Formal Semantics

Why formalize?

» ML is tricky, particularly in corner cases
» generalizable type variables?
» polymorphic references?
» exceptions?
» Some things are often overlooked for any language
» evaluation order? side-effects? errors?
» Therefore, want to formalize what a language's
definition really is
» Ideally, a clear & unambiguous way to define a language

» Programmers & compiler writers can agree on what's
supposed to happen, for a// programs

» Can try to prove rigorously that the language designer got
all the corner cases right

Aspects to formalize

» Syntax: what's a syntactically well-formed program?
» EBNF notation for a context-free grammar

» Static semantics: which syntactically well-formed
programs are semantically well-formed? which
programs type-check?
» typing rules, well-formedness judgments

» Dynamic semantics: what does a program
evaluate to or dowhen it runs?
» operational, denotational, or axiomatic semantics

» Metatheory: properties of the formalization itself

» E.g. do the static and dynamic semantics match? i.e.,
is the static semantics sound w.r.t. the dynamic semantics?

Approach

» Formalizing full-sized languages is very hard,
tedious
. many cases to consider
» lots of interacting features

» Better: boil full-sized language down into
essential core, then formalize and study the
core
» cut out as much complication as possible, without

losing the key parts that need formal study

» hope that insights gained about core will carry
back to full-sized language

The lambda calculus

» The essential core of a (functional)
programming language
» Developed by Alonzo Church in the 1930's
» Before computers were invented!
» Outline:

» Untyped: syntax, dynamic semantics, cool
properties

» Simply typed: static semantics, soundness, more
cool properties

» Polymorphic: fancier static semantics

Untyped 1-calculus: syntax

» (Abstract) syntax:

en=x variable
| 1x. e function/abstraction
(@fn x => e)
| e; e call/application

» Freely parenthesize in concrete syntax to imply
the right abstract syntax
» The trees described by this grammar are
called term trees

Free and bound variables

» 1x. ebinds xin e

» An occurrence of a variable xis free in
e if it's not bound by some enclosing
lambda

freeVars(x) '
freeVars(1x.) freeVars(e) — {x}
freeVars(e, e,) * freeVars(e,) " freeVars(e,)

2 eis closed iff freeVars(e) = {}

a-renaming

» First semantic property of lambda calculus:
bound variables in a term tree can be
renamed (properly) without affecting the
semantics of the term tree
» a-equivalent term trees

s (W Xox) L (WG X0 X5)
» cannot rename free variables

» term e eand all a-equivalent term trees
» Can freely rename bound vars whenever helpful

Evaluation: b-reduction

» Define what it means to "run" a lambda-calculus
program by giving simple
reduction/rewriting/simplification rules

- "e, fi, e, means
"e, evaluates to e, in one step"

» One case:

» (Ix. e) e, fi, [ele,

» "if you see a lambda applied to an argument expression,
rewrite it into the lambda body where all free occurrences of
the formal in the body have been replaced by the argument
expression"

» Can do this rewrite anywhere inside an expression

Examples

Substitution

» When doing substitution, must avoid
changing the meaning of a variable
occurrence

[xielx » e
[Miely "y ifx,y
[xi el(1x &) " (1x. &)
[€l(1y. &) » (1y. [€le) ifx, y
andy not free in e
[+ €l(e; &) » ([xi ele) ([xi €ley)
» can use a-renaming to ensure "y not free in €'

1

Result of reduction

2 To fully evaluate a lambda calculus
term, simply perform b-reduction until
you can't any more
. fi ,* ” reflexive, transitive closure of fi ,,

» When you can't any more, you have a
value, which is a normal form of the
input term

» Does every lambda-calculus term have a
normal form?

Reduction order

» Can have several lambdas applied to an
argument in one expression
» Each called a redex
» Therefore, several possible choices in
reduction
» Which to choose? Must we do them all?
» Does it matter?
. To the final result?

» To how long it takes to compute?
. To whether the result is computed at all?

13

Two reduction orders

» Normal-order reduction
(a.k.a. call-by-name, lazy evaluation)
» reduce leftmost, outermost redex

» Applicative-order reduction
(a.k.a. call-by-value, eager evaluation)

» reduce leftmost, outermost redex
whose argument is in normal form
(i.e., is a value)

Amazing fact #1:
Church-Rosser Theorem, Part 1

- Thm. If e,fi " e;and e,fi " e; then
$ e,such that e, fi " e,and e;fi " e,

» Corollary. Every term has a unique normal
form, if it has one

» No matter what reduction order is used!

Existence of normal forms?

» Does every term have a normal form?

» Consider: (1x. xX) (1y. vy))

Amazing fact #2:
Church-Rosser Theorem, Part 2

» If a term has a normal form, then
normal-order reduction will find it!
» Applicative-order reduction might not!

» Example:
» (X (1 X5) ((Ix x X) (Ix. x X))

17

Weak head normal form

» What should this evaluate to?
@y (1x xx) (1x x X))

» Normal-order and applicative-order evaluation run forever

» But in regular languages, wouldn't evaluate the function's
body until we called it

» "Head" normal form doesn't evaluate arguments until
function expression is a lambda

» "Weak" evaluation doesn't evaluate under lambda
» With these alternative definitions of reduction:
» Reduction terminates on more lambda terms
- |('Iorreks|%ond more closely to real languages (particularly
wea

Amazing fact #3:
1-calculus is Turing-complete!

» But the 1-calculus is too weak, right?
» No multiple arguments!
» No numbers or arithmetic!
» No booleans or if!
» No data structures!
» No loops or recursion!

19

Multiple arguments: currying

» Encode multiple arguments via curried
functions, just as in regular ML

1(xy, X5). e = 1x. (1xx € (7 1x, X5 €)
fe, €) = (fe) e,

Church numerals

» Encode natural numbers using stylized
lambda terms
zero" 1s8. 1z z
one" 18 1z2. sz
two” 1s.12. 5(52)

nrl1s1z 9z

» A unary encoding using functions
» No stranger than binary encoding

21

Arithmetic on Church numerals

» Successor function:
take (the encoding of) a number,
return (the encoding of) its successor

» Le., add an sto the argument's encoding
succ” 1n.1s. 1z s(ns2)

succ zerofi)
1s. 1z s(zeros2) fi '
1s.1z. sz = one

succ twofi
15 1z s(twos2) fi '
1s. 1z s(s(s2) = three

Addition

» To add xand y, apply succto y xtimes

» Key idea: xis a function that, given a function and
a base, applies the function to the base x times
» "a number is as a number does"
plus " 1x. 1y. x succ y

plus two threefi "
two succ threefi ,*
succ (succ three) = five

» Multiplication is repeated addition, similarly

23

Booleans

» Key idea: true and false are encoded
as functions that do different things to
their arguments, i.e., make a choice

if" 1b. 1t le. bte
true" 1t le. t
false " 1t le. e

If false four six fi
false four six fi ,*
Six

Combining numerals & booleans

» To complete Peano arithmetic, need an isZero
predicate
» Key idea: call the argument number on a successor function
that always returns false (not zero) and a base value that's
true (is zero)
isZero " 1n. n(1x. false) true

IisZero zerofi
zero (1x. false) truefi *
true
isZero twofi
two (1x. false) truefi *
(1x. false) ((1x. false) true) fi *
false

25

Data structures

» Try to encode simple pairs
» Can build more complex data structures out of them
n KeP/ idea: a pair is a function that remembers its two input
values, and passes them to a client function on deman
» First and second are client functions that just return one or the
other remembered value
mkPair” 1f. 1s. 1x. x fs
first” 1p. p(1£ 1s. f
second " 1p. p (1£. 15. 5)

second (mkPair true four) fi J*
second (1x. x true four) fi *
(1x. x true four) (1f 1s. s) i .*
(1£ 1s. 8) true fourfi ,*
four

Loops and recursion

» 1-calculus can write infinite loops
» Eg. (Ix xX) (1x xX)

» What about useful loops?
» Le., recursive functions?

» Ill-defined attempt:

fact” 1n.
if (isZero n) one (times n (fact (minus n one)))

» Recursive reference isn't defined in our simple
short-hand notation

» We're trying to define what recursion means!

27

Amazing fact #MV: Can define
recursive funs non-recursively!

» Step 1: replace the bogus self-reference with
an explicit argument
factG " 1f. 1n.
if (isZero n) one (times n (f(minus n one)))
» Step 2: use the paradoxical Y combinator
to "tie the knot"
fact " Y factG
» Now all we need is a magic Y'that makes its
non-recursive argument act like a recursive
function...

Y combinator

» A definition of Y
Yo 1f (L F(x X)) (Ix F(x X))
» When applied to a function £
Y Fii,
(Ix F(xx) (1x. F(xx) 1,

X F(xx) Ax F(x) = F(Y AL
FFYA) 5, FUF(F(YH)) iy o

~» Applies its argument to itself as many times as
desired

» "Computes" the fixed point of
. Often called fix

29

Y for factorial

fact two i |
(Y factG) twoti ,;
factG (Y factG) twofi *
if (isZero two) one
(times two ((Y factG) (minus two one))) fi .\
times two ((Y factG) one) fi .’
times two (factG (Y factG) one) fi '
times two (if (isZero one) one
(times one ((Y factG) (minus one one)))) fi ,*
times two (times one ((Y factG) zero)) fi "
times two (times one (factG (Y factG) zero)) i "
times two (times one (if (isZero zero) one
(times zero ((Y factG) (minus zero one))))) i ,*
times two (times one one) i " two

Some intuition (?)

» Y passes a recursive call of a function to the
function

» Will lead to infinite reduction, unless one
recursive call chooses to ignore its recursive
function argument

» L.e., have a base case that's not defined
recursively

» Relies on normal-order evaluation to avoid
evaluating the recursive call argument until
needed

31

Summary, so far

» Saw untyped 1-calculus syntax
» Saw some rewriting rules, which defined the
semantics of 1-terms
» a-renaming for changing bound variable names
» b-reduction for evaluating terms
. Normal form when no more evaluation possible
. Normal-order vs. applicative-order strategies
» Saw some amazing theorems
» Saw the power of 1-calculus to encode lots of
higher-level constructs

Simply-typed lambda calculus

» Now, let's add static type checking
» Extend syntax with types:
tii= i & |
ex=1lxte | x| ee,
» (The dot is just the base case for types,

to stop the recursion. Values of this type
will never be invoked, just passed around.)

33

Typing judgments

» Introduce a compact notation for
defining typechecking rules

- A typing judgment: c |e: ¢
= "In the typing context G, expression e has

type &

» A typing context: a mapping from
variables to their types
~Syntax: ¢u={} | ¢, x: ¢

Typing rules

» Give typechecking rule(s) for each kind of
expression

» Write as a logical inference rule
premise, ... premise, (n + 0)

conclusion

» Whenever all the premises are true, can deduce
that the conclusion is true

» If no premises, then called an "axiom"

» Each premise and conclusion has the form of
a typing judgment

35

Typing rules for
simply-typed 1-calculus

g xgleit
——————— [T-ABS]
¢l @xt 0:4fi &

— [T-VAR]
G} x:iex

cle:tit clers

[T-APP]
Gl(ee): e

Examples

37

Typing derivations

» To prove that a term has a type in
some typing context, chain together a
tree of instances of the typing rules,
leading back to axioms

. If can't make a derivation, then something
isn't true

Examples

39

Formalizing variable lookup

» What does c(x) mean?

» What if G includes several different
types for x?
G=X,)y,xfi , x,yfif
» Can this happen?
» If it can, what should it mean?
» Any of the types is OK?
» Just the leftmost? rightmost?
. None are OK?

40

An example

» What context is built in the typing
derivation for this expression?
xt. (Ix & X)

» What should the type of xin the body
be?

» How should c(x) be defined?

41

Formalizing using judgments

— [TVAR]
e xthx:ie

chxie x,y
[T-VAR-2]

eyl xie

» What about the ¢ = {} case?

42

Type-checking self-application

» What type should I give to xin this
term?

1x?. (xX)

» What type should I give to the fand Xs
in y?

Y 1£2. (Le?. F(x X)) (1x2. F(x X)

43

Amazing fact # /+1: All simply-
typed 1-calculus exprs terminate!

» Cannot express looping or recursion in
simply-typed 1-calculus
» Requires self-application, which requires recursive
types, which simply-typed 1-calculus doesn't have
» So all programs are guaranteed to never loop
or recur, and terminate in a finite number of
reduction steps!
» (Simply-typed 1-calculus could be a good basis for

programs that must be guaranteed to finish, e.g.
typecheckers, OS packet filters, ...)

Adding an explicit recursion
operator

» Several choices; here's one:
add an expression "fix €'
» Define its reduction rule:
fix efi , e(fix e
» Define its typing rule:
cle:et ¢
[T-FIX]
cf(fixe: ¢

45

Defining reduction precisely

» Use inference rules to define fi , redexes
precisely

[E-ABS] ———— [E-FIX]
(lxce e) e, fi, [ele fix efi , e(fix

e fi, e efi, &
[E-APP1] ———[E-APP2]

e e fi, 6 e e fi, e e

e fi, e

[E-BODY] optional
1xt e fi, 1xt e/

46

Formalizing evaluation order

» Can specify evaluation order by
identifying which computations have
been fully evaluated (have no redexes
left), i.e., values v

» one option:
vi=1lxt e

» another option:
vi=1lxt v

» what's the difference?

47

Example: call-by-value rules

vi=1lxt e
————[E-ABS] ——— [E-FIX]
(Ixee) v, fi, [vje fix vii | v(fix v)
e fi, e efi, &
[E-APP1] ———[E-APP2]

e e fi, 6 v,e fi, v;e

48

Type soundness

» What's the point of a static type system?
» Identify inconsistencies in programs
. Early reporting of possible bugs
» Document (one aspect of) interfaces precisely
» Provide info for more efficient compilation
» Most assume that type system "agrees with"
evaluation semantics, i.e., is sound

. Two parts to type soundness:
preservation and progress

49

Preservation

» Type preservation: if an expression has
a type, and that expression reduces to
another expression/value, then that
other expression/value has the same
type
~Ifc }e: tand efi, e thenc fe’: ¢

» Implies that types correctly "abstract"
evaluation, i.e., describe what
evaluation will produce

Progress

2 If an expression successfully
typechecks, then either the expression
is a value, or evaluation can take a step
. Ifc fe: ttheneisa vor se'st. efi, e

» Implies that static typechecking
guarantees successful evaluation
without getting stuck
» "well-typed programs don't go wrong"

51

Soundness

» Soundness = preservation + progress
. Ifc fe: ¢ then eisa vor
se'st. efi,e'andc fe': ¢
. preservation sets up progress,
progress sets up preservation

» Soundness ensures a very strong match
between evaluation and typechecking

Other ways to formalize
semantics

» We've seen evaluation formalized using
small-step (structural) operational
semantics

» An alternative: big step (natural)
operational semantics

. Judgments of the form e U v
. "Expression e evaluates fully to value v'

53

Big-step call-by-value rules

— [E-ABS]
(xe el (xee

elxee elv, (xvielyv

[E-APP]
(e;e)bv

el (xe o (D (fix (e e))e) U v

(fixe) U v

» Simpler, fewer tedious rules than small-step; "natural"
» Cannot easily prove soundness for non-terminating programs
» Typing judgments are "big step"; why?

Yet another variation

» Real machines and interpreters don't do
substitution of values for variables when
calling functions
» Expensive!

» Instead, they maintain environments
mapping variables to their values
» A.k.a. stack frames

» We can formalize this

» For big step, judgments of the form r |-e Uv
where ris a list of x=v bindings
. "In environment r, expr. e evaluates fully to value V'

55

Explicit environment rules

- [EBS
rbaxe ol @xee

rlel(xee) rlelv, nx=v,felv

[E-APP]
rHee)lv

rlel(xe e rx=(fix (Lxt €) fel v

E-FIX
rh(fixe) v : :

= Problems handling fix, since need to delay evaluation
of recursive call

» Wrong! specifies dynamic scoping!

Explicit environments with
closure values

vi=<lxt g r>

- [EBY
rbaxe e l<(xe e), r>

rlel<xee)r> rlelv, rax=v,felv

[E-APP]
rHee)ly
» Does static scoping, as desired
» Allows formal reasoning about explicit environments
» We found a bug in implementation of substitution via environments
» Makes proofs much more complicated

57

Other semantic frameworks

» We've seen several examples of operational
semantics
» Like specifying an interpreter, or a virtual machine
» An alternative: denotational semantics
» Specifies the meaning of a term via transiation into another
(well-specified) language, usually mathematical functions
. Like specifying a compiler!
» More "abstract" than operational semantics
= Another alternative: axiomatic semantics

» Specifies the result of expressions and effect of statements
on properties known before and after

» Suitable for formal verification proofs

Richer languages

» To gain experience formalizing
language constructs, consider:
» ints, bools
- let
- records
» tagged unions
» recursive types, e.qg. lists
» mutable refs

59

Basic types

» Enrich syntax:

t::=..|int| bool
e:=..10]..| true | false
| e, + e ..
| if e, then e, else e;
vi=..|0]..| true | false

60

10

Add evaluation rules

E.g., using big-step operational semantics

[E-VAL] (generalizes E-ABS)
viv
elv, elv, vvinint v=v+v,
[E-PLUS]
(e +e)lv
e, U true elv,

[E-IF-true]
(if e, then e, else &) U v,

e, false el

[E-IF-false]
(if e, then e, else &) U v,

If no old rules need to be changed, then orthogonal
+ and if might not always reduce; evaluation can get stuck

61

Let

e:i= .. |letx=e;ine,

el (Idi vie) U v,

[E-LET]

(let x=¢,in &) U v,

cle:y cxglers

[T-LET]
a} (letx=g;ine): &,

63

Evaluation and typing

e lv,

e, v,

[E-RECORD]
{n=ey ... n=e} b{n=v,

R A

e U {/71= I/II ey n/7= Vn}
[E-PROJ]

#nelv,

cbery .o cf

0

[T-RECORD]
G} {n=ey .. n=e}:{nig,

e N6
G} e:{nsty .., ngit,

[T-PROJ]
G| #ne: g

65

Add typing rules

— [TINT]
cbo:int

—— [T-TRUE]
G } true : bool

cherint Gl oe:int
[T-PLUS]

et (e+ e):int

Gl e:bool cle:e clept

[T-IF]
G | (if e;then e, then e)) : ¢

» Type soundness: if etypechecks, then can't get stuck

62

Records

» Syntax:

en= | {nst, ., 0ty
el = .. | {/71=eﬂ Y’ nn=en} | #ne
Vii= .. | {/71= Vi ooy N= Vn}

Tagged unions

» A union of several cases, each of which has a tag
» Type-safe: cannot misinterpret value under tag
: L <nity . nye>

=

ein=...|<n=e>
| case eof <nz=x;>=> ;... <n=x,> => ¢,
vi=..|<n=v>
» Example:

val u:<a:int, b:bool> =

if ... then <a=3> else <b=true>
case u of

<asj> =>j+4
<b=t> => if t then 8 else 9

66

11

Evaluation and typing

elv
[E-UNION]
<m=e> | <n=v>

elb<n=v> (i vile)bv

[E-CASE]
(case eof <n=x;>=>e;.. <n=x>=>e) b v

clery
———————————— [T-UNION]
G} <n=e>:<nity ., nit>

ctoe:<nity .., nit>
exit b eie .. exit bet

[T-CASE]
G | (case eof <n=xp=>e;.. <nz=x>=>€): t

» Where get the full type of the union in T-UNION?

67

Lists

» Use tagged unions to define lists:
int_list # <nil: unit, cons: {hd:int, tl:int_list}>

» But int_list is defined recursively

» As with recursive function definitions, need
to carefully define what this means

68

Recursive types

» Introduce a recursive type: mX. ¢
» tcan refer to X'to mean the whole type,
recursively
int_list ” mL.<nil: unit, cons: {hd:int, tl:L}>
» This type means the infinite tree of "unfoldings" of
the recursive reference
» If £contains a union type with non-recursive cases
(base cases for the recursively defined type), then
can have finite values of this "infinite" type
<nil=()>
<cons={hd=3, tl=<nil=()>}>
<cons={hd=3, tl=<cons={hd=4, tl=<nil=()>}>}>

69

Folding and unfolding

» What values have recursive types?
What can we do with a value of recursive type?

» Can take a value of the body of the recursive type, and
"fold" it up to make a recursive type

int_list # mL.<nil: unit, cons: {hd:int, tl:L}>
<nil=()> : <nil: unit, cons: {hd:int, tl:int_list}>
fold <nil=()> : int_list

» Can "unfold" it to do the reverse
. Exposes the underlying type, so operations on it typecheck

» Can introduce fold & unfold expressions, or can make
when to do folding & unfolding implicit

Typing of fold and unfold

G| oe: [Mi (X9l
—— X [T-FOLD]
a | (fold e): mX. ¢

clermXxe

[T-UNFOLD]
G } (unfold e) : [Xi (mX.O]¢

» Evaluation ignores fold & unfold

71

Using recursive values and types

» double: double all elems of an int_list
int_list # mL.<nil: unit, cons: {hd:int, tl:L}>
double ~ fix (1double:(int_listfi int_list).

1lst:int_list.
case (unfold Ist) of
<nil=x> => fold <nil=()>
<cons=r> =>
fold <cons={hd=(#hd r) + (#hd r),
tl=double (#tl r)}>)

12

References and mutable state

» Syntax:

tu= .| eref
.. |refe|lele:=¢g
vi=..|refv
- Typing:
be:e
——————[T-REF]
G | (refe): eref
G| e:eref
——— [T-DEREF]
chte:e

cletref clee
- [T-ASSIGN]
G} (e:=e): unit

73

Evaluation of references

elv
— [EREF
(ref &) U (ref v)

el (ref v)
[E-DEREF]
telv

e U(refv) el

[E-ASSIGN]
(e;:= &) U unit

» But where'd the assignment go?

Example

(letr=refQin (letx = (r:=2)in (! r)))

75

Stores

» Introduce a store s to keep track of the
contents of references
» A map from /ocations to values

- "ref € allocates a new location and initializes it with (the
result of evaluating) e

"I €' looks up the contents of the location (resulting from
evaluating) ein the store

"e, 1= e," updates the location (resultinf; from
evaluating) e, to hold (the result of evaluating) e,
returning the updated store

» Evaluation now passes along the current
store in which to evaluate expressions
. Big-step judgments of the form <gs> U <y;s'>

5

5

Big-step semantics with stores

[E-VAL]
<ys> U <ys>

<e,s> U <(lxe €),s'>
<gys'> U <y,s">
<([di vjle),s"> U <y,s™>

[E-APP]
<(e; &),> U <ys™>

77

Semantics of references

» Add locations 1as a new kind of value (not "ref V')
vi=..|1
» New semantics
<gs> U <ys'> 17 dom(s) s"=s[H 1

[E-REF]
<(ref €),s> U <1s">

<gs> U <is'> v=¢'()
— [E-DEREF]
<(! e),s> U <ys'>

<e,s> U <1s'> <eys> U <y,s"> s"=s"[H v)

[E-ASSIGN]
<(e;:= ey),s> U <unit,s">

13

Example again

(letr=refOin (letx = (r:=2)in (! r)))

79

Summary, so far

» Now have also seen simply typed 1-calculus
» Saw inference rules, derivations
» Saw several ways to formalize operational
semantics and typing rules
» Saw many extensions to this core language
» Typical of how real PL theorists work
» Usually orthogonal to underlying semantics
» References required redoing underlying semantics
» Would you want to use this language?
» If it had suitable syntactic sugar?

Polymorphic types

» Simply typed 1-calculus is "simply typed", i.e.,
it has no polymorphic or parameterized types
» "Good" programming languages have
polymorphic types
» And there are tricky issues relating to polymorphic
types
» So we'd like to capture the essense of
polymorphic types in our calculus
» So we'll really understand it

81

Polymorphic 1-calculus

» Also known as System F
» Extend type syntax with a forall type
tu= L X el X
» Now can write down the types of
polymorphic values
id v "T.THT
map " "'a. "'b. ("afi 'b)fi 'a listfi 'b list
nil " "T.T list

Values of polymorphic type

» Introduce explicit notation for values of
polymorphic type and their instantiations
» A polymorphic value: LX. e

. LX eis a function that, given a type ¢ gives back e with
tsubstituted for X

» Use such values by instantiating them: € 4
. €4 is like function application

» Syntax:
ex=..|LXe|ldd
vi=..|LX e

83

An example

(*funidx=x; id: a->a*)
id " L'a. 1xi'a. X
rna afia

idlint] 3 i,
(1x:int. x) 3 fi
3

id[bool] fi ,
1x:bool. x

14

Another example

(* fun doTwice f x = f (f x);
doTwice: (a->a)->a->a*)
doTwice " L'a.1f:'afi 'a. 1x:'a. f (f x)
s g, (afi a)fi afi a

doTwice [int] succ 3 fi
(1f:intfi int. 1x:int. f (f x)) succ 3 fi .*
succ (succ 3) fi
3

85

Yet another example

map " L'a.L'b. fix (Lmap:(‘afi 'b)fi 'a listfi 'b list.
1f:'afi 'b. 1lst:'a list.
fold (case (unfold Ist) of
<nil=n> => <nil=()>
<cons=r> => <cons={hd=f (#hd r),
tl=map f (#tl r)}>))
sra b (afi ‘b)i alistd b list

map [int] [bool] isZero [3,0,5] fi ,* [false,true,false]

» ML infers what the L. 7and [£] should be

A final example

(* fun cool f = (f 3, f true) *)
cool " 1f:(L'a. 'afi 'a). (f[int] 3, f [bool] true)
r (L a. ‘afi a)fi (int * bool)

cool idti
(id[int] 3, id [bool] true) fi "
((1x:int. x) 3, (1x:bool. x) true) fi "
(3, true)

» Note: L inside of 1 and fi
» Can't write this in ML; not "prenex" form

87

Evaluation and typing rules

» Evaluation:
el @wXxe) (XMde)lv

(daplv

[E-INST]

» Typing:
G Xitype | e: ¢
- [TPOLY]
cl@Xxe:"Xe

clernxe

———[TINST]
G b (de): [ge

Different kinds of functions

» 1X eis a function from valuesto values
» LX eis a function from fypesto values

» What about functions from fypesto types?
» Type constructors like fi , list, BTree
. We want them!
» What about functions from values to types?

» Dependent types like the type of arrays of
length n, where n is a run-time computed value
- Pretty fancy, but would be very cool

89

Type constructors

» What's the "type" of /is®?
» Not a simple type, but a function from types to
types
- e.g. list(int) = int_list
» There are lots of type constructors that take a
single type and return a type
» They all have the same "meta-type"
» Other things take two types and return a type
(e.g. fi , assoc_list)

» A "meta-type" is called a kind

15

Kinds

» A type describes a set of values or value constructors
(a.k.a. functions) with a common structure
tu=int| gfi & ..
» A kind describes a set of types or type constructors
with a common structure
ku=type | k= k,
» Write £:: kto say that a type thas kind x
int :: type
intfi int :: type
list :: type = type
list int :: type
assoc_list :: type = type = type
assoc_list string int :: type

91

Kinded polymorphic 1-calculus

= Also called System F,

» Full syntax:
ku=type | k= k&,
tu=int| i & "Xk e X| Wik t| & &
en=1lxcte|x|ee|LXike| dd
vi=1lx e|LX:k e
» Functions and applications at both the
value and the type level

» Arrows at both the type and kind level

Examples

pair "
1'a::type. 1'b::type. {first:'a, second:'b}
:: type = type = type

pairint bool "fi " {first:int, second:bool}
{first=5, second=true} : pairint bool
swap "
L'a:type. L'b::type.
1p:pair 'a'b.
{first=#second p, second=#first p}
: "'autype. 'b::type. (pair 'a'b) fi (pair 'b 'a)

93

Expression typing rules

al gutype 6 xgf et

[T-ABS]
¢l xe 94t 6

G X:kb et
- [TPOWY]
G b @Xike: "Xk ¢
clernXrte cb ek

G} (dd): [ge

[T-INST]

(T-VAR and T-APP unchanged)

Type kinding rules

G} gutype ¢} grtype
— [KINT] [K-ARROW]
G | int:: type e b (41 &):type

G, Xk | e type

————— [K-FORALL] ————— [K-VAR]
G} ("Xik o) i type ek Xia
G Xk ok, Gl gukti k GF ik,
[K-ABS] [K-APP]
G b Xk, kgt &y btk

95

Summary

» Saw ever more powerful static type systems
for the 1-calculus
» Simply typed 1-calculus
» Polymorphic 1-calculus, a.k.a. System F
» Kinded poly. 1-calculus, a.k.a. System F,

» Exponential ramp-up in power, once build up
sufficient critical mass

» Real languages typically offer some of this
power, but in restricted ways
» Could benefit from more expressive approaches

16

Other uses

» Compiler internal representations for
advanced languages

» E.g. FLINT: compiles ML, Java, ...

» Checkers for interesting non-type
properties, e.g.:
» proper initialization
» static null pointer dereference checking
» safe explicit memory management
» thread safety, data-race freedom

97

17

