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Formal Semantics

2

Why formalize?
! ML is tricky, particularly in corner cases

! generalizable type variables?
! polymorphic references?
! exceptions?

! Some things are often overlooked for any language
! evaluation order? side-effects? errors?

! Therefore, want to formalize what a language's 
definition really is
! Ideally, a clear & unambiguous way to define a language
! Programmers & compiler writers can agree on what's 

supposed to happen, for all programs
! Can try to prove rigorously that the language designer got 

all the corner cases right
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Aspects to formalize
! Syntax: what's a syntactically well-formed program?

! EBNF notation for a context-free grammar
! Static semantics: which syntactically well-formed 

programs are semantically well-formed? which 
programs type-check?
! typing rules, well-formedness judgments

! Dynamic semantics: what does a program 
evaluate to or do when it runs?
! operational, denotational, or axiomatic semantics

! Metatheory: properties of the formalization itself
! E.g. do the static and dynamic semantics match? i.e.,

is the static semantics sound w.r.t. the dynamic semantics?
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Approach
! Formalizing full-sized languages is very hard, 

tedious
! many cases to consider
! lots of interacting features

! Better: boil full-sized language down into 
essential core, then formalize and study the 
core
! cut out as much complication as possible, without 

losing the key parts that need formal study
! hope that insights gained about core will carry 

back to full-sized language 
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The lambda calculus
! The essential core of a (functional) 

programming language
! The tiniest Turing-complete programming 

language

! Outline:
! Untyped: syntax, dynamic semantics, cool 

properties
! Simply typed: static semantics, soundness, more 

cool properties
! Polymorphic: fancier static semantics

6

Untyped λ-calculus: syntax
! (Abstract) syntax:

e ::= x variable
| λx. e function/abstraction

(≅ fn x => e)
| e1 e2 call/application

! Freely parenthesize in concrete syntax to imply 
the right abstract syntax

! The trees described by this grammar are 
called term trees
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Free and bound variables
! λx. e binds x in e
! An occurrence of a variable x is free in 

e if it's not bound by some enclosing 
lambda

freeVars(x) ≡ x
freeVars(λx. e) ≡ freeVars(e) � {x}
freeVars(e1 e2) ≡ freeVars(e1) ∪ freeVars(e2)

! e is closed iff freeVars(e) = {}
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α-renaming
! First semantic property of lambda calculus: 

bound variables in a term tree can be 
renamed (properly) without affecting the 
semantics of the term tree
! α-equivalent term trees

! (λx1. x2 x1) ⇔α (λx3. x2 x3)

! cannot rename free variables

! term e: e and all α-equivalent term trees
! Can freely rename bound vars whenever helpful

9

Evaluation: β-reduction
! Define what it means to "run" a lambda-

calculus program by giving simple 
reduction/rewriting/simplification rules
! "e1 →β e2" means

"e1 evaluates to e2 in one step"
! One case:

! (λx. e1) e2 →β [x→e2]e1
! "if you see a lambda applied to an argument 

expression, rewrite it into the lambda body where 
all free occurrences of the formal in the body have 
been replaced by the argument expression"
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Examples
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Substitution
! When doing substitution, must avoid 

changing the meaning of a variable 
occurrence

[x→e]x ≡ e
[x→e]y ≡ y, if x ≠ y
[x→e](λx. e2)  ≡ (λx. e2)
[x→e](λy. e2)  ≡ (λy. [x→e]e2), if x ≠ y

andy not free in e
[x→e](e1 e2)  ≡ ([x→e]e1) ([x→e]e2)

! use α-renaming to ensure "y not free in e"

12

Result of reduction
! To fully evaluate a lambda calculus term, i.e., 

to determine the meaning of a term, simply 
perform β-reduction until you can't any more
! →β

* ≡ reflexive, transitive closure of →β

! When you can't any more, you have a value, 
which is a normal form of the input term
! Does every lambda-calculus term have a normal 

form?
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Reduction order
! Can have several lambdas applied to an 

argument in one expression
! Each called a redex

! Therefore, several possible choices in 
reduction
! Which to choose?
! Does it matter?

! To the final result?
! To how long it takes to compute?
! To whether the result is computed at all?
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Two reduction orders
! Normal-order reduction

(a.k.a. call-by-name, lazy evaluation)
! reduce leftmost, outermost redex

! Applicative-order reduction
(a.k.a. call-by-value, eager evaluation)
! reduce leftmost, outermost redex

whose argument is in normal form
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Amazing fact #1:
Church-Rosser Theorem, Part 1

! Thm. If e1 →β
* e2 and e1 →β

* e3, then
∃ e4 such that e2 →β

* e4 and e3 →β
* e4

! Corollary. Every term has a unique 
normal form, if it has one
! No matter what reduction order is used!
! Wow!
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Existence of normal forms?
! Does every term have a normal form?

! Consider:  (λx. x x) (λx. x x)
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Amazing fact #2:
Church-Rosser Theorem, Part 2

! If a term has a normal form, then 
normal-order reduction will find it!
! Applicative-order reduction might not!

! Example:
! (λx1. (λx2. x2)) ((λx. x x) (λx. x x))


