Simply-typed Lambda Calculus

Todd Millstein
October 26, 2002

This document formally defines the call-by-value simply-typed lambda calculus (with booleans) and provides a
proof of type soundness. It is meant only as a reference, and assumes familiarity with the basic notions involved.

1 Syntax

The metavariable ranges over an infinite set of variable names. The metavakableges over expressions (terms).
The metavariabld@ ranges over types. The metavariablenges over values.

e = z|Xx:Tele e

true| false| if e; thene, elsee;
T = BOO|| T — 15
v = Az :T.e|true|false

2 Operational Semantics

2.1 Substitution

The substitution function is defined below. We assume that renaming of bound variables is applied as necessary to

make the side conditions of the third case hold.
[z — e]x = e

[z — e]x’ = if @ # 2

[z — e](Az' : T'.e") = X' :T'[z— e]e if # a' anda’ not free ine
[z — €](er e2) = [z eleg [z eles

[z — e]true = true

[z — e]false = false

[x — e]if e; theney elsee; = if [x — e]e; then[z — e]e, else[z — eles

2.2 Inference Rules

The notatiore — ¢’ means “expressionevaluates te’ in one step.”

Az : T.e)v — [z = vle (E-AppRed) if true thene; elseez — e (E-lfTrue)
er — €} (E-Appl) if false thene, elsee; —s e3 (E-lfFalse)
e1 ea — €] e
e— e er — €}
£ _ (E-App2 _ . E-If
ve —ve (E-App2) if e; thene, elsees — if €] thene, elsees (E-17)

2.3 Stuck Expressions

An expressiore is stuckif it is not a value but there is n@ such thae — ¢’. The stuck expressions can be thought
of as the set of possible run-time “type” errors. The grammar of stuck expressions is as follows:
stuck = 2
stucke | truew | falsev
v stuck
if stuck thene; elsees
if Ax : T.e thene, elsees

3 Typechecking Rules

The metavariabl€ represents type environmentvhich is a set of (variable name, type) pairs. Each pair with variable
namex and typeT is denotedr : 7. We assume that a type environment has at most one pair for a given variable
name; this can always be ensured via renaming of bound variablBs=1{z; : Ty,...,z, : T}, then we define
dom() ={xy,...,x,}.

A judgement of the formt" - e : T'means “expressionhas typ€el’ under the typing assumptionsiit’ If the T’
component is missing from a judgement, the type environment is assumed to be the empty set.

r:TeTl - (T-
Trs. T (T-Var) T I true : Bool (T-True)
Pu{z:Ti}Fe:Th (T-Abs) - faise - Bool (| " &5€)
T :Tie): Ty = Ts
The :Ty =T They: Ty (T-App) I'e :Bool T'key:T T'he3: T (T-1f)

F'kejey: T I' k- if e; thenes elsees : T

4 Type Soundness

Lemma (Canonical Forms):
a. fI'+wv: Ty = T thenv has the form\z : T} .e.
b. If ' - v : Bool thenv is either true or false.

Proof: Immediate from rules T-Abs, T-True, and T-False, and the fact that no other typing rules apply to values.

Theorem (Progress): If- e : T, then eithek is a value or there exists such thak — ¢’ (equivalently, If- ¢ : T,
thene is not stuck).
Proof: By (strong) induction on the depth of the derivatiortoé : T. Case analysis of the last rule in the derivation:

e Case T-Var: Them = 2 andz : T € 0, so we have a contradiction. Therefore, T-Var cannot be the last rule in
the derivation.

e Case T-Abs: Thea = \z : T}.e1, SOeis a value.

e Case T-App: Ther = e; es andr ey : To — T andt es : Th. By the inductive hypothesis, we have that either
e1 is a value or there exist§ such that; — €. Similarly, eithere. is a value or there exists, such that
e2 — eh. We perform a case analysis on these possibilities:

— Case there existg such thak; — e]: Then by E-Appl we have, e; — €] es.
— Casee; is avaluev;: There are two sub-cases.

x Case there exists, such thaky — ¢}: Then by E-App2 we have, e; — vy).

x Casee, is a valuevs: Sincet e, : To — T ande; is a valuev,, by the Canonical Forms lemma we
have thate; has the form\z : T'.e;. Therefore by E-AppRed we hayaz : T'.e3)vs — [z —
’Uz]eg.

e Case T-True: Then = true, sce is a value.
e Case T-False: Them= false, sce is a value.

e Case T-If: There = (if e; thene, elsees) andt e; : Bool andF- e, : T andt e3 : T. By the inductive
hypothesis, we have that eitharis a value, or there exist§ such that; — ¢€/. In the latter case, by E-If we
have that (ife; thene, elsees) — (if €] thene, elsees). In the former case, by the Canonical Forms lemma
we have that; is either true or false. If, is true, then by E-IfTrue we have that @éf thene, elsees) — es.

If e, is false, then by E-IfFalse we have thatdifthene, elsees) — e3.

Lemma (Weakening): IT' e : T andxo ¢ domT’), thenT' U {xo : To} Fe: T.
Proof: By (strong) induction on the depth of the derivatiorTof e : T'. Case analysis of the last rule in the derivation:

e Case T-Var: Them = z andz : T € I. Sincez, ¢ domT"), we have that, # x. Thereforer : T € T U {zg :
To}, so by T-Varwe hav&® U {zg : To} Fx : T

e Case T-Abs: Thea = Az : Th.e; andT =T — To andl' U {x; : T1} F ex : T>. We assume that; # z,
renaminge; if necessary. Since, ¢ domT'), alsozy ¢ dom(IT U {z; : T1}). Therefore by the inductive
hypothesis we havBU {x; : T1} U {xo : To} F es : To. So by T-Abs we hav€ U {zg : To} - (Azy : Th.e2) :
T1 — TQ.

e Case T-App: Ther = e; e; andI' - ey : To — T andl' - es : T>. By the inductive hypothesis we have
FU{ao:To}be:To - Tandl'U{xzo: To} F e : To, so by T-Appwe hav& U {zp : To} e ex: T.

e Case T-True: Then = true andl" = Bool. Therefore by T-True we haveu {z, : Ty} |- true: Bool.
e Case T-False: Then= false andl’ = Bool. Therefore by T-False we haVeU {z, : Ty} I- false: Bool.

e Case T-If: There = (if e; thene, elsees) andT" - e; : BoolandI - e; : T andT" - ez : T'. By the inductive
hypothesis we havB U {xq : Ty} - ey : Boolandl' U {xg : To} F e2 : T andl’' U {zg : To} - es3 : T, so by
T-If we havel' U {zg : To} F (if e; thene, elsees): T'.

Lemma (Substitution): flTU{z: T} Fe': T"andl' + v : T, thenl' - [z — v]e' : T".
Proof: By (strong) induction on the depth of the derivatiorlof) {z : T} F ¢’ : T'. Case analysis of the last rule in
the derivation:

e Case T-Var: Ther' = 2’ andz’ : T’ € T' U {z : T'}. There are two subcases:

— Casex’ = z: Then[z — v]e’ = [z — v]z = v. Since we assume th&tU {z : T} has at most one
element for each variable name, we have ffifat T'. Finally, sincel' - v : T, this case is proven.

— Casez’ # z: Then[x — v]e’ = 2'. Sincez’ : T e T U {z : T} andz’ # x, we haver’ : T' € T.
Therefore by T-Var we have - 2’ : T".

Case T-Abs: Ther' = \xzg : Ty.e; andT’ =Ty — Ty andT'U{z : T}U{xo : To} F ey : Ty. Sincel' F v : T,
by Weakening (renaming, if necessary) we havB U {z¢ : Tp} F v : T, so by the inductive hypothesis we
havel' U {x¢ : To} F [z — v]e; : Ty. Therefore by T-Abs we havé - \zg : Ty.[z + v]ey : To — T;. Since
we can assume that# z, andz, not free inv, performing renaming as necessary, we haver vle’ = Az :
To.[x — v]ey, so the result follows.

Case T-App: Ther' = ey ecandlT’U{z : T} F ey : To — T'andT' U {z : T} F ey : T». Then by the
inductive hypothesis we hadé - [z — v]e; : To — T" andl' F [z — v]es : T2, SO by T-App we have
Ik [z — v]ep [z v]ex : T'. Since[z — v](e1 e2) = [x — vl]ey [& — v]es, the result follows.

Case T-True: Then' = true andI” = Bool. Then by T-True we havE I true: Bool. Since[z — v]true =
true, the result follows.

Case T-False: The#i = false andl” = Bool. Then by T-False we ha\ét- false: Bool. Since[z — v]false =
false, the result follows.

Case T-If: There' = (if e; thene, elseez) andT U {z : T} F e; : BoolandT U {z : T} F e, : T and
F'U{x:T}F es: T'. By the inductive hypothesis we halfe- [z — v]e; : Bool andl - [z + v]es : T and
Ik [z — v]es : T', so by T-If we have F (if [z — v]e; then[x — v]es else[z — v]es): T". Since[z — v](if
e1 thenes elsees) = (if [x — v]e; then[z — v]es else[x — v]es), the result follows.

Theorem (Type Preservation): IF - e : T ande — e/, thenI' - e’ : T.
Proof: By (strong) induction on the depth of the derivatiorTof e : T'. Case analysis of the last rule in the derivation:

Case T-Var: Them = z. By inspection of the operational semantics, there ig'reuch thatr — ¢, so this
case is satisfied trivially.

Case T-Abs: Similar to the previous case.

Case T-App: Them = e; es andl' F ey : To — T andl’ F es : T5. We're given thae — ¢’. Case analysis
of the last rule used in the derivation of this reduction step:

— Case E-Appl: Thed = ¢] e; ande; — e]. By the inductive hypothesis we have tiiat e} : 7o — T.
Therefore, by T-App we havB - e} ey : T

— Case E-App2: Ther' = e €}, andes — ¢). By the inductive hypothesis we have that- e}, : T5.
Therefore, by T-App we havB F e; e}, : T

— Case E-AppRed: Then = Az : Tj.e3 andey = v ande’ = [z — v]es. Sincel' F ey : Th — T ande; =
Ax : T1.e3, by inspection of the typing rules we have tiiat= 75, sowe havd' F \x : Th.e3 : To — T.
By inspection, this derivation must end with rule T-Abs. Therefore we havdtha{x : Tb} F es : T.
Sincel + ey : T andey, = v we havel' F v : T,. Therefore by the Substitution lemma we have
Ckzwv]es: T.

Case T-True: Then = true. By inspection, there is i such that true— ¢, so this case is satisfied trivially.
Case T-False: Similar to the previous case.

Case T-If: There = (if e; thenes elseez) andl’ F ey : Boolandl' F e : T andl' F e : T'. We're given that
e — ¢'. Case analysis of the last rule used in the derivation of this reduction step:

— Case E-IfTrue: Then’ = e5, sowe hava e’ : T
— Case E-IfFalse: The#l = e3, sowe havd - ¢’ : T.

— Case E-If: Then (ife; thene, elsees) — (if €| thene, elsees), wheree; — ¢]. By the inductive
hypothesis we havE |- ¢} : Bool. Therefore by T-If we havE F (if ¢] thene, elsees): T'.

Theorem (Type Soundness #1): if e : T then eithek is a value or there existd such that — ¢’ and- ¢’ : T'.
Proof: Sincel- e : T', by Progress eitheris a value or there exists such thak — ¢’. In the latter case, by Type
Preservation we havee’ : T

Let — denote the reflexive, transitive closure of the relation.

Corollary (Type Soundness #2): i e : T and the evaluation of terminates, then there existsuch thae — v
and-wo : T.

Proof: SinceF e : T', by Type Soundness #1 we have that eithera value or there exist$ such thak — ¢’ and

F €' : T. Since the evaluation efterminates, some evaluation@has finite length (number of reduction steps). We
prove this corollary by induction on the length of this evaluatioa.of

e Case length = 0: Then there does not existuch that — ¢’, soe must be a value. Therefore, this case is
proven by taking = e.

e Case length =, wheren > 0: Then there is at least one reduction step in the evaluationjsoot a value.
Therefore there exists such thate — ¢’ andF ¢’ : T. Since the evaluation of terminates, so does the
evaluation of’. Further, the evaluation @f has lengtm — 1. Therefore, by the inductive hypothesis we have

*

that there exists such that’ — v andF v : T'. Sincee — ¢’ ande’ — v, we havee — v.

