
1

1

Formal Semantics

2

Why formalize?
! ML is tricky, particularly in corner cases

! generalizable type variables?
! polymorphic references?
! exceptions?

! Some things are often overlooked for any language
! evaluation order? side-effects? errors?

! Therefore, want to formalize what a language's
definition really is
! Ideally, a clear & unambiguous way to define a language
! Programmers & compiler writers can agree on what's

supposed to happen, for all programs
! Can try to prove rigorously that the language designer got

all the corner cases right

3

Aspects to formalize
! Syntax: what's a syntactically well-formed program?

! EBNF notation for a context-free grammar
! Static semantics: which syntactically well-formed

programs are semantically well-formed? which
programs type-check?
! typing rules, well-formedness judgments

! Dynamic semantics: what does a program
evaluate to or do when it runs?
! operational, denotational, or axiomatic semantics

! Metatheory: properties of the formalization itself
! E.g. do the static and dynamic semantics match? i.e.,

is the static semantics sound w.r.t. the dynamic semantics?

4

Approach
! Formalizing full-sized languages is very hard,

tedious
! many cases to consider
! lots of interacting features

! Better: boil full-sized language down into
essential core, then formalize and study the
core
! cut out as much complication as possible, without

losing the key parts that need formal study
! hope that insights gained about core will carry

back to full-sized language

5

The lambda calculus
! The essential core of a (functional)

programming language
! The tiniest Turing-complete programming

language

! Outline:
! Untyped: syntax, dynamic semantics, cool

properties
! Simply typed: static semantics, soundness, more

cool properties
! Polymorphic: fancier static semantics

6

Untyped λ-calculus: syntax
! (Abstract) syntax:

e ::= x variable
| λx. e function/abstraction

(≅ fn x => e)
| e1 e2 call/application

! Freely parenthesize in concrete syntax to imply
the right abstract syntax

! The trees described by this grammar are
called term trees

2

7

Free and bound variables
! λx. e binds x in e
! An occurrence of a variable x is free in

e if it's not bound by some enclosing
lambda

freeVars(x) ≡ x
freeVars(λx. e) ≡ freeVars(e) � {x}
freeVars(e1 e2) ≡ freeVars(e1) ∪ freeVars(e2)

! e is closed iff freeVars(e) = {}

8

α-renaming
! First semantic property of lambda calculus:

bound variables in a term tree can be
renamed (properly) without affecting the
semantics of the term tree
! α-equivalent term trees

! (λx1. x2 x1) ⇔α (λx3. x2 x3)

! cannot rename free variables

! term e: e and all α-equivalent term trees
! Can freely rename bound vars whenever helpful

9

Evaluation: β-reduction
! Define what it means to "run" a lambda-

calculus program by giving simple
reduction/rewriting/simplification rules
! "e1 →β e2" means

"e1 evaluates to e2 in one step"
! One case:

! (λx. e1) e2 →β [x→e2]e1
! "if you see a lambda applied to an argument

expression, rewrite it into the lambda body where
all free occurrences of the formal in the body have
been replaced by the argument expression"

10

Examples

11

Substitution
! When doing substitution, must avoid

changing the meaning of a variable
occurrence

[x→e]x ≡ e
[x→e]y ≡ y, if x ≠ y
[x→e](λx. e2) ≡ (λx. e2)
[x→e](λy. e2) ≡ (λy. [x→e]e2), if x ≠ y

andy not free in e
[x→e](e1 e2) ≡ ([x→e]e1) ([x→e]e2)

! use α-renaming to ensure "y not free in e"

12

Result of reduction
! To fully evaluate a lambda calculus term, i.e.,

to determine the meaning of a term, simply
perform β-reduction until you can't any more
! →β

* ≡ reflexive, transitive closure of →β

! When you can't any more, you have a value,
which is a normal form of the input term
! Does every lambda-calculus term have a normal

form?

3

13

Reduction order
! Can have several lambdas applied to an

argument in one expression
! Each called a redex

! Therefore, several possible choices in
reduction
! Which to choose?
! Does it matter?

! To the final result?
! To how long it takes to compute?
! To whether the result is computed at all?

14

Two reduction orders
! Normal-order reduction

(a.k.a. call-by-name, lazy evaluation)
! reduce leftmost, outermost redex

! Applicative-order reduction
(a.k.a. call-by-value, eager evaluation)
! reduce leftmost, outermost redex

whose argument is in normal form

15

Amazing fact #1:
Church-Rosser Theorem, Part 1

! Thm. If e1 →β
* e2 and e1 →β

* e3, then
∃ e4 such that e2 →β

* e4 and e3 →β
* e4

! Corollary. Every term has a unique
normal form, if it has one
! No matter what reduction order is used!
! Wow!

16

Existence of normal forms?
! Does every term have a normal form?

! Consider: (λx. x x) (λx. x x)

17

Amazing fact #2:
Church-Rosser Theorem, Part 2

! If a term has a normal form, then
normal-order reduction will find it!
! Applicative-order reduction might not!

! Example:
! (λx1. (λx2. x2)) ((λx. x x) (λx. x x))

