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Ways to solve a program analysis problem

e Abstract interpretation
e Type checking
e Model checking

o Exhaustive exploration of a graph of possible executions
e SAT-solving

o One approach to automated theorem proving



Reducing one problem to another

encoding or

Problem 1

Examples:

translation

Problem 2

solver

Solution 2

decoding or

e Want kth largest element in a set. Know how to sort.
e Want to flip a fair coin. Only have a biased coin.

e Want to sort. Know how to compute convex hull. Use points {x, x?).

translation

Reductions are common in proofs about computational complexity.

Solution 1
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Reducing a problem to SAT (boolean satisfiability)
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The SAT problem: Given a boolean formula over variables V,
assign each variable to true or false to make the formula true.

Example SAT problem: (a and (b or =¢)) or (7b and c¢)

One solution: a=true, b=true, c=false

The output is also called a “model” of the formula.

Solution
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The SAT problem: Given a boolean formula over variables V,
assign each variable to true or false to make the formula true.

Example SAT problem: (a and (b or =¢)) or (7b and c¢)

One solution: a=true, b=true, c=false

The output is also called a “model” of the formula.

Why SAT?
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& Selman, 1996

First implementation:

SAT
problem

SAT solver

SAT
solution

decoding or
translation

Solution

This paper appears in Proceedings of the
15th International Joint Conference on Arti-
ficial Intelligence (1IJCAI-97), Nagoya, Aichi,
Japan, August 23-29, 1997, pp. 1169-1176.

Automatic SAT-Compilation of Planning Problems

Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld*

Department of Computer Science and Engineering

University of Washington, Box 352350 Seattle WA 98195-2350 USA

{mernst, todd, weld}@cs.washington.edu

Abstract

e We present an analytic framework that accounts for

Recent work by Kautz et al. provides tantalizing
evidence that large, classical planning problems
may be efficiently solved by translating them into
propositional satisfiability problems, using stochas-

all previously reported non-causal encodings,l including
several novel possibilities. We parameterize the space
of encodings along two major dimensions, action and
frame representation. For twelve points in this two-
dimensional space, we list the axioms necessary for a
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e SAT is NP-complete
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e SAT is NP-complete
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e Searching for a SAT solution is highly optimized
The solver either returns a solution, or times out
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e Cannot be faster than solving the original problem directly (might be slower)

e SAT is NP-complete

Arguments in favor:

1972:

A problem reduces to SAT, therefore it is hard.
Today: A problem reduces to SAT, therefore it is easy.

e Searching for a SAT solution is highly optimized
e The solver either returns a solution, or times out




SAT solver input must be in CNF form

Example SAT problem: (a and (b or =¢)) or (7b and c¢)
The same formula in CNF (conjunctive normal form):
x1TVXx2)AN(x1VaACEx1VbV-)A(x2V b)A ("x2V c)

CNF = conjunction of disjunctions of possibly-negated variables



Satisfiability modulo theories

Extend a SAT solver:

e Input format permits equations in a “theory”
o Example theories: real arithmetic, modular arithmetic, arrays, bit vectors

e The SAT solver calls a solver or checker for the theory



SAT solving

Brute force checking of all possible assignments, with some smarts



The n-queens problem [Bezzel, 1848]

Place n queens on a nxn chessboard so that none is attacking any other.

Simple approach: brute-force search



























Exercise: Write a SAT formula for the 8-queens problem

1. Write out the constraints in math or in English
2. Decide encoding as boolean variables
3. Translate the constraints to boolean formulas
Does not have to be in CNF
4. Translate the variable assignment into a chess board



N-queens constraints

Exactly one queen per row
Exactly one queen per column

At most one queen per diagonal




N-queens encoding

One boolean variable per square

Var is true if there is a queen there

a8 =false a7 =false
b8 = false b7 = false
c8 =false c7 =false
d8 = false d7 =true

e8 =false e7 =false
f8 = true f7 = false

g8 =false g7 = false
h8 = false h7 = false

etc.




One queen per row

At least one queen per row:
@ VbtTVecitVdiVelVflVgl
@2Vb2Vec2Vd2Ve2VI2Vg2

No more than one queen per row:
(ma1 V 7b1) A

(ma1 V 7c1) A

(Fa1V d1) A ... A

(7b1 V =c1) A

("b1V d1) A ... A

(ma2 V =b2) A
(mra2 V c2) A ... A




One queen per column

At least one queen per column:
(@1 Va2zVa3VaVaVabVarV a8
(b1 Vb2Vb3VDb4dVb5Vb6V b7V b8

No more than one queen per column:
(ma1 V a2) A

(ma1 V —a3) A

(mra1 'V ad) A ... A

(ma2 V ma3) A

(mra2 V mad) A ... A

(7b1 V =b2) A
(7b1 V =b3) A ... A




At most one queen per diagonal

SW-NE diagonals:
(ma7 V 7b8) A
(mab V b7) A (7b7 V —c8) A (a7 V c8) A

NW-SE diagonals:
(7g8 V —h7) A
(-f8 V 7g7) A (~g7 V —h6) A (=f8 V -h6) A




N-queens demo



SAT solving

Brute force checking of all possible assignments, with some smarts



SAT solving

Brute force checking of all possible assignments, with some smarts
Backtracking search over all 2" possible assignments

At any point, the assignment is partial
If { a=true, b=false } is inconsistent with the formula, no need to explore c, d, etc.

Unit clause rule: In a clause, if one var is unassigned and all others are false,
then the unassigned var must be true



DPLL algorithm (Davis—Putnam-Logemann-Loveland)

DPLL(cnf, a): /l cnf is a formula, a is a partial assignment
a < unit-clause(cnf, a) // boolean constraint propagation (BCP)
switch eval(cnf, a):

case true: return a

case false: return “unsat”

) Backtracking
case unknown:

v «— choose(unassigned-vars

return DPLL(cnf, a[v ~ true]) or DPLL(cnf, a[v ~ false])



DPLL algorithm (Davis—Putnam-Logemann-Loveland)

DPLL(cnf, a): /l cnf is a formula, a is a partial assignment

a < unit-clause(cnf, a) jation (BCP)

Idea: remember the combination of
] variables that made a unassignable.
switch eval(cnf, a): Avoid that combination in the future.

case true: return a

Idea: choose variables likely
to lead to quick resolution.

case false: return “unsat”

case unknown:
Idea: backtrack more

v < choose(unassigned-vars(cnf, a than one level.

return DPLL(cnf, a[v ~ true]) or DPLL(cnf, a[v ~ false])



