Solver-aided reasoning

UW CSE P 504

Ways to solve a program analysis problem

- Abstract interpretation
- Type checking
- Model checking
- Exhaustive exploration of a graph of possible executions
- SAT-solving
- One approach to automated theorem proving

Reducing one problem to another

Examples:

- Want kth largest element in a set. Know how to sort.
- Want to flip a fair coin. Only have a biased coin.
- Want to sort. Know how to compute convex hull. Use points $\left\langle x, x^{2}\right\rangle$.

Reductions are common in proofs about computational complexity.

Reducing a problem to SAT (boolean satisfiability)

Problem			SAT solver		Solution
	translation	problem		solution	

The SAT problem: Given a boolean formula over variables V, assign each variable to true or false to make the formula true.

Example SAT problem: (a and $(b$ or $\neg c)$) or ($\neg b$ and c)
One solution: $a=$ true, $b=$ true, $c=$ false
The output is also called a "model" of the formula.

Reducing a problem to SAT (boolean satisfiability)

Problem			SAT solver		Solution
	translation	problem		solution	

The SAT problem: Given a boolean formula over variables V, assign each variable to true or false to make the formula true.

Example SAT problem: (a and $(b$ or $\neg c)$) or ($\neg b$ and c)
One solution: $a=$ true, $b=$ true, $c=$ false
The output is also called a "model" of the formula.
Why SAT?

Reducing a problem to SAT (boolean satisfiability)

Idea: Kautz \& Selman, 1996

First implementation:

This paper appears in Proceedings of the
15th International Joint Conference on Arti-
ficial Intelligence (IJCAI-97), Nagoya, Aichi,
Japan, August 23-29, 1997, pp. 1169-1176.

Automatic SAT-Compilation of Planning Problems

> Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld*
> Department of Computer Science and Engineering
> University of Washington, Box 352350 Seattle WA 98195-2350 USA
> \{mernst, todd, weld $\}$ @cs.washington.edu

[^0]- We present an analytic framework that accounts for all previously reported non-causal encodings, ${ }^{1}$ including several novel possibilities. We parameterize the space of encodings along two major dimensions, action and frame representation. For twelve points in this twodimensional space, we list the axioms necessary for a

Reducing a problem to SAT (boolean satisfiability)

Problem			SAT solver		lution
	translation	problem		solution	

This is just solving the problem with extra steps. Why would we do this?

Reducing a problem to SAT (boolean satisfiability)

This is just solving the problem with extra steps. Why would we do this?
Counter-arguments:

- Cannot be faster than solving the original problem directly
- SAT is NP-complete

Reducing a problem to SAT (boolean satisfiability)

This is just solving the problem with extra steps. Why would we do this?
Counter-arguments:

- Cannot be faster than solving the original problem directly (might be slower)
- SAT is NP-complete

Arguments in favor:

- Searching for a SAT solution is highly optimized

The solver either returns a solution, or times out

Reducing a problem to SAT (boolean satisfiability)

This is just solving the problem with extra steps. Why would we do this?
Counter-arguments:

- Cannot be faster than solving the original problem directly (might be slower)
- SAT is NP-complete Arguments in favor:
- Searching for a SAT solution is highly optimized
- The solver either returns a solution, or times out

SAT solver input must be in CNF form

Example SAT problem: (a and $(b$ or $\neg c)$) or ($\neg b$ and c)
The same formula in CNF (conjunctive normal form):
$(x 1 \vee x 2) \wedge(\neg x 1 \vee a) \wedge(\neg x 1 \vee b \vee \neg c) \wedge(\neg x 2 \vee \neg b) \wedge(\neg x 2 \vee c)$
CNF = conjunction of disjunctions of possibly-negated variables

Satisfiability modulo theories

Extend a SAT solver:

- Input format permits equations in a "theory"
- Example theories: real arithmetic, modular arithmetic, arrays, bit vectors
- The SAT solver calls a solver or checker for the theory

SAT solving

Brute force checking of all possible assignments, with some smarts

The n-queens problem [Bezzel, 1848]

Place n queens on a $n \times n$ chessboard so that none is attacking any other.
Simple approach: brute-force search

The n-quee
慈然

The n-quee

The n-ques
前

The n-quee
孳

The n-que
哃

The n-quee
朔 (Mary

8 7

The n－quee
药管
䉼

8

The n-que
药

Exercise: Write a SAT formula for the 8-queens problem

1. Write out the constraints in math or in English
2. Decide encoding as boolean variables
3. Translate the constraints to boolean formulas

Does not have to be in CNF
4. Translate the variable assignment into a chess board

N -queens constraints

Exactly one queen per row
Exactly one queen per column
At most one queen per diagonal

N -queens encoding

One boolean variable per square
Var is true if there is a queen there

$$
\begin{array}{ll}
\text { a8 = false } & \text { a7 = false } \\
\text { b8 = false } & \text { b7 = false } \\
\text { c8 = false } & \text { c7 = false } \\
\text { d8 = false } & \text { d7 = true } \\
\text { e8 = false } & \text { e7 = false } \\
\text { f8 = true } & \text { f7 = false } \\
\text { g8 = false } & \text { g7 = false } \\
\text { h8 = false } & \text { h7 = false }
\end{array}
$$

One queen per row

At least one queen per row: $(a 1 \vee b 1 \vee c 1 \vee d 1 \vee e 1 \vee f 1 \vee g 1 \vee h 1) \wedge$
$(a 2 \vee b 2 \vee c 2 \vee d 2 \vee e 2 \vee f 2 \vee g 2 \vee h 2) \wedge$

No more than one queen per row:

```
(\nega1 \vee ᄀb1) ^
(\nega1 \vee ᄀс1) ^
(\nega1 \vee ᄀd1) ^ ... ^
(\negb1 \vee ᄀc1) ^
(\negb1 \vee \negd1) ^ ... ^ ..
\((\neg \mathrm{a} 2 \vee \neg \mathrm{~b} 2) \wedge\)
\((\neg a 2 \vee \neg c 2) \wedge \ldots \wedge\)
```


One queen per column

At least one queen per column:

$$
\begin{aligned}
& (a 1 \vee \text { a2 } \vee \text { a3 } \vee a 4 \vee \text { a5 } \vee \text { a6 } \vee \text { a7 } \vee \text { a8) } \wedge \\
& (b 1 \vee \text { b2 } \vee \text { b3 } \vee \text { b4 } \vee \text { b5 } \vee \text { b6 } \vee \text { b7 } \vee \text { b8) } \wedge
\end{aligned}
$$

No more than one queen per column:
$(\neg a 1 \vee \neg a 2) \wedge$
$(\neg a 1 \vee \neg a 3) \wedge$
$(\neg a 1 \vee \neg a 4) \wedge \ldots \wedge$
$(\neg a 2 \vee \neg a 3) \wedge$
$(\neg a 2 \vee \neg a 4) \wedge \ldots \wedge \ldots$

($\neg 1 \mathrm{~V}$ ᄀb2) \wedge
$(\neg b 1 \vee \neg b 3) \wedge \ldots \wedge$

At most one queen per diagonal

SW-NE diagonals:

(a 7 $\vee \neg$ ᄀb) \wedge

$(\neg a 6 \vee \neg b 7) \wedge(\neg b 7 \vee \neg c 8) \wedge(\neg a 7 \vee \neg c 8) \wedge$

NW-SE diagonals:
($\neg \mathrm{g} 8 \vee \neg \mathrm{~h} 7) \wedge$
$(\neg f 8 \vee \neg g 7) \wedge(\neg g 7 \vee \neg h 6) \wedge(\neg f 8 \vee \neg h 6) \wedge$

N -queens demo

SAT solving

Brute force checking of all possible assignments, with some smarts

SAT solving

Brute force checking of all possible assignments, with some smarts
Backtracking search over all 2^{n} possible assignments
At any point, the assignment is partial If $\{a=$ true, $b=$ false $\}$ is inconsistent with the formula, no need to explore c, d, etc.

Unit clause rule: In a clause, if one var is unassigned and all others are false, then the unassigned var must be true

DPLL algorithm (Davis-Putnam-Logemann-Loveland)

DPLL(cnf, a):
$\mathrm{a} \leftarrow$ unit-clause(cnf, a)
switch eval(cnf, a):
// cnf is a formula, a is a partial assignment
// boolean constraint propagation (BCP)
case true: return a
case false: return "unsat" case unknown:

$$
\begin{aligned}
& v \leftarrow \text { choose(unassigned-vars(cnf, a)) } \\
& \text { return DPLL(cnf, a[v } \mapsto \text { true]) or DPLL(cnf, a[v } \mapsto \text { false]) }
\end{aligned}
$$

DPLL algorithm (Davis-Putnam-Logemann-Loveland)

DPLL(cnf, a):
$\mathrm{a} \leftarrow$ unit-clause(cnf, a) switch eval(cnf, a):
// cnf is a formula, a is a partial assignment
case true: return a
case false: return "unsat"
Idea: choose variables likely to lead to quick resolution.
case unknown:
$\mathrm{v} \leftarrow$ choose(unassigned-vars(cnf, a) $\begin{gathered}\text { Idea: backtrack more } \\ \text { than one level. }\end{gathered}$
return DPLL(cnf, $\mathrm{a}[\mathrm{v} \mapsto$ true $]$) or DPLL(cnf, $\mathrm{a}[\mathrm{v} \mapsto$ false])

[^0]: Abstract
 Recent work by Kautz et al. provides tantalizing evidence that large, classical planning problems may be efficiently solved by translating them into propositional satisfiability problems, using stochas-

