CSE P 505:
Programming Languages

Craig Chambers
Fall 2003

Some thoughts on language

= "But if thought corrupts language, language can also
corrupt thought.”

= George Orwell, Politics and the English Language, 1946

= "If you cannot be the master of your language, you
must be its slave.”

= Richard Mitchell
“A different language is a different vision of life.”

= Federico Fellini
“The language we use ... determines the way in
which we view and think about the world around us.”
= The Sapir-Whorf hypothesis

Why study
programming languages?

= Knowing many languages broadens thought
= better ways to organize software
= in both existing and new languages
= better ways to divide responsibilities among tools and
humans
= To understand issues underlying language designs,
debates, etc.
» Language design impacts software engineering,
software quality, compilers & optimizations
= Some language tools can aid other systems
= E.g., extensible/open but safe systems

Course overview (1/2)

= Part 1: functional languages
= A practical example: ML
= Other exposure: Scheme, Haskell
= Theoretical foundations: lambda calculi,
operational semantics, type theory
= Project: a Scheme interpreter & type
inferencer, implemented in ML

Course overview (2/2)

= Part 2: object-oriented languages
= A practical example: Cecil
= Other exposure: Self, Java/C#, EML
= Theoretical foundations

= Project: a Self interpreter & type checker,
implemented in Cecil (maybe)

Course work

= Readings

= Weekly homework
= Some moderate programming
= Some paper exercises

= Midterm

» Final

Language Design Overview

Some language design goals

= Be easy to learn

= Support rapid (initial) development

= Support easy maintenance, evolution
= Foster reliable, safe software

= Foster portable software

= Support efficient software

Some means to those goals

= Simplicity
= But what does “simple” mean?
= Readability
= Writability
= Expressiveness

= Well-defined, platform-independent,
safe semantics

The problem

= Many goals in conflict

=language design is an engineering &
artistic activity
=need to consider target audience’s needs

Some target audiences

= Scientific, numerical computing
= Fortran, APL, ZPL
= Systems programming
» C, C++, Modula-3
= Applications programming
= Java, C#, Lisp, Scheme, ML, Smalltalk, Cecil, ...
Scripting, macro languages
= Sh, Perl, Python, Tcl, Excel macros, ...
Specialized languages
= SQL, LATgX, PostScript, Unix regular expressions,

1

Main PL concepts (1/2)

= Separation of syntax, semantics, and
pragmatics
= EBNF to specify syntax precisely
= Semantics is more important than syntax

. Pra?matlcs programmmg style, intended use,
performance model

= Control structures
= Iteration, conditionals; exceptions
= Procedures, functions; recursion
= Message passing
= Backtracking
= Parallelism

Main PL concepts (2/2)

» Data structures, types
= Atomic types: numbers, chars, bools
= Type constructors: records, tuples, lists, arrays, functions, ...
= User-defined abstract data types (ADTSs); classes
= Polymorphic/parameterized types
= Explicit memory management vs. garbage collection
= Type checking
= Static vs. dynamic typing
= Strong vs. weak typing
= Type inference
= Lexical vs. dynamic scoping
= Eager vs. lazy evaluation

13

Some good
language design principles

= Strive for a simple, regular, orthogonal model
= In evaluation, data reference, memory management, ...
= E.g. be expression-oriented, reference-oriented
= Include sophisticated abstraction mechanisms
= Define and name abstractions once then use many times
= For control, data, types, ...
= Include polymorphic static type checking
= Have a complete & precise language specification
= Full run-time error checking for cases not detected statically

Partial history of
programming languages

60

70

80

90

00

Fortran Cobol Lisp
Algol 60
Basic
Fortran 66 Simula 67
Prolog
Pascal
Sch
c Smaltalk 7€™€
Fortran 77 \ \ ML
Ada i
X Cit Commfn Lisp
Modula-3 Self CLos
Fortran 90 odula \ N —
HPF Cecil
N, Java
ZPL)
.
C#]
G MultiJava EML

ML

Main features

= Expression-oriented
= List-oriented, garbage-collected heap-based
= Functional
= Functions are first-class values
» Largely side-effect free
= Strongly, statically typed
= Polymorphic type system
= Automatic type inference
Pattern matching
Exceptions
Modules
Highly regular and expressive

17

History

= Designed as a Meta Language for
automatic theorem proving system in
mid 70’s by Milner et al.

= Standard ML: 1986
= SML'97: 1997
= Caml: a French version of ML, mid 80's

= O'Caml: an object-oriented extension of
Caml, late 90's

Interpreter interface

» Read-eval-print loop
= Read input expression
= Reading ends with semicolon (not needed in files)
= = prompt indicates continuing expression on next line
= Evaluate expression
= it (re)bound to result, in case you want to use it again
= Print result

= repeat
-3+ 4;
val it = 7 : int
- it + 5
val it = 12 int
- it + 5
val it = 17 : int

19

Basic ML data types and
operations

= ML is organized around types

= each type defines some set of values of that type

= each type defines a set of operations on values of that type
= int

=~ 4 -, %, div, mod; =, <>, <, >, <=, >=; real, chr
= real

n o~ 4, -, %, /1<, > <=, >= (no equality);

floor, ceil, trunc, round

= bool: different from int

= true, false; =, <>; orelse, andalso
= string

s €g."T said \"hi\"\tin dir C:\\stuff\\dir\n"

. =<,
= char
= eg. #"a", #"\n"
s =, <> ord, str

Variables and binding

= Variables declared and initialized with a val binding
- val x:int = 6;
val x = 6 : int
- val y:int = x * x;
val y = 36 : int
= Variable bindings cannot be changed!

= Variables can be bound again, o
but this shadows the previous definition
- val y:int = y + 1;
val y = 37 : int (* a new, different y *)
= Variable types can be omitted
= they will be inferred by ML based on the type of the r.h.s.

-valz =x *y+5;
val z = 227 : int

21

Strong, static typing

ML is statically typed: it will check for type
errors statically

= when programs are entered, not when they’re run
= ML is strongly typed: it will catch all type
errors (a.k.a. it's type-safe)

= But which errors are type errors?

= Can have weakly, statically typed languages,
and strongly, dynamically typed languages

Type errors

= Type errors can look weird, given ML's fancy
type system
- asd;
Error: unbound variable or constructor: asd
-3+ 4.5;
Error: operator and operand don’t agree
operator domain: int * int

operand: int * real
in expression:
3 + 4.5
-3/ 4;
Error: overloaded variable not defined at type
symbol: /

type: int

23

Records

= ML records are like C structs
= allow heterogeneous element types, but fixed # of elements
= Arecord type: {name:string, age:int}
= field order doesn’t matter
= Arecord value: {name="Bob Smith", age=20}
= Can construct record values from expressions for
field values

= as with any value, can bind record values to variables
- val bob = {name="Bob " * "Smith",
= age=18+num_years_in_college};
val bob = {age=20,name="Bob Smith"}
: {age:int,name:string}

Accessing parts of records

= Can extract record fields using
#fieldname function
= like C's - > operator, but a regular function
- val bob’ = {name = #name (bob),
= age = #age (bob) +1};
val bob’ = {age=21,name="Bob Smith"}
s)
= Cannot assign/change a record’s fields
=an immutable data structure

25

Tuples

» Like records, but fields ordered by position, not label
= Useful for pairs, triples, etc.

= Atuple type: string * int
= order does matter

= Atuple value: ("Joe Stevens", 45)

= Can construct tuple values from expressions for

elements

= as with any value, can bind tuple values to variables

- val joe = ("Joe "“"Stevens", 25+num_jobs*10);
val joe = ("Joe Stevens",45) : string * int

Accessing parts of tuples

= Can extract tuple fields using #n
function

- val joe’ = (#1(joe), #2(joe)+1);
val joe’ = ("Joe Stevens",b46)
: string * int
= Cannot assign/change a tuple’s
components

=another immutable data structure

27

Lists

= ML lists are built-in, singly-linked lists
= homogeneous element types, but variable # of elements
» Alist type: int list
= ingeneral: T list, for any type T
= Alistvalue: [3, 4, 5]
= Empty list: [] ornil
= null (Ist): testsif Istisnil
= Can create a list value using the [..] notation

= elements are expressions
- val 1st = [1+2, 8 div 2, #age(bob)-15];
val 1st = [3,4,5] : int list

Basic operations on lists

= Add to front of list, non-destructively:
:: (an infix operator)
- val 1stl = 3::(4::(5::nil));
val 1stl = [3,4,5] : int list
- val 1lst2 = 2::1stl;
val 1st2 = [2,3,4,5] : int list

29

Basic operations on lists

» Adding to the front allocates a new link;
the original list is unchanged and still
available

- 1lstl;

val it = [3,4,5] : int list

- 1lst2;

val it = [2,3,4,5] : int list

Ist1
Eﬂ%}@}@} i

More on lists

= Lists can be nested:
- (3 :: nil) :: (4 :: 5 :: nil) :: nil;
val it = [[3],[4,5]]: int list list

= Lists must be homogeneous:
- [3, "hi there"];

Error: operator and operand don’t agree
operator domain: int * int list

operand: int * string list
in expression:
(3 : int) :: "hi there" :: nil

31

Manipulating lists

= Look up the first (“head”) element: hd
- hd(1lstl) + hd(lst2);
val it = 5 : int

= Extract the rest (“tail”) of the list: £1
- val 1st3 = tl(lstl);
val 1st3 = [4,5] : int list
- val 1lst4 = tl(tl(1lst3));
val lst4 = [] : int list
- tl(lst4); (* or hd(lst4) *)
uncaught exception Empty

= Cannot assign/change a list's elements
= another immutable data structure

First-class values

= All of ML's data values are first-class
= there are no restrictions on how they can be created, used,
passed around, bound to names, stored in other data
structures,
= One consequence: can nest records, tuples, lists
arbitrarily
« an example of orthogonal design
{foo=(3, 5.6, "seattle"),
bar=[[3,4]1, [5,6,7,8], [1, [1,2]11}
: {bar:int list list, foo:int*real*string}
= Another consequence: can create initialized,
anonymous values directly, as expressions
= instead of using a sequence of statements to first declare
(allocate named space) and then assign to initialize

33

Reference data model

= A variable refers to a value (of whatever type), uniformly
A record, tuple, or list refers to its element values, uniformly
= all values are implicitly referred to by pointer

A variable binding makes the l.h.s. variable refer to its r.h.s.
value
No implicit copyintg upon binding, parameter passing,
returning from a function, storing in a data structure
= like Java, Scheme, Smalltalk, ... (all high-level languages)
= unlike C, where non-pointer values are copied
= Carrays?

= Reference-oriented values are heap-allocated (logically)
= scalar values like ints, reals, chars, bools, nil optimized

Garbage collection

ML provides several ways to allocate & initialize new values
= (), {ed LD e

But it provides no way to deallocate/free values that are no
longer being used

Instead, it provides automatic garbage collection
= when there are no more references to a value (either from
variables or from other objects), it is deemed garbage, and the
system will automatically deallocate the value
~+dan ling pointers impossible
(could not guarantee type safety without this!)
storage leaks impossible
simpler programming
can be more efficient!
— less ability to carefully manage memory use & reuse
= GCs exist even for C & C++, as free libraries

35

Functions

= Some function definitions:
- fun square(x:int):int = x * x;
val square = fn : int -> int
- fun swap(a:int, b:string):string*int = (b,a);
val swap = fn : int * string -> string * int
= Functions are values with types of the form
Targ => Tresult
= use tuple type for multiple arguments
= use tuple type for multiple results (orthogonality!)
= * binds tighter than - >

= Some function calls:

- square(3); (* parens not needed! *)
val it = 9 : int
- swap(3 * 4, "billy" * "bob"); (*parens needed*)

val it = ("billybob",612) : string * int

Expression-orientation

= Function body is a single expression

fun square(x:int):int = x * x
= not a statement list
= NO return keyword
» Like equality in math
= a call to a function is equivalent to its body,
after substituting the actuals in the call for its formals
square (3) < (x*x) [x—>3] < 3%3
= There are no statements in ML, only expressions
= simplicity, regularity, and orthogonality in action
= What would be statements in other languages
are recast as expressions in ML

37

If expression

= General form: if test then el else e2

= return value of either e1 or e2,
based on whether test is true or false

= cannot omit else part

- fun max(x:int, y:int):int =
= if x >= y then x else y;
val max = fn : int * int -> int

= Like 2 : operatorin C
= don't need a distinct if statement

Static typechecking of
if expression

= What are the rules for typechecklng an if expression?
What's the type of the result of i£?

= Some basic principles of typechecking:
= values are members of types

= the type of an expression must include all the values that might possibly
result from evaluating that expression at run-tim

= Requirements on each if expression:
= the type of the test expression must be bool

= the type of the result of the if must include whatever values might be
returned from the if
= the if might return the result of either e1 or e2

= Asolution: e1 and e2 must have the same type,
and that type is the type of the result of the i f expressnon

39

Let expression

= let: an expression that introduces a new nested scope with
local variable declarations
= unlike { .. } statements in C, which don’t compute results
= like a gcc extension?
General form:
let val id,:type, = e,

val id,:type,
in e, end
= type, are optional; they'll be inferred from the e,
= Evaluates each e, and binds it to id,, in turn
= each e, can refer to the previous id...id, , bindings
= Evaluates e, , and returns it as the result of the 1et expression
= e, can refer to all the id...id, bindings
= The id. bindings disappear after e, is evaluated
= they're in a nested, local scope

e,

40

Example scopes

- val x = 3;

val x = 3 : int

- fun f(y:int):int =

= let val z = X + Yy

= val x = 4

= in (let val y = z + x
= in x + y + z end)
= +X + Y+ 2

: int -> int

41

“Statements”

= For expressions that have no useful result,
return empty tuple, of type unit:
- print ("hi\n");
hi
val it = () : unit
= Expression sequence operator: ;
(an infix operator, like C's comma operator)
= evaluates both “arguments”, returns second one
- val z = (print("hi "); print("there\n"); 3);
hi there
val z = 3 : int

42

Type inference for functions

» Declaration of function result type can be omitted
= infer function result type from body expression result type
- fun max(x:int, y:int) =
= if x >= y then x else y;
val max = fn : int * int -> int
= Can even omit formal argument type declarations
=« infer all types based on how arguments are used in body

= constraint-based algorithm to do type inference
- fun max(x, y) =
= if x >= y then x else y;
val max = fn : int * int -> int

43

Functions with many possible
types

= Some functions could be used on arguments of different types
= Some examples:

= null:cantestanint list,orastring list,or...;
in general, work on a list of any type T

null: T list -> bool
hd: similarly works on a list of any type T, and returns an element
of that type:

hd: T list -> T

= swap: takes a pair of an A and a B, returns a pair of a B and an A:

swap: A * B -> B * A

= How to define such functions in a statically-typed language?

= in C: can't (or have to use casts)

= in C++: can use templates (but can't check separately)

= in ML: allow functions to have polymorphic types

Polymorphic types

= A polymorphic type contains one or more type
variables
= an identifier starting with a quote
'a list
‘a % b ¥ ta % e
{x:'a, y:'b} list * 'a -> 'b
= A polymorphic type describes a set of possible types,
where each type variable is replaced with some type
= each occurrence of a type variable must be replaced with
the same type
('a * 1b * 1a * 10)
['a—int, 'b-string, 'c—real-sreall
< (int * string * int * (real->real))

45

Polymorphic functions

= Functions can have polymorphic types:

null : 'a list -> bool

hd : 'a list -> 'a

tl : 'a list -> 'a list

(op ::): 'a * 'a list -> 'a list
swap : 'a* 'b -> 'b *x 'a

46

Calling polymorphic functions

= When calling a polymorphic function, need to find the
instantiation of the polymorphic type into a regular
type that's appropriate for the actual arguments
= caller knows types of actual arguments

= can compute how to replace type variables so that the
replaced function type matches the argument types
= derive type of result of call

= Example: hd([3,4,5])

type of argument: int list

type of function: 'a list -> 'a

replace 'a with int to make a match

instantiated type of hd for this call: int 1list -> int
type of result of this call: int

47

Polymorphic values

= Regular values can polymorphic, too

nil: 'a list

= Each reference to ni1l finds the right
instantiation for that use, separately
from other references

(3 :: 4 :: nil) :: (5 :: nil) :: nil

48

Polymorphism versus overloading

» Polymorphic function: same function usable for

many different types
- fun swap(i,j) = (3,1);
val swap = fn : 'a * 'b -> 'b * 'a

= Overloaded function: several different functions,
but with same name
= the name + is overloaded
= a function of type int*int->int
= a function of type real*real->real
= Resolve overloading to particular function based on:
= static argument types (in ML)
= dynamic argument classes (in object-oriented languages)

49

Example of overload resolution

-3 + 4;
val it = 7 : int

- 3.0 + 4.5;
val it = 7.5 : real

- (op +); (* which? default to int *)
val it = fn : int*int -> int

- (op +):real*real->real;
val it = fn : real*real -> real

Equality types

= Built-in = is polymorphic over all types that “admit equality”
= i.e., any type except those containing reals or functions
= Use ''a, ' 'b, etc. to stand for these equality types

- fun is same(x, y) = if x = y then "yes" else "no";
val is_same = fn : ''a * ''a -> string

- is_same(3, 4);

val it = "no" : string

- is_same({1=[3,4,5],h=("a
{1=13,4,5] ,h=("
val it = "yes" : string
- is_same(3.4, 3.4);
Error: operator and operand don’t agree [equality type

") wenil),

required]
operator domain: '’Z * ''Z
operand: real * real

in expression:
is same (3.4,3.4)

51

50
Loops, using recursion
= ML has no looping statement or
expression
= Instead, use recursion to compute a
result
fun append (11, 12) =
if null(11)
then 12
else hd(1l1l) :: append(tl(1l1l), 12)
val lstl = [3, 4]
val 1lst2 = [5, 6, 7]
val 1st3 = append(lstl, 1lst2)
52

Tail recursion

» Tail recursion: recursive call is last operation before
returning
= can be implemented just as efficiently as iteration, in both
time and space, since tail-caller isn't needed after callee
returns

= Some tail-recursive functions:
fun last(lst) =
let val tail = tl(lst)
in if null(tail) then hd(lst) else last(tail) end
fun includes(lst, x) =
if null(lst) then false

else if hd(lst) = x then true
else includes(tl(lst), x)
= append?

53

Converting to tail-recursive form

= Can often rewrite a recursive function into a tail-recursive one
= introduce a helper function (usually nested)
= the helper function has an extra accumulator argument
» the accumulator holds the partial result computed so far
= accumulator returned as full result when base case reached
= This isn't tail-recursive:
fun fact(n) =
if n <= 1 then 1
else fact(n-1) * n
= Thisis:
fun fact(no0) =
let fun fact_helper(n, res) =
if n <= 1 then res
else fact_helper(n-1, res*n)
in fact_helper(n0, 1) end

Pattern matching

= Pattern-matching: a convenient syntax for extracting
components of compound values (tuple, record, or list)
= A pattern looks like an expression to build a compound value,
but with variable names to be bound in some places
= cannot use the same variable name more than once
= Use pattern in place of variable on I.h.s. of val binding
= anywhere val can appear: either at top-level or in let
(orthogonality & regularity)

- val x = (false, 17);
val x = (false,17) : bool*int
- val (a, b) = x;

val a = false : bool

val b = 17 : int

- val (rootl, root2) = quad_roots(3.0, 4.0, 5.0);
val rootl = 0.786299647847 : real

val root2 = ~2.11963298118 : real

55

More patterns

= List patterns:

val zs = [é,s, 7] : int list

= Constants (ints, bools, strings, chars, nil) can be patterns:
- val (x, true, 3, "x", z) = (5.5, true, 3, "x", [3,4]);
val x = 5.5 : real
val z = [3,4] : int list

= If don't care about some component, can use a wildcard: _

_:i_s:zs) = [3,4,5,6,7];

val zs = [5,6,7] : int list

= Patterns can be nested, too

= orthogonality

- val (

Function argument patterns

= Formal parameter of a fun declaration can be a pattern
- fun swap (i, j) = (j, i);
val swap = fn : 'a * 'b -> 'b * 'a
- fun swap2 p = (#2 p, #1 p);
val swap2 = fn : 'a * 'b -> 'b * 'a
- fun swap3 p = let val (a,b) = p in (b,a) end;
val swap3 = fn : 'a * 'b -> 'b * 'a
- fun best_friend {student={name=n,age=_},
grades=_,
best_friends={name=f,age=_}::_} =
n * "'s best friend is " * f;
val best_friend = fn
: {best_friends:{age:'a, name:string} list,
grades: 'b,
student:{age:'c, name:string}}
-> string

= In general, patterns allowed wherever binding occurs

57

56
= Often a function’s implementation can be broken down into
several different cases, based on the argument value
= ML allows a single function to be declared via several cases
= Each case identified using pattern-matching
= cases checked in order, until first matching case
- fun fib 0
| £ib 1
| £fib n = fib(n-1) + fib(n-2);
val fib = fn : int -> int
- fun null nil = true
| null (_ = false;
val null = fn 'a list -> bool
- fun append(nil, 1lst) = lst
| append (x::xs,1st) = x :: append (xs,lst);
val append = fn : 'a list * 'a list -> 'a list
= The function has a single type
= all cases must have same argument and result types
58

Missing cases

= What if we don't provide enough cases?
= ML gives a warning message “match nonexhaustive”
when function is declared (statically)
= ML raises an exception “nonexhaustive match failure”
if invoked and no existing case applies (dynamically)
- fun first_elem (x::xs) = X;
Warning: match nonexhaustive
X iioxs => ...
val first elem = fn : 'a list -> 'a
- first_elem [3,4,5];
val it = 3 : int
- first_elem [];
uncaught exception nonexhaustive match failure

= How would you provide an implementation of this missing case
fornil?

- fun first_elem (x::xs)
= | first_elem nil

x
222

59

Exceptions

= If get in a situation where you can't produce a normal value of
the right type, then can raise an exception
= aborts out of normal execution
= can be handled by some caller
= reported as a top-level “uncaught exception” if not handled
= Step 1: declare an exception that can be raised
- exception EmptyList;
exception EmptyList

= Step 2: use the raise expression where desired

- fun first_elem (x::xs) = x
| first_elem nil - raise EmptyList;
val first_elem = fn : 'a list -> 'a (* no warning! *)

- first_elem [3,4,5];

val it = 3 : int

- first_elem [];

uncaught exception EmptyList

60

10

Handling exceptions

» Add handler clause to expressions to handle
(some) exceptions raised in that expression

expr handle exn name, => expr;

| exn_name, => expr,

| exn name, => expr,
s if expr raises exn name,, then evaluate and
return expr, instead
- fun second elem 1 = first_elem (tl 1);
val second elem = fn : 'a list -> 'a
- (second_elem [3] handle EmptyList => ~1) + 5
val it = 4 : int

61

Exceptions with arguments

= Can have exceptions with arguments

- exception IOError of int;
exception IOError of int;

- (... raise IOError(-3) ...)
handle IOError(code) => ... code ...

62

Type synonyms

= Can give a name to a type, for convenience
= name and type are equivalent, interchangeable

- type person = {name:string, age:int};
type person = {age:int, name:string}

- val p:person = {name="Bob", age=18};
val p = {age=18,name="Bob"} : person

- val p2 = p;

val p2 = {age=18,name="Bob"} : person
- val p3:{name:string, age:int} = p;
val p3 = {age=18,name="Bob"}

: {age:int, name:string}

63

Polymorphic type synonyms

= Can define polymorphic synonyms
- type 'a stack = 'a list;
type ’‘a stack = ’‘a list
- val emptyStack:'a stack = nil;
val emptyStack = [] : ’a stack

= Synonyms can have multiple type parameters
- type (''key, 'value) assoc_list =
= ("'key * 'value) list;
type (’a,’b) assoc_list = (’a * ’b) list

- val grades: (string, int) assoc_list =

= [("Joe", 84), ("Sue", 98), ("Dude", 44)];

val grades=/[("Joe",84), ("Sue",98), ("Dude",644)]
: (string,int) assoc_list

Datatypes

» Users can define their own (polymorphic) data
structures
= a new type, unlike type synonyms
= Simple example: ML's version of enumerated types
- datatype sign = Positive | Zero | Negative;
datatype sign = Negative | Positive | Zero
= declares a type (sign) and a set of alternative constructor
values of that type (Positive etc.)
= order of constructors doesn’t matter
= Another example: bool
- datatype bool = true | false
datatype bool = false | true

65

Using datatypes

= Can use constructor values as regular
values

= Their type is a regular type
- fun signum(x) =
= if x > 0 then Positive
= else if x = 0 then Zero
= else Negative;
val signum = fn : int -> sign

66

11

Datatypes and pattern-matching

= Constructor values can be used in
patterns, too

- fun signum(Positive) = 1
= | signum(Zero) =0
= | signum(Negative) = ~1;

val signum = fn : sign -> int

67

Datatypes with data

= Each constructor can have data of particular type
stored with it
= constructors with data are functions that allocate & initialize
new values with that “tag”
- datatype LiteralExpr =
= Nil |
= Integer of int |
= string of string;

datatype LiteralExpr =
Integer of int | Nil | String of string

- Nil;
val it = Nil : LiteralExpr
- Integer(3);

val it = Integer 3 : LiteralExpr
- String("xyz");
val it = String "xyz" : LiteralExpr

Pattern-matching on datatypes

= The only way to access components of a
value of a datatype is via pattern-matching

= Constructor “calls” can be used in patterns to
test for and take apart values with that “tag”

- fun toString(Nil) = "nil"
= | tostring(Integer(i)) = Int.toString(i)
= | tostring(string(s)) = "\"" * s * w\nv;

val toString = fn : LiteralExpr -> string

68
= Many datatypes are recursive: one or more constructors are
defined in terms of the datatype itself
- datatype Expr =
- wil |
= Integer of int |
= string of string |
= Variable of string
= Tuple of Expr list
= BinOpExpr of {argl:Expr, operator:string, arg2:Expr}
= FnCall of {function:string, arg:Expr};
datatype Expr = ...
- val el = Tuple [Integer(3), String("hi")]; (* (3,"hi") *)
val el = Tuple [Integer 3,String "hi"] : Expr
= (Nil, Integer, and String of LiteralExpr are shadowed)
70

69
Another example Expr value
(* £(3+x, "hi") *)
- val e2 =
= FnCall {
= function="£f",
= arg=Tuple [
= BinOpExpr {argl=Integer(3),
= operator="+",
= arg2=Variable ("x") },
- String("hi")1};
val e2 = .. : Expr
71

Recursive functions over
recursive datatypes

= Often manipulate recursive datatypes with recursive
functions
= pattern of recursion in function matches pattern of recursion

in datatype
- fun toString(Nil) = "nil"
| tostring(Integer(i)) = Int.toString(i
| tostring(String(s)) = "\"" % g * n\nv
| tostring(Variable(name)) = name
I

toString(Tuple (elems)) =
"(n % listToString(elems) * ")"
toString (BinOpExpr{argl, operator,arg2})=
toString(argl) * " " * operator
toString(arg2)
toString(FnCall{function,arg}) =
function * "(" * toString(arg) * ")"

val toString = fn : Expr -> string

12

Mutually recursive functions
and datatypes

= If two or more functions are defined in terms
of each other, recursively, then must be
declared together, and linked with and

fun toString(...) = ... listToString ...
and listToString(([]) = ""
| listToString([elem]) = toString(elem)
| listTostring(e::es) =
toString(e) * "," * listToString(es);

= If two or more mutually recursive datatypes,
then declare them together, linked by and

datatype Stmt = ... Expr ...
and Expr = ... Stmt ...

73

A convenience:
record pattern syntactic sugar

= Instead of writing {a=a, b=b, c=c}
as a pattern, can write {a,b, c}
= E.g.
. BinOpExpr{argl, operator,arg2}
= is short-hand for
. BinOpExpr{argl=argl,
operator=operator,
arg2=arg2}

Polymorphic datatypes

= Datatypes can be polymorphic
- datatype 'a List = Nil
= | Cons of 'a * 'a List;
datatype 'a List = Cons of 'a * 'a List | Nil
- val lst = Cons(3, Cons(4, Nil));
val lst = Cons (3, Cons (4, Nil)) : int List

- fun Null (Nil) = true

= | Null(Cons(_,)) = false;

val Null = fn : 'a List -> bool

- fun HA(Nil) = raise Empty

= | Hd(Cons(h,_)) = h;

val Hd = fn : 'a List -> 'a

- fun Sum(Nil) = 0

= | Sum(Cons(x,xs)) = x + Sum(xs);

val Sum = fn : int List -> int

Modules for name-space
management

= A file full of types and functions can be cumbersome to manage
= Would like some hierarchical organization to names

= Modules allow grouping declarations to achieve a hierarchical

name-space

= ML structure declarations create modules

- structure Assoc_List = struct

type (''k,'v) assoc_list = (''k*'v) list
val empty = nil
fun store(alist, key, value) = ...
= fun fetch(alist, key) = ...

= end;
structure Assoc List : sig
type ('a,'b) assoc_list = ('a*'b) list
val empty : ‘'a list
val store : ('’a*'b) list * ''a * 'b -> ('’a*'b) list
val fetch : ('’a*'b) list * ''a -> 'b
end

75
= To access declarations in a structure, can use dot notation
- val league = Assoc_List.empty;
val 1 = [] : 'a list
- val league = Assoc_List.store(league, "Mariners", {..});
val league = [("Mariners”, {..})] : (string * {..}) list
- Assoc_List.fetch("Mariners");
val it = {wins=78,6losses=4} : {..}
= Other definitions of empty, store, fetch, etc. don't clash
= Common names can be reused by different structures
77

The open declaration

= To avoid typing a lot of structure names, can use the
open struct_name declaration to introduce local
synonyms for all the declarations in a structure
= usually in a let, local, or within some other structure
fun add_first_team(name) =
let
open Assoc_List
(* imports assoc_list, empty, store, fetch *)
val init = {wins=0,losses=0}
in
store (empty,name, init)
(* Assoc_List.store (Assoc_List.empty,
name, init) *)
end

13

Modules for encapsulation

= Want to hide details of data structure implementations from
clients, i.e., data abstraction
= simplify interface to clients
= allow implementation to change without affecting clients
= In C++ and Java, use public/private annotations
= InML:
= define a signature that specifies the desired interface
= specify the signature with the structure declaration

= E.g. a signature that hides the implementation of assoc_list:
- signature ASSOC_LIST = sig
= type (''k,'v) assoc list (* no rhs! *)

val empty : (''k,'v) assoc_list
val store : (''k,'v) assoc_list * ''k * 'v ->
("'k,'v) assoc_list
val fetch : (''k,'v) assoc_list * ''k -> 'v
= end;
signature ASSOC_LIST = sig ... end

79

Specifying the signatures of
structures

= Specify desired signature of structure when
declaring it:
- structure Assoc_List :> ASSOC_LIST = struct
= type (''k,'v) assoc_list = (''k*'v) list
= val empty = nil
= fun store(alist, key, value) =
= fun fetch(alist, key) =
= fun helper(...) =
= end;
structure Assoc List : ASSOC LIST

= The structure’s interface is the given one,
not the default interface that exposes
everything

Hidden implementation

= Now clients cant see implementation, nor guess it
- val s - Assoc_List.empty;

val teams = - : (''a,'b) Assoc_List.assoc_list

- val teams’ = "Mariners"::"Yankees"::teams;
Error: operator and operand don't agree
operator: string * ng list
operand: string * ,'Y) Assoc_List.assoc_list

- Assoc_List.helper (.);
Error: unbound variable helper in path
Assoc_List.helper

- type Records = (string,.) Assoc_List.assoc_list;

type Records = (string,..) Assoc_List.assoc_list

- fun sortStandings (nil:Records) :Records = nil

B sortStandings (pivot::rest) = ...;

Error: pattern and constraint don't agree
pattern: ‘7 list
constraint: Records

in pattern: nil : Records

81

14

