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An extended example:
binary trees
! Stores elements in sorted order

! enables faster membership testing, printing 
out in sorted order

datatype 'a BTree =

EmptyBTree

| BTNode of 'a * 'a BTree * 'a BTree
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Some functions on binary trees
fun insert(x, EmptyBTree) =

BTNode(x, EmptyBTree, EmptyBTree)

| insert(x, n as BTNode(y,t1,t2)) =

if x = y then n

else if x < y then

BTNode(y, insert(x, t1), t2)

else BTNode(y, t1, insert(x, t2))

fun member(x, EmptyBTree) = false

| member(x, BTNode(y,t1,t2)) =

if x = y then true

else if x < y then member(x, t1)

else member(x, t2)

! What are the types of these functions?
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First-class functions
! Can make code more reusable by parameterizing it by functions

as well as values and types
! Simple technique: treat functions as first-class values

! function values can be created, used, passed around, bound to 
names, stored in other data structures, etc., just like all other ML 
values

- fun int_lt(x:int, y:int) = x < y;
val int_lt = fn : int * int -> bool

- int_lt(3,4);
val it = true : bool

- val f = int_lt;
val f = fn : int * int -> bool

- f(3,4);
val it = true : bool
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Passing functions to functions
! A function can often be made more flexible if takes another function as 

an argument
! Example:

! parameterize binary tree insert & member functions by the = and <
comparisons to use

! parameterize the quicksort algorithm by the < comparison to use
! parameterize a list search function by the pattern being searched for

(* find(test_fn:'a -> bool, lst:'a list):'a *)
- exception NotFound;
- fun find(test_fn, nil) = raise NotFound

| find(test_fn, elem::elems) =
if test_fn(elem) then elem else find(test_fn, elems);

val find = fn : ('a -> bool) * 'a list -> 'a

- fun is_good_grade(g) = g >= 90;
val is_good_grade = fn : int -> bool
- find(is_good_grade, [85,72,92,98,84]);
val it = 92 : int
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Binary tree functions, revisited
- fun insert(x, EmptyBTree, eq, lt) =

BTNode(x, EmptyBTree, EmptyBTree)
| insert(x, n as BTNode(y,t1,t2), eq, lt) =

if eq(x,y) then n
else if lt(x,y) then

BTNode(y, insert(x, t1, eq, lt), t2)
else

BTNode(y, t1, insert(x, t2, eq, lt))
val insert = fn : 'a * 'a BTree *

('a * 'a -> bool) *
('a * 'a -> bool) -> 'a BTree

- fun member(x, EmptyBTree, eq, lt) = false
| member(x, BTNode(y,t1,t2), eq, lt) =

if eq(x,y) then true
else if lt(x,y) then member(x, t1, eq, lt)
else member(x, t2, eq, lt)

val member = fn : 'a * 'a BTree *
('a * 'a -> bool) *
('a * 'a -> bool) -> bool
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Calling binary tree functions
- val t = insert(5, EmptyBTree, op=, op<);
val t = BTNode (5,EmptyBTree,EmptyBTree)

: int BTree
- val t = insert(2, t, op=, op<);
- val t = insert(3, t, op=, op<);
- val t = insert(7, t, op=, op<);
- member(2, t, op=, op<);
val it = true : bool
- member(4, t, op=, op<);
val it = false : bool

- ... definitions of person type, person_eq and 
person_lt functions, and p1 value

- val pt = insert(p1, EmptyBTree,
person_eq, person_lt);

val pt = ... : person BTree



2

7

Storing functions in data 
structures
! It�s a pain to keep passing around the eq and lt functions to all calls 

of insert and member
! It�s unreliable to depend on clients to pass in the right functions

! Idea: store the functions in the tree itself
local

datatype 'a BT = EmptyBT | BTNode of 'a * 'a BT * 'a BT
fun ins(x, tree, eq, lt) = ... previous insert ...
fun mbr(x, tree, eq, lt) = ... previous member ...

in
datatype 'a BTree = BTree of {tree:'a BT,

eq:'a * 'a -> bool,
lt:'a * 'a -> bool}

fun emptyBTree(eq,lt) =
BTree{tree=EmptyBT, eq=eq, lt=lt}

fun insert(x, BTree{tree, eq, lt}) =
BTree{tree=ins(x, tree, eq, lt), eq=eq, lt=lt}

fun member(x, BTree{tree, eq, lt}) =
mbr(x, tree, eq, lt)

end

! Records containing functions are ML�s version of objects!
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A common pattern: map
! Pattern: take a list and produce a new list, where each element of the 

output is calculated from the corresponding element of the input

! map captures this pattern
map: ('a -> 'b) * 'a list -> 'b list

! [not quite the type of ML�s predefined map; stay tuned]

! Example:
! have a list of fahrenheit temperatures for Seattle days
! want to give a list of temps to friend in England

- fun f2c(f_temp) = (f_temp - 32.0) * 5.0/9.0;
val f2c = fn : real -> real

- val f_temps = [56.4, 72.2, 68.4, 78.4, 45.0];
val f_temps = [56.4,72.2,68.4,78.4,45.0] : real list

- val c_temps = map(f2c, f_temps);
val c_temps = [13.556,22.333,20.222,25.778,7.222] : real list
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Another common pattern: filter
! Pattern: take a list and produce a new list of all the elements of 

the first list that pass some test (a predicate)

! filter captures this pattern
filter: ('a -> bool) * 'a list -> 'a list

! [not quite the type of ML�s predefined filter; stay tuned]

! Example:
! have a list of day temps
! want a list of nice days

- fun is_nice_day(temp) = temp >= 70.0;
val is_nice_day = fn : real -> bool

- val nice_days = filter(is_nice_day, f_temps);
val nice_days = [72.2,78.4] : real list
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Another common pattern: find
! Pattern: take a list and return the first element that 

passes some test, raising an exception if no element 
passes the test

! find captures this pattern
find: ('a -> bool) * 'a list -> 'a
exception NotFound

! [not quite the type of ML�s predefined find; stay tuned]

! Example: find first nice day

- val a_nice_day = find(is_nice_day, f_temps);
a_nice_day = 72.2 : real
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Anonymous functions
! Map functions and predicate functions often pretty simple, only 

used as argument to map, etc.;
! don�t merit their own name

! Can directly write anonymous function expressions:
fn patternformal => exprbody

! Examples:
- fn(x)=> x + 1;
val it = fn : int -> int
- (fn(x)=> x + 1)(8);
val it = 9 : int

- map(fn(f)=> (f - 32.0) * 5.0/9.0, f_temps);
val it = [13.556,...] : real list

- filter(fn(t)=> t < 60.0, f_temps);
val it = [56.4,45.0] : real list
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Fun vs. fn
! fn expressions are a primitive notion
! val declarations are a primitive notion
! fun declarations are just a convenient syntax for val + fn

fun f arg = expr

! is syntactic sugar for
val rec f = (fn arg => expr)

fun succ(x) = x + 1

! is syntactic sugar for
val rec succ = (fn(x) => x + 1)

! Explains why the type of a fun declaration prints like a val declaration 
with a fn value

val succ = fn : int -> int

! Attributes of good design:
! orthogonality of primitives
! syntactic sugar for common combinations
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Nested functions
! An example:

- fun good_days(good_temp:real,
temps:real list):real list =

filter(fn(temp)=> temp >= good_temp, temps);
val good_days = fn : real * real list -> real list

(* good days in Seattle: *)
- good_days(70.0, f_temps)
val it = [72.2,78.4] : real list

(* good days in Fairbanks: *)
- good_days(32.0, f_temps)
val it = [56.4,72.2,68.4,78.4,45.0] : real list

! What�s interesting about the anonymous function expression
fn(temp)=> temp >= good_temp ?

14

Nested functions and scoping
! If functions can be written nested within other functions 

(whether named in a let expression, or anonymous) then can 
reference local variables in enclosing function scope
! Variables declared outside a scope are called free variables

! Makes nested functions a lot more useful in practice
! More than just hiding helper functions

! Beyond what can be done with function pointers in C/C++
! C functions only have globals as free variables

! Akin to inner classes in Java
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Returning functions from 
functions
! If functions are first-class, then should be able to create and return 

them
! Example: function composition

- fun compose(f,g) = (fn(x) => f(g(x)));
val compose = fn : (’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

- fun square(x) = x*x;
val square = fn : int -> int
- fun double(y) = y+y;
val double = fn : int -> int

- val double_square = compose(double, square);
val double_square = fn : int -> int
- double_square(3);
val it = 18 : int
- (compose(square,double))(3);
val it = 36 : int

! The infix o operator is ML�s predefined compose:
- map(square o double, [3,4,5]);
val it = [36,64,100] : int list
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Currying
! A curried function takes some arguments and then computes & 

returns a function which takes additional arguments
! The result function can be applied to many different arguments, 

without having to pass in the first arguments again
! Example: a curried version of map:

- fun map(f) =
(fn(nil)   => nil
|(x::xs) => f(x)::map(f)(xs));

val map = fn : ('a->'b) -> 'a list -> 'b list

- map(square)([3,4,5]);
val it = [9,16,25] : int list

- val squares = map(square);  (* "partial application" *)
val squares = fn : int list -> int list
- squares([3,4,5]);
val it = [9,16,25] : int list
- squares([9,10]);
val it = [81,100] : int list

17

Clean syntactic sugar for currying
! Allow multiple formal argument patterns ⇒ curried function
! Application ("function calling") written without parentheses

! juxtaposition associates left-to-right; higher precedence than infix operators
! Function type (->) associates right-to-left; lower precedence than e.g. *, list

- fun map f nil = nil
| map f (x::xs) = f x :: map f xs;         (* parenthesization? *)

val map = fn : ('a->'b) -> 'a list -> 'b list (* parenthesization? *)

- fun filter pred nil = nil
| filter pred (x::xs) =

let val rest = filter pred xs in
if pred x then x::rest else rest end;

val filter = fn : ('a->bool) -> 'a list -> 'a list

- fun find pred nil = raise NotFound
| find pred (x::xs) =

if pred x then x else find pred xs;
val find = fn : ('a->bool) -> 'a list -> 'a

! Curried is the normal way to define ML functions
! syntactically cleaner
! semantically more flexible

! ML�s predefined map, filter, and find are defined like this
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First-class functions and scoping
! Lexical scoping is interesting if returning a function with free

variables
! how to remember bindings of free variables?

- fun compose(f,g) = (fn(x) => f(g(x)));
val compose = fn : (’a -> ’b) * (’b -> ’c) -> ’a -> ’c

- val double_square = compose(double, square);
- val square_double = compose(square, double);

- double_square(3);
val it = 18 : int
- square_double(3);
val it = 36 : int

! How are these two calls distinguished?
Where do bindings for f and g come from?
! All curried functions have free variables like this
! Many anonymous fn args (to map et al.) have free variables
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Closures
! To support lexically nested procedures which 

can be returned out of their enclosing scope, 
must represent as a closure: a pair of code 
address and an environment
! environment records bindings of free variables
! closure no longer dependent on enclosing scope
! pair and environment must be heap-allocated
! e.g. ML, Scheme, Haskell, Smalltalk, Cecil
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Restricted versions
! If only allow to pass nested procedures down, not 

return them, then can implement more cheaply
! environment can be stack-allocated, not heap-allocated
! e.g. Pascal, Modula-3

! If allow nested procedures but not first-class 
procedures, then cheaper still
! do not need pair, just extra implicit environment argument
! e.g. Ada

! If allow first-class procedures but no nesting, then 
can implement with just a code address
! e.g. C, C++

21

A general pattern: fold
! The general pattern over lists simply abstracts the standard pattern of 

recursion
! Recursion pattern:

fun f(…, nil, …)   = … (* base case *)
| f(…, x::xs, …) = … x … f(…, xs, …) … (* inductive case *)

! Parameters of this pattern, for a list argument of type 'a list:
! what to return as the base case result ('b)
! how to compute the inductive result from the head and the recursive call

('a * 'b -> 'b)
! fold captures this pattern

foldl, foldr: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

! 3 curried arguments
! iterate over elements left-to-right: foldl
! iterate over elements right-to-left: foldr

! for associative combining operators, order doesn�t matter
! [which is the recursive pattern above?]

22

Examples using fold
foldl, foldr: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

! Summing all the elements of a list
- val rainfall = [0.0, 1.2, 0.0, 0.4, 1.3, 1.1];
val rainfall = […] : real list
- val total_rainfall =

foldl (fn(rain,subtotal) => rain+subtotal)
0.0 rainfall;

val total_rainfall = 4.0 : real

! Reusable sum function?

! What do these do?
- foldl (fn(x,ls)=>x::ls) nil [3,4,5];

- foldr (fn(x,ls)=>x::ls) nil [3,4,5];

- foldr (fn(x,ls)=>x::ls) [1,2,3] [4,5,6];
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Polymorphic type inference
! ML infers types of expressions automatically, as follows:

! assign each declared variable & subexpression a fresh type variable
! result of function is another type variable
! share argument and result type variables across function cases

! for each subexpression, generate constraints on types of its operands
! constraint: one type expression must equal another
! before applying a polymorphic function, replace quantified type variables with fresh ones for 

that application
! solve constraints by unifying type expressions

! can partially refine types, e.g.:
'a ⇒ 'b list
'b ⇒ ''c

! fail for cyclic constraints, e.g. 'a = 'a list

! If overloaded operator is unresolved after constraint solving, default to int
version

! Overconstrained (unsatisfiable constraints) ⇒ type error
! Underconstrained (still some type variables) ⇒ a polymorphic result
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Example #1
fun sum lst =

if null lst then 0

else hd lst +

sum (tl lst)
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Example #2
fun map f nil     = nil

| map f (x::xs) =

f x ::

map f xs
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Let-bound polymorphism
! ML type inference supports only let-bound polymorphism

! only val-/fun-declared names can be polymorphic, not names of formals
! ⇒ implicit quantifiers of polymorphic variables are at outer level

! �prenex form�
- fun id(x) = x;
val id = fn : 'a -> 'a
(* with explicit quantifier: val id = fn : ∀'a.'a->'a *)
- fun g(f) = (f 3, f "hi");
(* type error in ML; f cannot be given a polymorphic type *)
(* this (legal) ML type wouldn’t allow the two different f calls:

val g = fn : ∀'a.(('a->'a) -> int*string) *)

! What if ML allowed explicitly quantified polymorphic types for formals?
- fun g(f:∀'a.'a->'a) = (f 3, f "hi");
val g = fn : (∀'a.'a->'a) -> int*string
- g(id);
val it = (3, "hi") : int * string

! Type inference precludes first-class polymorphic values
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Polymorphic vs. monomorphic
recursion
! When analyzing the body of a polymorphic function, what do we 

do when we encounter a recursive call?
fun f(x) =

... f(hd(x)) ... f(tl(x)) ...

! If allow polymorphic recursion, then f is considered 
polymorphic in body, and each recursive call uses a fresh 
instantiation (like any call to a polymorphic function)

! If only monomorphic recursion, then force recursive call to pass 
same argument types as formals (don�t make a fresh 
instantiation)

! Type inference under polymorphic recursion is undecidable
! but only in obscure cases

! ML uses monomorphic recursion
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Nested polymorphic functions
! After doing type inference for a function, if any type variables remain in 

its type, then make the function polymorphic over them

! But what about a nested function?
fun f(x) =

let fun g(u, v) = ([x,u], [v,v]) in
... g(x, 5) ... (* does this work? *)
... g([x], true) ... (* does this? *)

end

! Type of f: 'a -> '...
! Type of g: 'a * 'b -> 'a list * 'b list

! but 'a and 'b act differently�

! 'a is a non-generalizable type variable
! don�t replace with a fresh type variable when g called

! Handles monomorphic recursion restriction, too

29

Properties of ML type inference
! Hindley-Milner type inference

! allows let-bound polymorphism only
! universal parametric polymorphism,

no constrained polymorphism (other than equality types)

! Type inference yields principal type for expression
! single most general type that can be inferred

! Worst-case complexity of type inference: exponential 
time

! Average case complexity: linear time
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References
! Support side-effects (mutation) through explicit reference 

values:
! ref : 'a -> 'a ref
! ! : 'a ref -> 'a
! (op :=) : 'a ref * 'a -> unit

- val v = ref 0;
val v = ref 0 : int ref
- v := !v + 1;
val it = () : unit
- !v;
val it = 1 : int

! Arrays: indexable mutable locations

! Must say which things are mutable
! Mutation is compartmentalized
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References to polymorphic 
values?
! Try this:

- fun id(x) = x;

val ID = fn : 'a -> 'a

- val fp = ref id;

(* error in real SML; pretend it’s not *)

val fp = ref fn : ('a -> 'a) ref

- (!fp true, !fp 5);

(true, 5) : bool * int

- fp := not;

hmmmm...

- !fp 5

CRASH!!!
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The "value restriction"
! Cannot allow references to polymorphic 

values
! exception arguments similarly cannot be 

polymorphic

! In general, only polymorphic literals can be 
bound in val/fun bindings, not polymorphic 
expressions
! get �non-generalizable type variable� error 

otherwise
! SML'90 had �weakly polymorphic types� instead
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Functors
! Can parameterize structures by other structures

functor AListUser(AL:ASSOC_LIST) = struct
... AL.store ... AL.fetch ...

end

! only know aspects of AL that are defined by ASSOC_LIST

! Instantiate functors to build regular structures:

- structure ALU1 = AListUser(Assoc_List);

- structure ALU2 = AListUser(Hash_Assoc_List);
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Functors for bounded 
quantification
! Define a signature representing the operations 

needed

signature ORDERED = sig
type T
val eq: T * T -> bool
val lt: T * T -> bool

end

! Define quantified algorithms as elements of functors
parameterized by required signature

functor Sort(O:ORDERED) = struct
fun min(x,y) = if O.lt(x,y) then x else y
fun sort(lst) = ... O.lt(x, y) ...

end
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An instantiation of Sort
! Create specialized sorter by instantiating functor with appropriate 

operations
- structure IntOrder:ORDERED = struct

type T = int
val lt = (op <)
val eq = (op =)

end;
structure IntOrder:>ORDERED = …

- structure IntSort = Sort(IntOrder);
structure IntSort = … val sort:IntOrder.T list -> IntOrder.T list …

- IntSort.sort([3,5,~2]);
val it = [~2,3,5] : IntOrder.T list

! Use IntOrder:ORDERED, not IntOrder:>ORDERED
! Using : instead of :> allows type binding (T=int) to bleed through to 

users of IntOrder
! IntOrder is a view/extension of an existing type, int;

it isn�t creating a new ADT w/ only 2 operations
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Another instantiation of Sort
! Can create nested, multiply parameterized functors:

functor PairOrder(

structure First:ORDERED;

structure Second:ORDERED):ORDERED =
struct
type T = First.T * Second.T

fun lt((x1,x2),(y1,y2)) =

First.lt(x1,y1) andalso Second.lt(x2,y2);

fun eq((x1,x2),(y1,y2)) = ...;

end

(* to sort (int*string) lists: *)
structure IntStringSort = Sort(

PairOrder(structure First = IntOrder;

structure Second = StringOrder))
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Signature �subtyping�
! Signature specifies a particular interface
! Any structure that satisfies that interface can 

be used where that interface is expected
! e.g. in functor application

! Structure can have
! more operations
! more polymorphic operations
! more details of implementation of types

! than required by signature
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Some limitations of ML modules
! Structures are not first-class values

! must be named or be argument to functor application
! must be declared at top-level or nested inside another structure or 

signature

! Cannot instantiate functors at run-time to create �objects�
⇒ cannot simulate classes and object-oriented programming

! No type inference for functor arguments

! These constraints are to enable type inference of core and static 
typechecking (at all) of structures that contain types

39

Modules vs. classes
! Classes (abstract data types) implicitly define a single type,

with associated constructors, observers, and mutators

! Modules can define 0, 1, or many types in same module,
with associated operations over several types

! no new types if adding operations to existing type(s)
! e.g. a library of integer or array functions
! hard to do in C++

! multiple types can share private data & operations
! requires friend declarations in C++

! one new type requires a name for the type (e.g. T)
! class name is also type name in C++, conveniently

! Functors similar to parameterized classes

! C++�s public/private is simpler than ML�s separate signatures, but C++ 
doesn�t have a simple way of describing just an interface

! See Moby: modules + classes, cleanly


