
Solver-aided reasoning

UW CSE P 504

Ways to solve a program analysis problem

● Abstract interpretation
● Type checking
● Model checking

○ Exhaustive exploration of a graph of possible executions
● SAT-solving

○ One approach to automated theorem proving

Reducing one problem to another

Examples:

● Want kth largest element in a set. Know how to sort.
● Want to flip a fair coin. Only have a biased coin.
● Want to sort. Know how to compute convex hull. Use points 〈x, x2〉.

Reductions are common in proofs about computational complexity.

Problem 1 Problem 2 Solution 2 Solution 1
encoding or
translation

solver decoding or
translation

https://www.compart.com/en/unicode/U+3008

Reducing a problem to SAT (boolean satisfiability)

The SAT problem: Given a boolean formula over variables V,
assign each variable to true or false to make the formula true.

Example SAT problem: (a and (b or ¬c)) or (¬b and c)

One solution: a=true, b=true, c=false

The output is also called a “model” of the formula.

Problem SAT
problem

SAT
solution Solution

encoding or
translation

SAT solver decoding or
translation

Reducing a problem to SAT (boolean satisfiability)

The SAT problem: Given a boolean formula over variables V,
assign each variable to true or false to make the formula true.

Example SAT problem: (a and (b or ¬c)) or (¬b and c)

One solution: a=true, b=true, c=false

The output is also called a “model” of the formula.

Why SAT?

Problem SAT
problem

SAT
solution Solution

encoding or
translation

SAT solver decoding or
translation

Reducing a problem to SAT (boolean satisfiability)

Idea: Kautz
& Selman, 1996

First implementation:

Problem SAT
problem

SAT
solution Solution

encoding or
translation

SAT solver decoding or
translation

Reducing a problem to SAT (boolean satisfiability)

This is just solving the problem with extra steps. Why would we do this?

Problem SAT
problem

SAT
solution Solution

encoding or
translation

SAT solver decoding or
translation

Reducing a problem to SAT (boolean satisfiability)

This is just solving the problem with extra steps. Why would we do this?

Counter-arguments:

● Cannot be faster than solving the original problem directly
● SAT is NP-complete

Problem SAT
problem

SAT
solution Solution

encoding or
translation

SAT solver decoding or
translation

Reducing a problem to SAT (boolean satisfiability)

This is just solving the problem with extra steps. Why would we do this?

Counter-arguments:

● Cannot be faster than solving the original problem directly (might be slower)
● SAT is NP-complete

Arguments in favor:

● Searching for a SAT solution is highly optimized
The solver either returns a solution, or times out

Problem SAT
problem

SAT
solution Solution

encoding or
translation

SAT solver decoding or
translation

Reducing a problem to SAT (boolean satisfiability)

This is just solving the problem with extra steps. Why would we do this?

Counter-arguments:

● Cannot be faster than solving the original problem directly (might be slower)
● SAT is NP-complete

Arguments in favor:

● Searching for a SAT solution is highly optimized
● The solver either returns a solution, or times out

Problem SAT
problem

SAT
solution Solution

encoding or
translation

SAT solver decoding or
translation

1972: A problem reduces to SAT, therefore it is hard.
Today: A problem reduces to SAT, therefore it is easy.

SAT solver input must be in CNF form

Example SAT problem: (a and (b or ¬c)) or (¬b and c)

The same formula in CNF (conjunctive normal form):

 (x1 ∨ x2) ∧ (¬x1 ∨ a) ∧ (¬x1 ∨ b ∨ ¬c) ∧ (¬x2 ∨ ¬b) ∧ (¬x2 ∨ c)

CNF = conjunction of disjunctions of possibly-negated variables

Satisfiability modulo theories

Extend a SAT solver:

● Input format permits equations in a “theory”
○ Example theories: real arithmetic, modular arithmetic, arrays, bit vectors

● The SAT solver calls a solver or checker for the theory

SAT solving

Brute force checking of all possible assignments, with some smarts

The n-queens problem [Bezzel, 1848]

Place n queens on a n×n chessboard so that none is attacking any other.

Simple approach: brute-force search

The n-queens problem

The n-queens problem

The n-queens problem

The n-queens problem

The n-queens problem

The n-queens problem

The n-queens problem

The n-queens problem

Exercise: Write a SAT formula for the 8-queens problem

1. Write out the constraints in math or in English
2. Decide encoding as boolean variables
3. Translate the constraints to boolean formulas

Does not have to be in CNF
4. Translate the variable assignment into a chess board

N-queens constraints

Exactly one queen per row

Exactly one queen per column

At most one queen per diagonal

N-queens encoding

One boolean variable per square

Var is true if there is a queen there

a7 = false
b7 = false
c7 = false
d7 = true
e7 = false
f7 = false
g7 = false
h7 = false

a8 = false
b8 = false
c8 = false
d8 = false
e8 = false
f8 = true
g8 = false
h8 = false

etc.

One queen per row

At least one queen per row:
(a1 ∨ b1 ∨ c1 ∨ d1 ∨ e1 ∨ f1 ∨ g1 ∨ h1) ∧
(a2 ∨ b2 ∨ c2 ∨ d2 ∨ e2 ∨ f2 ∨ g2 ∨ h2) ∧ …

No more than one queen per row:
(¬a1 ∨ ¬b1) ∧
(¬a1 ∨ ¬c1) ∧
(¬a1 ∨ ¬d1) ∧ … ∧
(¬b1 ∨ ¬c1) ∧
(¬b1 ∨ ¬d1) ∧ … ∧ …

(¬a2 ∨ ¬b2) ∧
(¬a2 ∨ ¬c2) ∧ … ∧

…

One queen per column

At least one queen per column:
(a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5 ∨ a6 ∨ a7 ∨ a8) ∧
(b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5 ∨ b6 ∨ b7 ∨ b8) ∧ …

No more than one queen per column:
(¬a1 ∨ ¬a2) ∧
(¬a1 ∨ ¬a3) ∧
(¬a1 ∨ ¬a4) ∧ … ∧
(¬a2 ∨ ¬a3) ∧
(¬a2 ∨ ¬a4) ∧ … ∧ …

(¬b1 ∨ ¬b2) ∧
(¬b1 ∨ ¬b3) ∧ … ∧

…

At most one queen per diagonal

SW-NE diagonals:
(¬a7 ∨ ¬b8) ∧
(¬a6 ∨ ¬b7) ∧ (¬b7 ∨ ¬c8) ∧ (¬a7 ∨ ¬c8) ∧
…

NW-SE diagonals:
(¬g8 ∨ ¬h7) ∧
(¬f8 ∨ ¬g7) ∧ (¬g7 ∨ ¬h6) ∧ (¬f8 ∨ ¬h6) ∧
…

N-queens demo

SAT solving

Brute force checking of all possible assignments, with some smarts

SAT solving

Brute force checking of all possible assignments, with some smarts

Backtracking search over all 2n possible assignments

At any point, the assignment is partial
If { a=true, b=false } is inconsistent with the formula, no need to explore c, d, etc.

Unit clause rule: In a clause, if one var is unassigned and all others are false,
then the unassigned var must be true

Backtracking

DPLL algorithm (Davis–Putnam–Logemann–Loveland)

DPLL(cnf, a): // cnf is a formula, a is a partial assignment

a ← unit-clause(cnf, a) // boolean constraint propagation (BCP)

switch eval(cnf, a):

case true: return a

case false: return “unsat”

case unknown:

v ← choose(unassigned-vars(cnf, a))

return DPLL(cnf, a[v ↦ true]) or DPLL(cnf, a[v ↦ false])

DPLL algorithm (Davis–Putnam–Logemann–Loveland)

DPLL(cnf, a): // cnf is a formula, a is a partial assignment

a ← unit-clause(cnf, a) // boolean constraint propagation (BCP)

switch eval(cnf, a):

case true: return a

case false: return “unsat”

case unknown:

v ← choose(unassigned-vars(cnf, a))

return DPLL(cnf, a[v ↦ true]) or DPLL(cnf, a[v ↦ false])

Idea: choose variables likely
to lead to quick resolution.

Idea: remember the combination of
variables that made a unassignable.
Avoid that combination in the future.

Idea: backtrack more
than one level.

