *values*
- Mhat about functions from types to types?
 - $_{\mathrm{n}}$ Type constructors like fi , list, BTree . We want them!
- n What about functions from values to types?
 - **Dependent types** like the type of arrays of length n, where n is a run-time computed value
 - n Pretty fancy, but would be very cool

Type constructors

- n What's the "type" of list?
 - n Not a simple type, but a function from types to types
 - e.g. list(int) = int_list
 - _n There are lots of type constructors that take a single type and return a type
 - They all have the same "meta-type"
 - Other things take two types and return a type (e.g. fi , assoc_list)
- A "meta-type" is called a kind

Kinds

- n A *type* describes a *set of values* or value constructors (a.k.a. functions) with a common structure $\varepsilon ::= \text{int} \mid \varepsilon_I \text{ fi} \quad \varepsilon_2 \mid \dots$
- A kind describes a set of types or type constructors with a common structure

 $k ::= type \mid k_1 \Rightarrow k_2$

Write t:: k to say that a type t has kind k int:: type inti int:: type list:: type ⇒ type list int:: type assoc_list:: type ⇒ type ⇒ type assoc_list:: type ⇒ type ⇒ type assoc_list string int:: type

91

Kinded polymorphic 1-calculus

- n Also called System F.,
- _n Full syntax:

```
\begin{array}{l} \textbf{\textit{k}} ::= \textbf{type} \mid \textbf{\textit{k}}_{1} \Rightarrow \textbf{\textit{k}}_{2} \\ \textbf{\textit{t}} ::= \textbf{int} \mid \textbf{\textit{t}}_{1} \textbf{\textit{fi}} \quad \textbf{\textit{t}}_{2} \mid \text{"} \textbf{\textit{X}} : \textbf{\textit{k}} \ \textbf{\textit{t}} \mid \textbf{\textit{X}} \mid \textbf{\textit{1}} \textbf{\textit{X}} : \textbf{\textit{k}} \ \textbf{\textit{t}} \mid \textbf{\textit{t}}_{1} \ \textbf{\textit{t}}_{2} \\ e ::= \textbf{\textit{1}} \textbf{\textit{X}} : \textbf{\textit{t}} \ e \mid \textbf{\textit{x}} \mid \textbf{\textit{e}}_{1} \ \textbf{\textit{e}}_{2} \mid \textbf{\textit{L}} \textbf{\textit{X}} : \textbf{\textit{k}} \ e \mid \textbf{\textit{e}}[\textbf{\textit{t}}] \\ \textbf{\textit{V}} ::= \textbf{\textit{1}} \textbf{\textit{X}} : \textbf{\textit{e}} \mid \textbf{\textit{L}} \textbf{\textit{X}} : \textbf{\textit{k}} \ e \end{array}
```

- Functions and applications at both the value and the type level
- Arrows at both the type and kind level

92

Examples

```
pair "

1'a::type. 1'b::type. {first:'a, second:'b}

:: type ⇒ type ⇒ type

pair int bool "fi b" {first:int, second:bool}

{first=5, second=true}: pair int bool

swap "

L'a::type. L'b::type.

1p:pair 'a 'b.

{first=#second p, second=#first p}

: "'a::type. "'b::type. (pair 'a 'b) fi (pair 'b 'a)
```

93

Expression typing rules

94

Type kinding rules

$$\frac{G \mid t_1 :: \text{type} \quad G \mid t_2 :: \text{type}}{G \mid (t_1 \text{ fi} \quad t_2) :: \text{type}} [\text{K-ARROW}]$$

$$\frac{G, \mathcal{X} :: k \mid t :: \text{type}}{G \mid ("\mathcal{X} :: k \cdot t) :: \text{type}} [\text{K-FORALL}] \qquad \frac{G \mid \mathcal{X} :: G(\mathcal{X})}{G \mid \mathcal{X} :: G(\mathcal{X})} [\text{K-VAR}]$$

$$\frac{G, \mathcal{X} :: k_1 \mid t ::: k_2}{G \mid (\mathcal{X} :: k_2 \mid t) :: k_1 \text{ fi} \quad k_2} [\text{K-ABS}] \qquad \frac{G \mid t_1 :: k_2 \text{ fi} \quad k \quad G \mid t_2 ::: k_2}{G \mid (t_1 t_2) :: k} [\text{K-APP}]$$

95

Summary

- $_{\rm n}\,$ Saw ever more powerful static type systems for the 1-calculus
 - n Simply typed 1-calculus
 - n Polymorphic 1-calculus, a.k.a. System F
 - n Kinded poly. 1-calculus, a.k.a. System F_w
- Exponential ramp-up in power, once build up sufficient critical mass
- Real languages typically offer some of this power, but in restricted ways
 - Could benefit from more expressive approaches

Other uses

- $_{\rm n}$ Compiler internal representations for advanced languages
 - _n E.g. FLINT: compiles ML, Java, ...
- ⁿ Checkers for interesting non-type properties, e.g.:
 - n proper initialization
 - static null pointer dereference checking safe explicit memory management

 - n thread safety, data-race freedom