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Some thoughts on language

= "But if thought corrupts language, language can also
corrupt thought.”

= George Orwell, Politics and the English Language, 1946

= "If you cannot be the master of your language, you
must be its slave.”

= Richard Mitchell
“A different language is a different vision of life.”

= Federico Fellini
“The language we use ... determines the way in
which we view and think about the world around us.”
= The Sapir-Whorf hypothesis

Why study
programming languages?

= Knowing many languages broadens thought
= better ways to organize software
= in both existing and new languages
= better ways to divide responsibilities among tools and
humans
= To understand issues underlying language designs,
debates, etc.
» Language design impacts software engineering,
software quality, compilers & optimizations
= Some language tools can aid other systems
= E.g., extensible/open but safe systems

Course overview (1/2)

= Part 1: functional languages
= A practical example: ML
= Other exposure: Scheme, Haskell
= Theoretical foundations: lambda calculi,
operational semantics, type theory
= Project: a Scheme interpreter & type
inferencer, implemented in ML

Course overview (2/2)

= Part 2: object-oriented languages
= A practical example: Cecil
= Other exposure: Self, Java/C#, EML
= Theoretical foundations

= Project: a Self interpreter & type checker,
implemented in Cecil (maybe)

Course work

= Readings

= Weekly homework
= Some moderate programming
= Some paper exercises

= Midterm

» Final




Language Design Overview

Some language design goals

= Be easy to learn

= Support rapid (initial) development

= Support easy maintenance, evolution
= Foster reliable, safe software

= Foster portable software

= Support efficient software

Some means to those goals

= Simplicity
= But what does “simple” mean?
= Readability
= Writability
= Expressiveness

= Well-defined, platform-independent,
safe semantics

The problem

= Many goals in conflict

=language design is an engineering &
artistic activity
=need to consider target audience’s needs

Some target audiences

= Scientific, numerical computing
= Fortran, APL, ZPL
= Systems programming
» C, C++, Modula-3
= Applications programming
= Java, C#, Lisp, Scheme, ML, Smalltalk, Cecil, ...
Scripting, macro languages
= Sh, Perl, Python, Tcl, Excel macros, ...
Specialized languages
= SQL, LATgX, PostScript, Unix regular expressions,
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Main PL concepts (1/2)

= Separation of syntax, semantics, and
pragmatics
= EBNF to specify syntax precisely
= Semantics is more important than syntax

. Pra?matlcs programmmg style, intended use,
performance model

= Control structures
= Iteration, conditionals; exceptions
= Procedures, functions; recursion
= Message passing
= Backtracking
= Parallelism




Main PL concepts (2/2)

» Data structures, types
= Atomic types: numbers, chars, bools
= Type constructors: records, tuples, lists, arrays, functions, ...
= User-defined abstract data types (ADTSs); classes
= Polymorphic/parameterized types
= Explicit memory management vs. garbage collection
= Type checking
= Static vs. dynamic typing
= Strong vs. weak typing
= Type inference
= Lexical vs. dynamic scoping
= Eager vs. lazy evaluation
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Some good
language design principles

= Strive for a simple, regular, orthogonal model
= In evaluation, data reference, memory management, ...
= E.g. be expression-oriented, reference-oriented
= Include sophisticated abstraction mechanisms
= Define and name abstractions once then use many times
= For control, data, types, ...
= Include polymorphic static type checking
= Have a complete & precise language specification
= Full run-time error checking for cases not detected statically

Partial history of
programming languages
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ML

Main features

= Expression-oriented
= List-oriented, garbage-collected heap-based
= Functional
= Functions are first-class values
» Largely side-effect free
= Strongly, statically typed
= Polymorphic type system
= Automatic type inference
Pattern matching
Exceptions
Modules
Highly regular and expressive
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History

= Designed as a Meta Language for
automatic theorem proving system in
mid 70’s by Milner et al.

= Standard ML: 1986
= SML'97: 1997
= Caml: a French version of ML, mid 80's

= O'Caml: an object-oriented extension of
Caml, late 90's




Interpreter interface

» Read-eval-print loop
= Read input expression
= Reading ends with semicolon (not needed in files)
= = prompt indicates continuing expression on next line
= Evaluate expression
= it (re)bound to result, in case you want to use it again
= Print result

= repeat
-3+ 4;
val it = 7 : int
- it + 5
val it = 12 int
- it + 5
val it = 17 : int
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Basic ML data types and
operations

= ML is organized around types

= each type defines some set of values of that type

= each type defines a set of operations on values of that type
= int

=~ 4 -, %, div, mod; =, <>, <, >, <=, >=; real, chr
= real

n o~ 4, -, %, /1<, > <=, >= (no equality);

floor, ceil, trunc, round

= bool: different from int

= true, false; =, <>; orelse, andalso
= string

s €g."T said \"hi\"\tin dir C:\\stuff\\dir\n"

. =<,
= char
= eg. #"a", #"\n"
s =, <> ord, str

Variables and binding

= Variables declared and initialized with a val binding
- val x:int = 6;
val x = 6 : int
- val y:int = x * x;
val y = 36 : int
= Variable bindings cannot be changed!

= Variables can be bound again, o
but this shadows the previous definition
- val y:int = y + 1;
val y = 37 : int (* a new, different y *)
= Variable types can be omitted
= they will be inferred by ML based on the type of the r.h.s.

-valz =x *y+5;
val z = 227 : int
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Strong, static typing

ML is statically typed: it will check for type
errors statically

= when programs are entered, not when they’re run
= ML is strongly typed: it will catch all type
errors (a.k.a. it's type-safe)

= But which errors are type errors?

= Can have weakly, statically typed languages,
and strongly, dynamically typed languages

Type errors

= Type errors can look weird, given ML's fancy
type system
- asd;
Error: unbound variable or constructor: asd
-3+ 4.5;
Error: operator and operand don’t agree
operator domain: int * int

operand: int * real
in expression:
3 + 4.5
-3/ 4;
Error: overloaded variable not defined at type
symbol: /

type: int
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Records

= ML records are like C structs
= allow heterogeneous element types, but fixed # of elements
= Arecord type: {name:string, age:int}
= field order doesn’t matter
= Arecord value: {name="Bob Smith", age=20}
= Can construct record values from expressions for
field values

= as with any value, can bind record values to variables
- val bob = {name="Bob " * "Smith",
= age=18+num_years_in_college};
val bob = {age=20,name="Bob Smith"}
: {age:int,name:string}




Accessing parts of records

= Can extract record fields using
#fieldname function
= like C's - > operator, but a regular function
- val bob’ = {name = #name (bob),
= age = #age (bob) +1};
val bob’ = {age=21,name="Bob Smith"}
s )
= Cannot assign/change a record’s fields
=an immutable data structure
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Tuples

» Like records, but fields ordered by position, not label
= Useful for pairs, triples, etc.

= Atuple type: string * int
= order does matter

= Atuple value: ("Joe Stevens", 45)

= Can construct tuple values from expressions for

elements

= as with any value, can bind tuple values to variables

- val joe = ("Joe "“"Stevens", 25+num_jobs*10);
val joe = ("Joe Stevens",45) : string * int

Accessing parts of tuples

= Can extract tuple fields using #n
function

- val joe’ = (#1(joe), #2(joe)+1);
val joe’ = ("Joe Stevens",b46)
: string * int
= Cannot assign/change a tuple’s
components

=another immutable data structure
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Lists

= ML lists are built-in, singly-linked lists
= homogeneous element types, but variable # of elements
» Alist type: int list
= ingeneral: T list, for any type T
= Alistvalue: [3, 4, 5]
= Empty list: [] ornil
= null (Ist): testsif Istisnil
= Can create a list value using the [..] notation

= elements are expressions
- val 1st = [1+2, 8 div 2, #age(bob)-15];
val 1st = [3,4,5] : int list

Basic operations on lists

= Add to front of list, non-destructively:
:: (an infix operator)
- val 1stl = 3::(4::(5::nil));
val 1stl = [3,4,5] : int list
- val 1lst2 = 2::1stl;
val 1st2 = [2,3,4,5] : int list
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Basic operations on lists

» Adding to the front allocates a new link;
the original list is unchanged and still
available

- 1lstl;

val it = [3,4,5] : int list

- 1lst2;

val it = [2,3,4,5] : int list

Ist1
Eﬂ%}@}@} i




More on lists

= Lists can be nested:
- (3 :: nil) :: (4 :: 5 :: nil) :: nil;
val it = [[3],[4,5]]: int list list

= Lists must be homogeneous:
- [3, "hi there"];

Error: operator and operand don’t agree
operator domain: int * int list

operand: int * string list
in expression:
(3 : int) :: "hi there" :: nil
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Manipulating lists

= Look up the first (“head”) element: hd
- hd(1lstl) + hd(lst2);
val it = 5 : int

= Extract the rest (“tail”) of the list: £1
- val 1st3 = tl(lstl);
val 1st3 = [4,5] : int list
- val 1lst4 = tl(tl(1lst3));
val lst4 = [] : int list
- tl(lst4); (* or hd(lst4) *)
uncaught exception Empty

= Cannot assign/change a list's elements
= another immutable data structure

First-class values

= All of ML's data values are first-class
= there are no restrictions on how they can be created, used,
passed around, bound to names, stored in other data
structures, ....
= One consequence: can nest records, tuples, lists
arbitrarily
« an example of orthogonal design
{foo=(3, 5.6, "seattle"),
bar=[[3,4]1, [5,6,7,8], [1, [1,2]11}
: {bar:int list list, foo:int*real*string}
= Another consequence: can create initialized,
anonymous values directly, as expressions
= instead of using a sequence of statements to first declare
(allocate named space) and then assign to initialize
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Reference data model

= A variable refers to a value (of whatever type), uniformly
A record, tuple, or list refers to its element values, uniformly
= all values are implicitly referred to by pointer

A variable binding makes the l.h.s. variable refer to its r.h.s.
value
No implicit copyintg upon binding, parameter passing,
returning from a function, storing in a data structure
= like Java, Scheme, Smalltalk, ... (all high-level languages)
= unlike C, where non-pointer values are copied
= Carrays?

= Reference-oriented values are heap-allocated (logically)
= scalar values like ints, reals, chars, bools, nil optimized

Garbage collection

ML provides several ways to allocate & initialize new values
= (), {ed LD e

But it provides no way to deallocate/free values that are no
longer being used

Instead, it provides automatic garbage collection
= when there are no more references to a value (either from
variables or from other objects), it is deemed garbage, and the
system will automatically deallocate the value
~+dan ling pointers impossible
(could not guarantee type safety without this!)
storage leaks impossible
simpler programming
can be more efficient!
— less ability to carefully manage memory use & reuse
= GCs exist even for C & C++, as free libraries
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Functions

= Some function definitions:
- fun square(x:int):int = x * x;
val square = fn : int -> int
- fun swap(a:int, b:string):string*int = (b,a);
val swap = fn : int * string -> string * int
= Functions are values with types of the form
Targ => Tresult
= use tuple type for multiple arguments
= use tuple type for multiple results (orthogonality!)
= * binds tighter than - >

= Some function calls:

- square(3);  (* parens not needed! *)
val it = 9 : int
- swap(3 * 4, "billy" * "bob"); (*parens needed*)

val it = ("billybob",612) : string * int




Expression-orientation

= Function body is a single expression

fun square(x:int):int = x * x
= not a statement list
= NO return keyword
» Like equality in math
= a call to a function is equivalent to its body,
after substituting the actuals in the call for its formals
square (3) < (x*x) [x—>3] < 3%3
= There are no statements in ML, only expressions
= simplicity, regularity, and orthogonality in action
= What would be statements in other languages
are recast as expressions in ML
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If expression

= General form: if test then el else e2

= return value of either e1 or e2,
based on whether test is true or false

= cannot omit else part

- fun max(x:int, y:int):int =
= if x >= y then x else y;
val max = fn : int * int -> int

= Like 2 : operatorin C
= don't need a distinct if statement

Static typechecking of
if expression

= What are the rules for typechecklng an if expression?
What's the type of the result of i£?

= Some basic principles of typechecking:
= values are members of types

= the type of an expression must include all the values that might possibly
result from evaluating that expression at run-tim

= Requirements on each if expression:
= the type of the test expression must be bool

= the type of the result of the if must include whatever values might be
returned from the if
= the if might return the result of either e1 or e2

= Asolution: e1 and e2 must have the same type,
and that type is the type of the result of the i f expressnon
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Let expression

= let: an expression that introduces a new nested scope with
local variable declarations
= unlike { .. } statements in C, which don’t compute results
= like a gcc extension?
General form:
let val id,:type, = e,

val id,:type,
in e, end
= type, are optional; they'll be inferred from the e,
= Evaluates each e, and binds it to id,, in turn
= each e, can refer to the previous id...id, , bindings
= Evaluates e, , and returns it as the result of the 1et expression
= e, can refer to all the id...id, bindings
= The id. bindings disappear after e, is evaluated
= they're in a nested, local scope

e,
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Example scopes

- val x = 3;

val x = 3 : int

- fun f(y:int):int =

= let val z = X + Yy

= val x = 4

= in (let val y = z + x
= in x + y + z end)
= +X + Y+ 2

: int -> int
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“Statements”

= For expressions that have no useful result,
return empty tuple, of type unit:
- print ("hi\n");
hi
val it = () : unit
= Expression sequence operator: ;
(an infix operator, like C's comma operator)
= evaluates both “arguments”, returns second one
- val z = (print("hi "); print("there\n"); 3);
hi there
val z = 3 : int
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Type inference for functions

» Declaration of function result type can be omitted
= infer function result type from body expression result type
- fun max(x:int, y:int) =
= if x >= y then x else y;
val max = fn : int * int -> int
= Can even omit formal argument type declarations
=« infer all types based on how arguments are used in body

= constraint-based algorithm to do type inference
- fun max(x, y) =
= if x >= y then x else y;
val max = fn : int * int -> int
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Functions with many possible
types

= Some functions could be used on arguments of different types
= Some examples:

= null:cantestanint list,orastring list,or...;
in general, work on a list of any type T

null: T list -> bool
hd: similarly works on a list of any type T, and returns an element
of that type:

hd: T list -> T

= swap: takes a pair of an A and a B, returns a pair of a B and an A:

swap: A * B -> B * A

= How to define such functions in a statically-typed language?

= in C: can't (or have to use casts)

= in C++: can use templates (but can't check separately)

= in ML: allow functions to have polymorphic types

Polymorphic types

= A polymorphic type contains one or more type
variables
= an identifier starting with a quote
'a list
‘a % b ¥ ta % e
{x:'a, y:'b} list * 'a -> 'b
= A polymorphic type describes a set of possible types,
where each type variable is replaced with some type
= each occurrence of a type variable must be replaced with
the same type
('a * 1b * 1a * 10)
['a—int, 'b-string, 'c—real-sreall
< (int * string * int * (real->real))
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Polymorphic functions

= Functions can have polymorphic types:

null : 'a list -> bool

hd : 'a list -> 'a

tl : 'a list -> 'a list

(op ::): 'a * 'a list -> 'a list
swap : 'a* 'b -> 'b *x 'a
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Calling polymorphic functions

= When calling a polymorphic function, need to find the
instantiation of the polymorphic type into a regular
type that's appropriate for the actual arguments
= caller knows types of actual arguments

= can compute how to replace type variables so that the
replaced function type matches the argument types
= derive type of result of call

= Example: hd([3,4,5])

type of argument: int list

type of function: 'a list -> 'a

replace 'a with int to make a match

instantiated type of hd for this call: int 1list -> int
type of result of this call: int
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Polymorphic values

= Regular values can polymorphic, too

nil: 'a list

= Each reference to ni1l finds the right
instantiation for that use, separately
from other references

(3 :: 4 :: nil) :: (5 :: nil) :: nil
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Polymorphism versus overloading

» Polymorphic function: same function usable for

many different types
- fun swap(i,j) = (3,1);
val swap = fn : 'a * 'b -> 'b * 'a

= Overloaded function: several different functions,
but with same name
= the name + is overloaded
= a function of type int*int->int
= a function of type real*real->real
= Resolve overloading to particular function based on:
= static argument types (in ML)
= dynamic argument classes (in object-oriented languages)
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Example of overload resolution

-3 + 4;
val it = 7 : int

- 3.0 + 4.5;
val it = 7.5 : real

- (op +); (* which? default to int *)
val it = fn : int*int -> int

- (op +):real*real->real;
val it = fn : real*real -> real

Equality types

= Built-in = is polymorphic over all types that “admit equality”
= i.e., any type except those containing reals or functions
= Use ''a, ' 'b, etc. to stand for these equality types

- fun is same(x, y) = if x = y then "yes" else "no";
val is_same = fn : ''a * ''a -> string

- is_same(3, 4);

val it = "no" : string

- is_same({1=[3,4,5],h=("a
{1=13,4,5] ,h=("
val it = "yes" : string
- is_same(3.4, 3.4);
Error: operator and operand don’t agree [equality type

") wenil),

required]
operator domain: '’Z * ''Z
operand: real * real

in expression:
is same (3.4,3.4)
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Loops, using recursion
= ML has no looping statement or
expression
= Instead, use recursion to compute a
result
fun append (11, 12) =
if null(11)
then 12
else hd(1l1l) :: append(tl(1l1l), 12)
val lstl = [3, 4]
val 1lst2 = [5, 6, 7]
val 1st3 = append(lstl, 1lst2)
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Tail recursion

» Tail recursion: recursive call is last operation before
returning
= can be implemented just as efficiently as iteration, in both
time and space, since tail-caller isn't needed after callee
returns

= Some tail-recursive functions:
fun last(lst) =
let val tail = tl(lst)
in if null(tail) then hd(lst) else last(tail) end
fun includes(lst, x) =
if null(lst) then false

else if hd(lst) = x then true
else includes(tl(lst), x)
= append?
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Converting to tail-recursive form

= Can often rewrite a recursive function into a tail-recursive one
= introduce a helper function (usually nested)
= the helper function has an extra accumulator argument
» the accumulator holds the partial result computed so far
= accumulator returned as full result when base case reached
= This isn't tail-recursive:
fun fact(n) =
if n <= 1 then 1
else fact(n-1) * n
= Thisis:
fun fact(no0) =
let fun fact_helper(n, res) =
if n <= 1 then res
else fact_helper(n-1, res*n)
in fact_helper(n0, 1) end




Pattern matching

= Pattern-matching: a convenient syntax for extracting
components of compound values (tuple, record, or list)
= A pattern looks like an expression to build a compound value,
but with variable names to be bound in some places
= cannot use the same variable name more than once
= Use pattern in place of variable on I.h.s. of val binding
= anywhere val can appear: either at top-level or in let
(orthogonality & regularity)

- val x = (false, 17);
val x = (false,17) : bool*int
- val (a, b) = x;

val a = false : bool

val b = 17 : int

- val (rootl, root2) = quad_roots(3.0, 4.0, 5.0);
val rootl = 0.786299647847 : real

val root2 = ~2.11963298118 : real
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More patterns

= List patterns:

val zs = [é,s, 7] : int list

= Constants (ints, bools, strings, chars, nil) can be patterns:
- val (x, true, 3, "x", z) = (5.5, true, 3, "x", [3,4]);
val x = 5.5 : real
val z = [3,4] : int list

= If don't care about some component, can use a wildcard: _

_:i_s:zs) = [3,4,5,6,7];

val zs = [5,6,7] : int list

= Patterns can be nested, too

= orthogonality

- val (

Function argument patterns

= Formal parameter of a fun declaration can be a pattern
- fun swap (i, j) = (j, i);
val swap = fn : 'a * 'b -> 'b * 'a
- fun swap2 p = (#2 p, #1 p);
val swap2 = fn : 'a * 'b -> 'b * 'a
- fun swap3 p = let val (a,b) = p in (b,a) end;
val swap3 = fn : 'a * 'b -> 'b * 'a
- fun best_friend {student={name=n,age=_},
grades=_,
best_friends={name=f,age=_}::_} =
n * "'s best friend is " * f;
val best_friend = fn
: {best_friends:{age:'a, name:string} list,
grades: 'b,
student:{age:'c, name:string}}
-> string

= In general, patterns allowed wherever binding occurs
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= Often a function’s implementation can be broken down into
several different cases, based on the argument value
= ML allows a single function to be declared via several cases
= Each case identified using pattern-matching
= cases checked in order, until first matching case
- fun fib 0
| £ib 1
| £fib n = fib(n-1) + fib(n-2);
val fib = fn : int -> int
- fun null nil = true
| null (_ = false;
val null = fn 'a list -> bool
- fun append(nil, 1lst) = lst
| append (x::xs,1st) = x :: append (xs,lst);
val append = fn : 'a list * 'a list -> 'a list
= The function has a single type
= all cases must have same argument and result types
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Missing cases

= What if we don't provide enough cases?
= ML gives a warning message “match nonexhaustive”
when function is declared (statically)
= ML raises an exception “nonexhaustive match failure”
if invoked and no existing case applies (dynamically)
- fun first_elem (x::xs) = X;
Warning: match nonexhaustive
X iioxs => ...
val first elem = fn : 'a list -> 'a
- first_elem [3,4,5];
val it = 3 : int
- first_elem [];
uncaught exception nonexhaustive match failure

= How would you provide an implementation of this missing case
fornil?

- fun first_elem (x::xs)
= | first_elem nil

x
222
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Exceptions

= If get in a situation where you can't produce a normal value of
the right type, then can raise an exception
= aborts out of normal execution
= can be handled by some caller
= reported as a top-level “uncaught exception” if not handled
= Step 1: declare an exception that can be raised
- exception EmptyList;
exception EmptyList

= Step 2: use the raise expression where desired

- fun first_elem (x::xs) = x
| first_elem nil - raise EmptyList;
val first_elem = fn : 'a list -> 'a (* no warning! *)

- first_elem [3,4,5];

val it = 3 : int

- first_elem [];

uncaught exception EmptyList
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Handling exceptions

» Add handler clause to expressions to handle
(some) exceptions raised in that expression

expr handle exn name, => expr;

| exn_name, => expr,

| exn name, => expr,
s if expr raises exn name,, then evaluate and
return expr, instead
- fun second elem 1 = first_elem (tl 1);
val second elem = fn : 'a list -> 'a
- (second_elem [3] handle EmptyList => ~1) + 5
val it = 4 : int
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Exceptions with arguments

= Can have exceptions with arguments

- exception IOError of int;
exception IOError of int;

- (... raise IOError(-3) ...)
handle IOError(code) => ... code ...
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Type synonyms

= Can give a name to a type, for convenience
= name and type are equivalent, interchangeable

- type person = {name:string, age:int};
type person = {age:int, name:string}

- val p:person = {name="Bob", age=18};
val p = {age=18,name="Bob"} : person

- val p2 = p;

val p2 = {age=18,name="Bob"} : person
- val p3:{name:string, age:int} = p;
val p3 = {age=18,name="Bob"}

: {age:int, name:string}
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Polymorphic type synonyms

= Can define polymorphic synonyms
- type 'a stack = 'a list;
type ’‘a stack = ’‘a list
- val emptyStack:'a stack = nil;
val emptyStack = [] : ’a stack

= Synonyms can have multiple type parameters
- type (''key, 'value) assoc_list =
= ("'key * 'value) list;
type (’a,’b) assoc_list = (’a * ’b) list

- val grades: (string, int) assoc_list =

= [("Joe", 84), ("Sue", 98), ("Dude", 44)];

val grades=/[("Joe",84), ("Sue",98), ("Dude",644)]
: (string,int) assoc_list

Datatypes

» Users can define their own (polymorphic) data
structures
= a new type, unlike type synonyms
= Simple example: ML's version of enumerated types
- datatype sign = Positive | Zero | Negative;
datatype sign = Negative | Positive | Zero
= declares a type (sign) and a set of alternative constructor
values of that type (Positive etc.)
= order of constructors doesn’t matter
= Another example: bool
- datatype bool = true | false
datatype bool = false | true
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Using datatypes

= Can use constructor values as regular
values

= Their type is a regular type
- fun signum(x) =
= if x > 0 then Positive
= else if x = 0 then Zero
= else Negative;
val signum = fn : int -> sign

66
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Datatypes and pattern-matching

= Constructor values can be used in
patterns, too

- fun signum(Positive) = 1
= | signum(Zero) =0
= | signum(Negative) = ~1;

val signum = fn : sign -> int
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Datatypes with data

= Each constructor can have data of particular type
stored with it
= constructors with data are functions that allocate & initialize
new values with that “tag”
- datatype LiteralExpr =
= Nil |
= Integer of int |
= string of string;

datatype LiteralExpr =
Integer of int | Nil | String of string

- Nil;
val it = Nil : LiteralExpr
- Integer(3);

val it = Integer 3 : LiteralExpr
- String("xyz");
val it = String "xyz" : LiteralExpr

Pattern-matching on datatypes

= The only way to access components of a
value of a datatype is via pattern-matching

= Constructor “calls” can be used in patterns to
test for and take apart values with that “tag”

- fun toString(Nil) = "nil"
= | tostring(Integer(i)) = Int.toString(i)
= | tostring(string(s)) = "\"" * s * w\nv;

val toString = fn : LiteralExpr -> string

68
= Many datatypes are recursive: one or more constructors are
defined in terms of the datatype itself
- datatype Expr =
- wil |
= Integer of int |
= string of string |
= Variable of string
= Tuple of Expr list
= BinOpExpr of {argl:Expr, operator:string, arg2:Expr}
= FnCall of {function:string, arg:Expr};
datatype Expr = ...
- val el = Tuple [Integer(3), String("hi")]; (* (3,"hi") *)
val el = Tuple [Integer 3,String "hi"] : Expr
= (Nil, Integer, and String of LiteralExpr are shadowed)
70

69
Another example Expr value
(* £(3+x, "hi") *)
- val e2 =
= FnCall {
= function="£f",
= arg=Tuple [
= BinOpExpr {argl=Integer(3),
= operator="+",
= arg2=Variable ("x") },
- String("hi")1};
val e2 = .. : Expr
71

Recursive functions over
recursive datatypes

= Often manipulate recursive datatypes with recursive
functions
= pattern of recursion in function matches pattern of recursion

in datatype
- fun toString(Nil) = "nil"
| tostring(Integer(i)) = Int.toString(i
| tostring(String(s)) = "\"" % g * n\nv
| tostring(Variable(name)) = name
I

toString(Tuple (elems)) =
"(n % listToString(elems) * ")"
toString (BinOpExpr{argl, operator,arg2})=
toString(argl) * " " * operator
toString(arg2)
toString(FnCall{function,arg}) =
function * "(" * toString(arg) * ")"

val toString = fn : Expr -> string
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Mutually recursive functions
and datatypes

= If two or more functions are defined in terms
of each other, recursively, then must be
declared together, and linked with and

fun toString(...) = ... listToString ...
and listToString(([]) = ""
| listToString([elem]) = toString(elem)
| listTostring(e::es) =
toString(e) * "," * listToString(es);

= If two or more mutually recursive datatypes,
then declare them together, linked by and

datatype Stmt = ... Expr ...
and Expr = ... Stmt ...

73

A convenience:
record pattern syntactic sugar

= Instead of writing {a=a, b=b, c=c}
as a pattern, can write {a,b, c}
= E.g.
. BinOpExpr{argl, operator,arg2}
= is short-hand for
. BinOpExpr{argl=argl,
operator=operator,
arg2=arg2}

Polymorphic datatypes

= Datatypes can be polymorphic
- datatype 'a List = Nil
= | Cons of 'a * 'a List;
datatype 'a List = Cons of 'a * 'a List | Nil
- val lst = Cons(3, Cons(4, Nil));
val lst = Cons (3, Cons (4, Nil)) : int List

- fun Null (Nil) = true

= | Null(Cons(_, )) = false;

val Null = fn : 'a List -> bool

- fun HA(Nil) = raise Empty

= | Hd(Cons(h,_)) = h;

val Hd = fn : 'a List -> 'a

- fun Sum(Nil) = 0

= | Sum(Cons(x,xs)) = x + Sum(xs);

val Sum = fn : int List -> int

Modules for name-space
management

= A file full of types and functions can be cumbersome to manage
= Would like some hierarchical organization to names

= Modules allow grouping declarations to achieve a hierarchical

name-space

= ML structure declarations create modules

- structure Assoc_List = struct

type (''k,'v) assoc_list = (''k*'v) list
val empty = nil
fun store(alist, key, value) = ...
= fun fetch(alist, key) = ...

= end;
structure Assoc List : sig
type ('a,'b) assoc_list = ('a*'b) list
val empty : ‘'a list
val store : ('’a*'b) list * ''a * 'b -> ('’a*'b) list
val fetch : ('’a*'b) list * ''a -> 'b
end

75
= To access declarations in a structure, can use dot notation
- val league = Assoc_List.empty;
val 1 = [] : 'a list
- val league = Assoc_List.store(league, "Mariners", {..});
val league = [("Mariners”, {..})] : (string * {..}) list
- Assoc_List.fetch("Mariners");
val it = {wins=78,6losses=4} : {..}
= Other definitions of empty, store, fetch, etc. don't clash
= Common names can be reused by different structures
77

The open declaration

= To avoid typing a lot of structure names, can use the
open struct_name declaration to introduce local
synonyms for all the declarations in a structure
= usually in a let, local, or within some other structure
fun add_first_team(name) =
let
open Assoc_List
(* imports assoc_list, empty, store, fetch *)
val init = {wins=0,losses=0}
in
store (empty,name, init)
(* Assoc_List.store (Assoc_List.empty,
name, init) *)
end
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Modules for encapsulation

= Want to hide details of data structure implementations from
clients, i.e., data abstraction
= simplify interface to clients
= allow implementation to change without affecting clients
= In C++ and Java, use public/private annotations
= InML:
= define a signature that specifies the desired interface
= specify the signature with the structure declaration

= E.g. a signature that hides the implementation of assoc_list:
- signature ASSOC_LIST = sig
= type (''k,'v) assoc list (* no rhs! *)

val empty : (''k,'v) assoc_list
val store : (''k,'v) assoc_list * ''k * 'v ->
("'k,'v) assoc_list
val fetch : (''k,'v) assoc_list * ''k -> 'v
= end;
signature ASSOC_LIST = sig ... end

79

Specifying the signatures of
structures

= Specify desired signature of structure when
declaring it:
- structure Assoc_List :> ASSOC_LIST = struct
= type (''k,'v) assoc_list = (''k*'v) list
= val empty = nil
= fun store(alist, key, value) =
= fun fetch(alist, key) =
= fun helper(...) =
= end;
structure Assoc List : ASSOC LIST

= The structure’s interface is the given one,
not the default interface that exposes
everything

Hidden implementation

= Now clients cant see implementation, nor guess it
- val s - Assoc_List.empty;

val teams = - : (''a,'b) Assoc_List.assoc_list

- val teams’ = "Mariners"::"Yankees"::teams;
Error: operator and operand don't agree
operator: string * ng list
operand: string * ,'Y) Assoc_List.assoc_list

- Assoc_List.helper (.);
Error: unbound variable helper in path
Assoc_List.helper

- type Records = (string,.) Assoc_List.assoc_list;

type Records = (string,..) Assoc_List.assoc_list

- fun sortStandings (nil:Records) :Records = nil

B sortStandings (pivot::rest) = ...;

Error: pattern and constraint don't agree
pattern: ‘7 list
constraint: Records

in pattern: nil : Records
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