
Simply-typed Lambda Calculus

Todd Millstein

October 26, 2002

This document formally defines the call-by-value simply-typed lambda calculus (with booleans) and provides a
proof of type soundness. It is meant only as a reference, and assumes familiarity with the basic notions involved.

1 Syntax

The metavariablex ranges over an infinite set of variable names. The metavariablee ranges over expressions (terms).
The metavariableT ranges over types. The metavariablev ranges over values.

e ::= x j �x : T:e j e1 e2
truej falsej if e1 thene2 elsee3

T ::= Bool j T1 ! T2
v ::= �x : T:e j truej false

2 Operational Semantics

2.1 Substitution

The substitution function is defined below. We assume that renaming of bound variables is applied as necessary to
make the side conditions of the third case hold.

[x 7! e]x = e
[x 7! e]x0 = x0 if x 6= x0

[x 7! e](�x0 : T 0:e0) = �x0 : T 0:[x 7! e]e0 if x 6= x0 andx0 not free ine
[x 7! e](e1 e2) = [x 7! e]e1 [x 7! e]e2
[x 7! e]true = true
[x 7! e]false = false
[x 7! e]if e1 thene2 elsee3 = if [x 7! e]e1 then[x 7! e]e2 else[x 7! e]e3

2.2 Inference Rules

The notatione �! e0 means “expressione evaluates toe0 in one step.”

(�x : T:e)v �! [x 7! v]e
(E-AppRed)

e1 �! e0
1

e1 e2 �! e0
1
e2

(E-App1)

e �! e0

v e �! v e0
(E-App2)

if true thene2 elsee3 �! e2
(E-IfTrue)

if false thene2 elsee3 �! e3
(E-IfFalse)

e1 �! e0
1

if e1 thene2 elsee3 �! if e0
1

thene2 elsee3
(E-If)

1

2.3 Stuck Expressions

An expressione is stuckif it is not a value but there is noe0 such thate �! e0. The stuck expressions can be thought
of as the set of possible run-time “type” errors. The grammar of stuck expressions is as follows:

stuck ::= x
stucke j truev j falsev
v stuck
if stuck thene2 elsee3
if �x : T:e thene2 elsee3

3 Typechecking Rules

The metavariable� represents atype environment, which is a set of (variable name, type) pairs. Each pair with variable
namex and typeT is denotedx : T . We assume that a type environment has at most one pair for a given variable
name; this can always be ensured via renaming of bound variables. If� = fx1 : T1; : : : ; xn : Tng, then we define
dom(�) = fx1; : : : ; xng.

A judgement of the form� ` e : T means “expressione has typeT under the typing assumptions in�.” If the �
component is missing from a judgement, the type environment is assumed to be the empty set.

x : T 2 �
� ` x : T

(T-Var)

� [fx : T1g ` e : T2

� ` (�x : T1:e) : T1 ! T2
(T-Abs)

� ` e1 : T2 ! T � ` e2 : T2
� ` e1 e2 : T

(T-App)

� ` true : Bool
(T-True)

� ` false : Bool
(T-False)

� ` e1 : Bool � ` e2 : T � ` e3 : T

� ` if e1 thene2 elsee3 : T
(T-If)

4 Type Soundness

Lemma (Canonical Forms):

a. If � ` v : T1 ! T2 thenv has the form�x : T1:e.

b. If � ` v : Bool thenv is either true or false.

Proof: Immediate from rules T-Abs, T-True, and T-False, and the fact that no other typing rules apply to values.

Theorem (Progress): If̀ e : T , then eithere is a value or there existse0 such thate �! e0 (equivalently, If` e : T ,
thene is not stuck).
Proof: By (strong) induction on the depth of the derivation of` e : T . Case analysis of the last rule in the derivation:

� Case T-Var: Thene = x andx : T 2 ;, so we have a contradiction. Therefore, T-Var cannot be the last rule in
the derivation.

� Case T-Abs: Thene = �x : T1:e1, soe is a value.

� Case T-App: Thene = e1 e2 and` e1 : T2 ! T and` e2 : T2. By the inductive hypothesis, we have that either
e1 is a value or there existse0

1
such thate1 �! e0

1
. Similarly, eithere2 is a value or there existse0

2
such that

e2 �! e0
2
. We perform a case analysis on these possibilities:

2

– Case there existse0
1

such thate1 �! e0
1
: Then by E-App1 we havee1 e2 �! e0

1
e2.

– Casee1 is a valuev1: There are two sub-cases.

� Case there existse0
2

such thate2 �! e0
2
: Then by E-App2 we havev1 e2 �! v1 e

0

2
.

� Casee2 is a valuev2: Since` e1 : T2 ! T ande1 is a valuev1, by the Canonical Forms lemma we
have thate1 has the form�x : T 0:e3. Therefore by E-AppRed we have(�x : T 0:e3)v2 �! [x 7!
v2]e3.

� Case T-True: Thene = true, soe is a value.

� Case T-False: Thene = false, soe is a value.

� Case T-If: Thene = (if e1 thene2 elsee3) and` e1 : Bool and` e2 : T and` e3 : T . By the inductive
hypothesis, we have that eithere1 is a value, or there existse0

1
such thate1 �! e0

1
. In the latter case, by E-If we

have that (ife1 thene2 elsee3) �! (if e0
1

thene2 elsee3). In the former case, by the Canonical Forms lemma
we have thate1 is either true or false. Ife1 is true, then by E-IfTrue we have that (ife1 thene2 elsee3) �! e2.
If e1 is false, then by E-IfFalse we have that (ife1 thene2 elsee3) �! e3.

Lemma (Weakening): If� ` e : T andx0 =2 dom(�), then� [fx0 : T0g ` e : T .
Proof: By (strong) induction on the depth of the derivation of� ` e : T . Case analysis of the last rule in the derivation:

� Case T-Var: Thene = x andx : T 2 �. Sincex0 =2 dom(�), we have thatx0 6= x. Thereforex : T 2 �[fx0 :
T0g, so by T-Var we have� [fx0 : T0g ` x : T .

� Case T-Abs: Thene = �x1 : T1:e2 andT = T1 ! T2 and� [fx1 : T1g ` e2 : T2. We assume thatx1 6= x0,
renamingx1 if necessary. Sincex0 =2 dom(�), alsox0 =2 dom(� [fx1 : T1g). Therefore by the inductive
hypothesis we have�[fx1 : T1g [fx0 : T0g ` e2 : T2. So by T-Abs we have�[fx0 : T0g ` (�x1 : T1:e2) :
T1 ! T2.

� Case T-App: Thene = e1 e2 and� ` e1 : T2 ! T and� ` e2 : T2. By the inductive hypothesis we have
� [fx0 : T0g ` e1 : T2 ! T and� [fx0 : T0g ` e2 : T2, so by T-App we have� [fx0 : T0g ` e1 e2 : T .

� Case T-True: Thene = true andT = Bool. Therefore by T-True we have� [fx0 : T0g ` true: Bool.

� Case T-False: Thene = false andT = Bool. Therefore by T-False we have� [fx0 : T0g ` false: Bool.

� Case T-If: Thene = (if e1 thene2 elsee3) and� ` e1 : Bool and� ` e2 : T and� ` e3 : T . By the inductive
hypothesis we have� [fx0 : T0g ` e1 : Bool and� [fx0 : T0g ` e2 : T and� [fx0 : T0g ` e3 : T , so by
T-If we have� [fx0 : T0g ` (if e1 thene2 elsee3): T .

Lemma (Substitution): If� [fx : Tg ` e0 : T 0 and� ` v : T , then� ` [x 7! v]e0 : T 0.
Proof: By (strong) induction on the depth of the derivation of� [fx : Tg ` e0 : T 0. Case analysis of the last rule in
the derivation:

� Case T-Var: Thene0 = x0 andx0 : T 0 2 � [fx : Tg. There are two subcases:

– Casex0 = x: Then[x 7! v]e0 = [x 7! v]x = v. Since we assume that� [fx : Tg has at most one
element for each variable name, we have thatT 0 = T . Finally, since� ` v : T , this case is proven.

– Casex0 6= x: Then[x 7! v]e0 = x0. Sincex0 : T 0 2 � [fx : Tg andx0 6= x, we havex0 : T 0 2 �.
Therefore by T-Var we have� ` x0 : T 0.

3

� Case T-Abs: Thene0 = �x0 : T0:e1 andT 0 = T0 ! T1 and�[fx : Tg[fx0 : T0g ` e1 : T1. Since� ` v : T ,
by Weakening (renamingx0 if necessary) we have� [fx0 : T0g ` v : T , so by the inductive hypothesis we
have� [fx0 : T0g ` [x 7! v]e1 : T1. Therefore by T-Abs we have� ` �x0 : T0:[x 7! v]e1 : T0 ! T1. Since
we can assume thatx 6= x0 andx0 not free inv, performing renaming as necessary, we have[x 7! v]e0 = �x0 :
T0:[x 7! v]e1, so the result follows.

� Case T-App: Thene0 = e1 e2 and� [fx : Tg ` e1 : T2 ! T 0 and� [fx : Tg ` e2 : T2. Then by the
inductive hypothesis we have� ` [x 7! v]e1 : T2 ! T 0 and� ` [x 7! v]e2 : T2, so by T-App we have
� ` [x 7! v]e1 [x 7! v]e2 : T 0. Since[x 7! v](e1 e2) = [x 7! v]e1 [x 7! v]e2, the result follows.

� Case T-True: Thene0 = true andT 0 = Bool. Then by T-True we have� ` true : Bool. Since[x 7! v]true =
true, the result follows.

� Case T-False: Thene0 = false andT 0 = Bool. Then by T-False we have� ` false: Bool. Since[x 7! v]false =
false, the result follows.

� Case T-If: Thene0 = (if e1 thene2 elsee3) and� [fx : Tg ` e1 : Bool and� [fx : Tg ` e2 : T 0 and
� [fx : Tg ` e3 : T 0. By the inductive hypothesis we have� ` [x 7! v]e1 : Bool and� ` [x 7! v]e2 : T 0 and
� ` [x 7! v]e3 : T 0, so by T-If we have� ` (if [x 7! v]e1 then[x 7! v]e2 else[x 7! v]e3): T 0. Since[x 7! v](if
e1 thene2 elsee3) = (if [x 7! v]e1 then[x 7! v]e2 else[x 7! v]e3), the result follows.

Theorem (Type Preservation): If� ` e : T ande �! e0, then� ` e0 : T .
Proof: By (strong) induction on the depth of the derivation of� ` e : T . Case analysis of the last rule in the derivation:

� Case T-Var: Thene = x. By inspection of the operational semantics, there is noe0 such thatx �! e0, so this
case is satisfied trivially.

� Case T-Abs: Similar to the previous case.

� Case T-App: Thene = e1 e2 and� ` e1 : T2 ! T and� ` e2 : T2. We’re given thate �! e0. Case analysis
of the last rule used in the derivation of this reduction step:

– Case E-App1: Thene0 = e0
1
e2 ande1 �! e0

1
. By the inductive hypothesis we have that� ` e0

1
: T2 ! T .

Therefore, by T-App we have� ` e0
1
e2 : T .

– Case E-App2: Thene0 = e1 e
0

2
ande2 �! e0

2
. By the inductive hypothesis we have that� ` e0

2
: T2.

Therefore, by T-App we have� ` e1 e
0

2
: T .

– Case E-AppRed: Thene1 = �x : T1:e3 ande2 = v ande0 = [x 7! v]e3. Since� ` e1 : T2 ! T ande1 =
�x : T1:e3, by inspection of the typing rules we have thatT1 = T2, so we have� ` �x : T2:e3 : T2 ! T .
By inspection, this derivation must end with rule T-Abs. Therefore we have that� [fx : T2g ` e3 : T .
Since� ` e2 : T2 ande2 = v we have� ` v : T2. Therefore by the Substitution lemma we have
� ` [x 7! v]e3 : T .

� Case T-True: Thene = true. By inspection, there is noe0 such that true�! e0, so this case is satisfied trivially.

� Case T-False: Similar to the previous case.

� Case T-If: Thene = (if e1 thene2 elsee3) and� ` e1 : Bool and� ` e2 : T and� ` e3 : T . We’re given that
e �! e0. Case analysis of the last rule used in the derivation of this reduction step:

– Case E-IfTrue: Thene0 = e2, so we have� ` e0 : T .

– Case E-IfFalse: Thene0 = e3, so we have� ` e0 : T .

4

– Case E-If: Then (ife1 thene2 elsee3) �! (if e0
1

thene2 elsee3), wheree1 �! e0
1
. By the inductive

hypothesis we have� ` e0
1
: Bool. Therefore by T-If we have� ` (if e0

1
thene2 elsee3): T .

Theorem (Type Soundness #1): If̀ e : T then eithere is a value or there existse0 such thate �! e0 and` e0 : T .
Proof: Since` e : T , by Progress eithere is a value or there existse0 such thate �! e0. In the latter case, by Type
Preservation we havèe0 : T .

Let
�

�! denote the reflexive, transitive closure of the�! relation.
Corollary (Type Soundness #2): If̀ e : T and the evaluation ofe terminates, then there existsv such thate

�

�! v
and` v : T .
Proof: Since` e : T , by Type Soundness #1 we have that eithere is a value or there existse0 such thate �! e0 and
` e0 : T . Since the evaluation ofe terminates, some evaluation ofe has finite length (number of reduction steps). We
prove this corollary by induction on the length of this evaluation ofe.

� Case length = 0: Then there does not existe0 such thate �! e0, soe must be a value. Therefore, this case is
proven by takingv = e.

� Case length =n, wheren > 0: Then there is at least one reduction step in the evaluation, soe is not a value.
Therefore there existse0 such thate �! e0 and` e0 : T . Since the evaluation ofe terminates, so does the
evaluation ofe0. Further, the evaluation ofe0 has lengthn� 1. Therefore, by the inductive hypothesis we have
that there existsv such thate0

�

�! v and` v : T . Sincee �! e0 ande0
�

�! v, we havee
�

�! v.

5

