Simply-typed Lambda Calculus

Todd Millstein

October 26, 2002

This document formally defines the call-by-value simply-typed lambda calculus (with booleans) and provides a proof of type soundness. It is meant only as a reference, and assumes familiarity with the basic notions involved.

1 Syntax

The metavariable x ranges over an infinite set of variable names. The metavariable e ranges over expressions (terms). The metavariable T ranges over types. The metavariable v ranges over values.
$e \quad::=\quad x|\lambda x: T . e| e_{1} e_{2}$
true \mid false \mid if e_{1} then e_{2} else e_{3}
$T::=$ Bool $\mid T_{1} \rightarrow T_{2}$
$v \quad::=\quad \lambda x: T . e \mid$ true \mid false

2 Operational Semantics

2.1 Substitution

The substitution function is defined below. We assume that renaming of bound variables is applied as necessary to make the side conditions of the third case hold.

```
\(\begin{array}{lll}{[x \mapsto e] x} & = & e \\ {[x \mapsto e] x^{\prime}} & = & x^{\prime}\end{array}\)
\([x \mapsto e] x^{\prime} \quad=x^{\prime} \quad\) if \(x \neq x^{\prime}\)
\([x \mapsto e]\left(\lambda x^{\prime}: T^{\prime} . e^{\prime}\right) \quad=\quad \lambda x^{\prime}: T^{\prime} \cdot[x \mapsto e] e^{\prime} \quad\) if \(x \neq x^{\prime}\) and \(x^{\prime}\) not free in \(e\)
\([x \mapsto e]\left(e_{1} e_{2}\right) \quad=\quad[x \mapsto e] e_{1}[x \mapsto e] e_{2}\)
\([x \mapsto e]\) true \(=\) true
\([x \mapsto e]\) false \(\quad=\) false
\([x \mapsto e]\) if \(e_{1}\) then \(e_{2}\) else \(e_{3}=\quad\) if \([x \mapsto e] e_{1}\) then \([x \mapsto e] e_{2}\) else \([x \mapsto e] e_{3}\)
```


2.2 Inference Rules

The notation $e \longrightarrow e^{\prime}$ means "expression e evaluates to e^{\prime} in one step."

$$
\begin{array}{cc}
\overline{(\lambda x: T . e) v \longrightarrow[x \mapsto v] e}(\mathrm{E}-\mathrm{AppRed}) & \overline{\text { if true then } e_{2} \text { else } e_{3} \longrightarrow e_{2}} \text { (E-IfTrue) } \\
\frac{e_{1} \longrightarrow e_{1}^{\prime}}{e_{1} e_{2} \longrightarrow e_{1}^{\prime} e_{2}}(\mathrm{E}-\mathrm{App1}) & \overline{\text { if false then } e_{2} \text { else } e_{3} \longrightarrow e_{3}} \text { (E-IfFalse) } \\
\frac{e \longrightarrow e^{\prime}}{v e \longrightarrow v e^{\prime}}(\mathrm{E}-\mathrm{App} 2) & \frac{e_{1} \longrightarrow e_{1}^{\prime}}{\text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \longrightarrow \text { if } e_{1}^{\prime} \text { then } e_{2} \text { else } e_{3}} \tag{E-If}
\end{array}
$$

2.3 Stuck Expressions

An expression e is stuck if it is not a value but there is no e^{\prime} such that $e \longrightarrow e^{\prime}$. The stuck expressions can be thought of as the set of possible run-time "type" errors. The grammar of stuck expressions is as follows:

```
stuck ::= x
stuck e | true v | false v
v stuck
if stuck then }\mp@subsup{e}{2}{}\mathrm{ else e e
if \lambdax:T.e then }\mp@subsup{e}{2}{}\mathrm{ else }\mp@subsup{e}{3}{
```


3 Typechecking Rules

The metavariable Γ represents a type environment, which is a set of (variable name, type) pairs. Each pair with variable name x and type T is denoted $x: T$. We assume that a type environment has at most one pair for a given variable name; this can always be ensured via renaming of bound variables. If $\Gamma=\left\{x_{1}: T_{1}, \ldots, x_{n}: T_{n}\right\}$, then we define $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}$.

A judgement of the form $\Gamma \vdash e: T$ means "expression e has type T under the typing assumptions in Γ." If the Γ component is missing from a judgement, the type environment is assumed to be the empty set.

$$
\begin{array}{cc}
\frac{x: T \in \Gamma}{\Gamma \vdash x: T}(\mathrm{~T}-\mathrm{Var}) & \overline{\Gamma \vdash \text { true }: \text { Bool }} \text { (T-True) } \\
\frac{\Gamma \cup\left\{x: T_{1}\right\} \vdash e: T_{2}}{\Gamma \vdash\left(\lambda x: T_{1} \cdot e\right): T_{1} \rightarrow T_{2}}(\mathrm{~T}-\mathrm{Abs}) & \overline{\Gamma \vdash \text { false }: \text { Bool }} \text { (T-False) } \\
\frac{\Gamma \vdash e_{1}: T_{2} \rightarrow T \quad \Gamma \vdash e_{2}: T_{2}}{\Gamma \vdash e_{1} e_{2}: T}(\mathrm{~T}-\mathrm{App}) & \frac{\Gamma \vdash e_{1}: \text { Bool } \Gamma \vdash e_{2}: T \quad \Gamma \vdash e_{3}: T}{\Gamma \vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: T} \text { (T-If) }
\end{array}
$$

4 Type Soundness

Lemma (Canonical Forms):

a. If $\Gamma \vdash v: T_{1} \rightarrow T_{2}$ then v has the form $\lambda x: T_{1} . e$.
b. If $\Gamma \vdash v:$ Bool then v is either true or false.

Proof: Immediate from rules T-Abs, T-True, and T-False, and the fact that no other typing rules apply to values.
Theorem (Progress): If $\vdash e: T$, then either e is a value or there exists e^{\prime} such that $e \longrightarrow e^{\prime}$ (equivalently, If $\vdash e: T$, then e is not stuck).
Proof: By (strong) induction on the depth of the derivation of $\vdash e: T$. Case analysis of the last rule in the derivation:

- Case T-Var: Then $e=x$ and $x: T \in \emptyset$, so we have a contradiction. Therefore, T-Var cannot be the last rule in the derivation.
- Case T-Abs: Then $e=\lambda x: T_{1} \cdot e_{1}$, so e is a value.
- Case T-App: Then $e=e_{1} e_{2}$ and $\vdash e_{1}: T_{2} \rightarrow T$ and $\vdash e_{2}: T_{2}$. By the inductive hypothesis, we have that either e_{1} is a value or there exists e_{1}^{\prime} such that $e_{1} \longrightarrow e_{1}^{\prime}$. Similarly, either e_{2} is a value or there exists e_{2}^{\prime} such that $e_{2} \longrightarrow e_{2}^{\prime}$. We perform a case analysis on these possibilities:
- Case there exists e_{1}^{\prime} such that $e_{1} \longrightarrow e_{1}^{\prime}$: Then by E-App1 we have $e_{1} e_{2} \longrightarrow e_{1}^{\prime} e_{2}$.
- Case e_{1} is a value v_{1} : There are two sub-cases.
* Case there exists e_{2}^{\prime} such that $e_{2} \longrightarrow e_{2}^{\prime}$: Then by E-App2 we have $v_{1} e_{2} \longrightarrow v_{1} e_{2}^{\prime}$.
* Case e_{2} is a value v_{2} : Since $\vdash e_{1}: T_{2} \rightarrow T$ and e_{1} is a value v_{1}, by the Canonical Forms lemma we have that e_{1} has the form $\lambda x: T^{\prime} . e_{3}$. Therefore by E-AppRed we have $\left(\lambda x: T^{\prime} . e_{3}\right) v_{2} \longrightarrow[x \mapsto$ $\left.v_{2}\right] e_{3}$.
- Case T-True: Then $e=$ true, so e is a value.
- Case T-False: Then $e=$ false, so e is a value.
- Case T-If: Then $e=$ (if e_{1} then e_{2} else e_{3}) and $\vdash e_{1}:$ Bool and $\vdash e_{2}: T$ and $\vdash e_{3}: T$. By the inductive hypothesis, we have that either e_{1} is a value, or there exists e_{1}^{\prime} such that $e_{1} \longrightarrow e_{1}^{\prime}$. In the latter case, by E-If we have that (if e_{1} then e_{2} else e_{3}) \longrightarrow (if e_{1}^{\prime} then e_{2} else e_{3}). In the former case, by the Canonical Forms lemma we have that e_{1} is either true or false. If e_{1} is true, then by E-IfTrue we have that (if e_{1} then e_{2} else e_{3}) $\longrightarrow e_{2}$. If e_{1} is false, then by E-IfFalse we have that (if e_{1} then e_{2} else e_{3}) $\longrightarrow e_{3}$.

Lemma (Weakening): If $\Gamma \vdash e: T$ and $x_{0} \notin \operatorname{dom}(\Gamma)$, then $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash e: T$.
Proof: By (strong) induction on the depth of the derivation of $\Gamma \vdash e: T$. Case analysis of the last rule in the derivation:

- Case T-Var: Then $e=x$ and $x: T \in \Gamma$. Since $x_{0} \notin \operatorname{dom}(\Gamma)$, we have that $x_{0} \neq x$. Therefore $x: T \in \Gamma \cup\left\{x_{0}\right.$: $\left.T_{0}\right\}$, so by T-Var we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash x: T$.
- Case T-Abs: Then $e=\lambda x_{1}: T_{1} . e_{2}$ and $T=T_{1} \rightarrow T_{2}$ and $\Gamma \cup\left\{x_{1}: T_{1}\right\} \vdash e_{2}: T_{2}$. We assume that $x_{1} \neq x_{0}$, renaming x_{1} if necessary. Since $x_{0} \notin \operatorname{dom}(\Gamma)$, also $x_{0} \notin \operatorname{dom}\left(\Gamma \cup\left\{x_{1}: T_{1}\right\}\right)$. Therefore by the inductive hypothesis we have $\Gamma \cup\left\{x_{1}: T_{1}\right\} \cup\left\{x_{0}: T_{0}\right\} \vdash e_{2}: T_{2}$. So by T-Abs we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash\left(\lambda x_{1}: T_{1} \cdot e_{2}\right)$: $T_{1} \rightarrow T_{2}$.
- Case T-App: Then $e=e_{1} e_{2}$ and $\Gamma \vdash e_{1}: T_{2} \rightarrow T$ and $\Gamma \vdash e_{2}: T_{2}$. By the inductive hypothesis we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash e_{1}: T_{2} \rightarrow T$ and $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash e_{2}: T_{2}$, so by T-App we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash e_{1} e_{2}: T$.
- Case T-True: Then $e=$ true and $T=$ Bool. Therefore by T-True we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash$ true : Bool.
- Case T-False: Then $e=$ false and $T=$ Bool. Therefore by T-False we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash$ false : Bool.
- Case T-If: Then $e=\left(\right.$ if e_{1} then e_{2} else e_{3}) and $\Gamma \vdash e_{1}$: Bool and $\Gamma \vdash e_{2}: T$ and $\Gamma \vdash e_{3}: T$. By the inductive hypothesis we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash e_{1}:$ Bool and $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash e_{2}: T$ and $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash e_{3}: T$, so by T-If we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash$ (if e_{1} then e_{2} else e_{3}): T.

Lemma (Substitution): If $\Gamma \cup\{x: T\} \vdash e^{\prime}: T^{\prime}$ and $\Gamma \vdash v: T$, then $\Gamma \vdash[x \mapsto v] e^{\prime}: T^{\prime}$.
Proof: By (strong) induction on the depth of the derivation of $\Gamma \cup\{x: T\} \vdash e^{\prime}: T^{\prime}$. Case analysis of the last rule in the derivation:

- Case T-Var: Then $e^{\prime}=x^{\prime}$ and $x^{\prime}: T^{\prime} \in \Gamma \cup\{x: T\}$. There are two subcases:
- Case $x^{\prime}=x$: Then $[x \mapsto v] e^{\prime}=[x \mapsto v] x=v$. Since we assume that $\Gamma \cup\{x: T\}$ has at most one element for each variable name, we have that $T^{\prime}=T$. Finally, since $\Gamma \vdash v: T$, this case is proven.
- Case $x^{\prime} \neq x$: Then $[x \mapsto v] e^{\prime}=x^{\prime}$. Since $x^{\prime}: T^{\prime} \in \Gamma \cup\{x: T\}$ and $x^{\prime} \neq x$, we have $x^{\prime}: T^{\prime} \in \Gamma$. Therefore by T-Var we have $\Gamma \vdash x^{\prime}: T^{\prime}$.
- Case T-Abs: Then $e^{\prime}=\lambda x_{0}: T_{0} . e_{1}$ and $T^{\prime}=T_{0} \rightarrow T_{1}$ and $\Gamma \cup\{x: T\} \cup\left\{x_{0}: T_{0}\right\} \vdash e_{1}: T_{1}$. Since $\Gamma \vdash v: T$, by Weakening (renaming x_{0} if necessary) we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash v: T$, so by the inductive hypothesis we have $\Gamma \cup\left\{x_{0}: T_{0}\right\} \vdash[x \mapsto v] e_{1}: T_{1}$. Therefore by T-Abs we have $\Gamma \vdash \lambda x_{0}: T_{0} \cdot[x \mapsto v] e_{1}: T_{0} \rightarrow T_{1}$. Since we can assume that $x \neq x_{0}$ and x_{0} not free in v, performing renaming as necessary, we have $[x \mapsto v] e^{\prime}=\lambda x_{0}$: $T_{0} \cdot[x \mapsto v] e_{1}$, so the result follows.
- Case T-App: Then $e^{\prime}=e_{1} e_{2}$ and $\Gamma \cup\{x: T\} \vdash e_{1}: T_{2} \rightarrow T^{\prime}$ and $\Gamma \cup\{x: T\} \vdash e_{2}: T_{2}$. Then by the inductive hypothesis we have $\Gamma \vdash[x \mapsto v] e_{1}: T_{2} \rightarrow T^{\prime}$ and $\Gamma \vdash[x \mapsto v] e_{2}: T_{2}$, so by T-App we have $\Gamma \vdash[x \mapsto v] e_{1}[x \mapsto v] e_{2}: T^{\prime}$. Since $[x \mapsto v]\left(e_{1} e_{2}\right)=[x \mapsto v] e_{1}[x \mapsto v] e_{2}$, the result follows.
- Case T-True: Then $e^{\prime}=$ true and $T^{\prime}=$ Bool. Then by T-True we have $\Gamma \vdash$ true : Bool. Since $[x \mapsto v]$ true $=$ true, the result follows.
- Case T-False: Then $e^{\prime}=$ false and $T^{\prime}=$ Bool. Then by T-False we have $\Gamma \vdash$ false : Bool. Since $[x \mapsto v]$ false $=$ false, the result follows.
- Case T-If: Then $e^{\prime}=\left(\right.$ if e_{1} then e_{2} else e_{3}) and $\Gamma \cup\{x: T\} \vdash e_{1}:$ Bool and $\Gamma \cup\{x: T\} \vdash e_{2}: T^{\prime}$ and $\Gamma \cup\{x: T\} \vdash e_{3}: T^{\prime}$. By the inductive hypothesis we have $\Gamma \vdash[x \mapsto v] e_{1}$: Bool and $\Gamma \vdash[x \mapsto v] e_{2}: T^{\prime}$ and $\Gamma \vdash[x \mapsto v] e_{3}: T^{\prime}$, so by T-If we have $\Gamma \vdash\left(\right.$ if $[x \mapsto v] e_{1}$ then $[x \mapsto v] e_{2}$ else $[x \mapsto v] e_{3}$): T^{\prime}. Since $[x \mapsto v]$ (if e_{1} then e_{2} else $\left.e_{3}\right)=\left(\right.$ if $[x \mapsto v] e_{1}$ then $[x \mapsto v] e_{2}$ else $\left.[x \mapsto v] e_{3}\right)$, the result follows.

Theorem (Type Preservation): If $\Gamma \vdash e: T$ and $e \longrightarrow e^{\prime}$, then $\Gamma \vdash e^{\prime}: T$.
Proof: By (strong) induction on the depth of the derivation of $\Gamma \vdash e: T$. Case analysis of the last rule in the derivation:

- Case T-Var: Then $e=x$. By inspection of the operational semantics, there is no e^{\prime} such that $x \longrightarrow e^{\prime}$, so this case is satisfied trivially.
- Case T-Abs: Similar to the previous case.
- Case T-App: Then $e=e_{1} e_{2}$ and $\Gamma \vdash e_{1}: T_{2} \rightarrow T$ and $\Gamma \vdash e_{2}: T_{2}$. We're given that $e \longrightarrow e^{\prime}$. Case analysis of the last rule used in the derivation of this reduction step:
- Case E-App1: Then $e^{\prime}=e_{1}^{\prime} e_{2}$ and $e_{1} \longrightarrow e_{1}^{\prime}$. By the inductive hypothesis we have that $\Gamma \vdash e_{1}^{\prime}: T_{2} \rightarrow T$. Therefore, by T-App we have $\Gamma \vdash e_{1}^{\prime} e_{2}: T$.
- Case E-App2: Then $e^{\prime}=e_{1} e_{2}^{\prime}$ and $e_{2} \longrightarrow e_{2}^{\prime}$. By the inductive hypothesis we have that $\Gamma \vdash e_{2}^{\prime}: T_{2}$. Therefore, by T-App we have $\Gamma \vdash e_{1} e_{2}^{\prime}: T$.
- Case E-AppRed: Then $e_{1}=\lambda x: T_{1} . e_{3}$ and $e_{2}=v$ and $e^{\prime}=[x \mapsto v] e_{3}$. Since $\Gamma \vdash e_{1}: T_{2} \rightarrow T$ and $e_{1}=$ $\lambda x: T_{1} . e_{3}$, by inspection of the typing rules we have that $T_{1}=T_{2}$, so we have $\Gamma \vdash \lambda x: T_{2} . e_{3}: T_{2} \rightarrow T$. By inspection, this derivation must end with rule T-Abs. Therefore we have that $\Gamma \cup\left\{x: T_{2}\right\} \vdash e_{3}: T$. Since $\Gamma \vdash e_{2}: T_{2}$ and $e_{2}=v$ we have $\Gamma \vdash v: T_{2}$. Therefore by the Substitution lemma we have $\Gamma \vdash[x \mapsto v] e_{3}: T$.
- Case T-True: Then $e=$ true. By inspection, there is no e^{\prime} such that true $\longrightarrow e^{\prime}$, so this case is satisfied trivially.
- Case T-False: Similar to the previous case.
- Case T-If: Then $e=\left(\right.$ if e_{1} then e_{2} else e_{3}) and $\Gamma \vdash e_{1}:$ Bool and $\Gamma \vdash e_{2}: T$ and $\Gamma \vdash e_{3}: T$. We're given that $e \longrightarrow e^{\prime}$. Case analysis of the last rule used in the derivation of this reduction step:
- Case E-IfTrue: Then $e^{\prime}=e_{2}$, so we have $\Gamma \vdash e^{\prime}: T$.
- Case E-IfFalse: Then $e^{\prime}=e_{3}$, so we have $\Gamma \vdash e^{\prime}: T$.
- Case E-If: Then (if e_{1} then e_{2} else e_{3}) \longrightarrow (if e_{1}^{\prime} then e_{2} else e_{3}), where $e_{1} \longrightarrow e_{1}^{\prime}$. By the inductive hypothesis we have $\Gamma \vdash e_{1}^{\prime}$: Bool. Therefore by T-If we have $\Gamma \vdash\left(\right.$ if e_{1}^{\prime} then e_{2} else e_{3}): T.

Theorem (Type Soundness \#1): If $\vdash e: T$ then either e is a value or there exists e^{\prime} such that $e \longrightarrow e^{\prime}$ and $\vdash e^{\prime}: T$. Proof: Since $\vdash e: T$, by Progress either e is a value or there exists e^{\prime} such that $e \longrightarrow e^{\prime}$. In the latter case, by Type Preservation we have $\vdash e^{\prime}: T$.

Let $\xrightarrow{*}$ denote the reflexive, transitive closure of the \longrightarrow relation.
Corollary (Type Soundness \#2): If $\vdash e: T$ and the evaluation of e terminates, then there exists v such that $e \xrightarrow{*} v$ and $\vdash v: T$.
Proof: Since $\vdash e: T$, by Type Soundness \#1 we have that either e is a value or there exists e^{\prime} such that $e \longrightarrow e^{\prime}$ and $\vdash e^{\prime}: T$. Since the evaluation of e terminates, some evaluation of e has finite length (number of reduction steps). We prove this corollary by induction on the length of this evaluation of e.

- Case length $=0$: Then there does not exist e^{\prime} such that $e \longrightarrow e^{\prime}$, so e must be a value. Therefore, this case is proven by taking $v=e$.
- Case length $=n$, where $n>0$: Then there is at least one reduction step in the evaluation, so e is not a value. Therefore there exists e^{\prime} such that $e \longrightarrow e^{\prime}$ and $\vdash e^{\prime}: T$. Since the evaluation of e terminates, so does the evaluation of e^{\prime}. Further, the evaluation of e^{\prime} has length $n-1$. Therefore, by the inductive hypothesis we have that there exists v such that $e^{\prime} \xrightarrow{*} v$ and $\vdash v: T$. Since $e \longrightarrow e^{\prime}$ and $e^{\prime} \xrightarrow{*} v$, we have $e \xrightarrow{*} v$.

