CSEb584: Software Engineering

Lecture 7 (November 17, 1998)

David Notkin
Dept. of Computer Science & Engineering
University of Washington
www.cs.washington.edu/education/courses/584/CurrentQtr/

This week

- A few formal methods in action
* Repeat: little attention has been paid to
"non-functional” requirements

- These have, however, been very high on your
radar during class discussions

- So far, formal methods have relatively little to
contribute in this (very difficult) area

+ Oh yeah..I'll work the whiteboard a bit

today, too

Notkin (c) 1997, 1998 2

Formal methods (reprise)

* The original use of formalism in software
engineering was for proving the equivalence
between a specification and an
implementation

- This had a number of problems

* But there has been a resurgence of interest

in formal methods

- Mostly due to potential usefulness in
specification

- And a few success stories
Notkin (c) 1997, 1998 3

Potential benefits

* Increased clarity
* Ability to check for internal consistency
* Ability to prove properties about the

specification (related to Jackson's refutable
descriptions)

* Provides basis for falsification (perhaps

more useful than verification)

+ But not always worth the effort

Notkin (c) 1997, 1998 4

C.AR. Hoare, 1988

+ Of course, there is no fool-proof methodology or
magic formula that will ensure a good, efficient, or
ever feasible design. For that, the designer needs
experience, insight, flair, judgement, invention.
Formal method’s can only stimulate, guide, and
discipline our human inspiration, clarify design
alternatives, assist in exploring their consequences,
formalize and communicate design decisions, and
help to ensure that they are correctly carried out.

Notkin (c) 1997, 1998 5

Z ("zed")

+ Perhaps the most widely known and used

model-based specification language

* Good for describing state-based abstract

descriptions roughly in the abstract data
type style

* Based on typed set theory and predicate

logic

+ A few commercial successes

- T'll come back to one reengineering story

afterwards Notkin (c) 1997, 1998 6

The basic idea

- Static schemas
- States a system can occupy

- Invariants that must be maintained in every
system state

* Dynamic schemas
- Operations that are permitted

- Relationship between inputs and outputs of those
operations

- Changes of states

Notkin (c) 1997, 1998 7

The classic example

+ A "birthday book" that tracks people's

birthdays and can issue reminders of those
birthdays

- There are tons of web-based versions of these
now

* There are two basic types of atomic
elements in this example
— [NAME, DATE]
- Nothing about formats, possible values, etc.

Notkin (c) 1997, 1998 8

To the whiteboard

Notkin (c) 1997, 1998 9

1992 Queen's Award
for Technological Achievement

+ "Her Majesty the Queen has been graciously pleased to
approve the Prime Minister's recommendation that The
Queen's Award for Technological Achievement should be
conferred this year upon Oxford University Computing
Laboratory.

+ "Oxford University Computing Laboratory gains the Award
Jjointly with IBM United Kingdom Laboratories Limited for
the development of a programming method based on
elementary set theory and logic known as the Z notation,
and its application in the IBM Customer Information Control
System (CICS) product. ...

Notkin (c) 1997, 1998 1

Z/CICS

» Z was used to help develop the next release
of CICS/ESA_V3.1, a transaction processing
system
- Integrated into IBM's existing and well-established

development process

- Many measurements of the process indicated that they
were able to reduce their costs for the development by
almost five and a half million dollars

- Early results from customers also indicated significantly
fewer problems, and those that have been detected are
less severe than would be expected otherwise

Notkin (c) 1997, 1998 10

*+ "The use of Z reduced development costs significantly and

improved reliability and quality. Precision is achieved by
basing the notation on mathematics, abstraction through
data refinement, re-use through modularity and accuracy
through the techniques of proof and derivation.

+ "CICS is used worldwide by banks, insurance companies,

finance houses and airlines etc. who rely on the integrity of
the system for their day-to-day business."

Notkin (c) 1997, 1998 12

Finite state machines

+ There is a large class
of specification O O o
languages based on
finite state machines

+ Often primarily for
describing the control

- A finite set of states
- A finite alphabet of

aspects of embedded symbols

systems + A start state and one
+ The theoretical basis is or more final states

very firm * A transition relation

Notkin (c) 1997, 1998 13

Many, many models

* Petri nets

- Communicating finite state machines
+ Statecharts

- RSML

Notkin (c) 1997, 1998 14

Walkman example

(due to Alistair Kilgour, Heriot-Watt University)

Notkin (c) 1997, 1998 15

A common problem

- It is often the case that conventional finite

state machines blow-up in size for big

problems

- This is especially true for deterministic machines
(which are usually desirable)

- And for machines capturing concurrency
(because of the potential interleavings that must
be captured)

Notkin (c) 1997, 1998 16

Statecharts (Harel)

* A visual formalism for defining finite state
machines

* A hierarchical mechanism allows for complex
machines to be defined by smaller
descriptions
- Parallel states (AND decomposition)
- Conventional OR decomposition

Notkin (c) 1997, 1998 17

Tools

- Statecharts have a set of supporting tools
from i-Logix (STATEMATE, Rhapsody)
- Editors
- Simulators
- Code generators
+ C, Ada, Verilog, VHDL
- Some analysis support

- Statecharts (roughly) are a central part of
UML

Notkin (c) 1997, 1998 19

i-Logix screenshot

Notkin (c) 1997, 1998 20

Analysis

Given a Statecharts description, how can one
tell if it has some desirable properties?

- For instance, is it deterministic?

- Are there deadlocks?

- And domain-specific properties, too

Perhaps the most promising technology for
helping with this is model checking

Notkin (c) 1997, 1998 21

+ Evaluate temporal

+ Extremely successfully

Model checking

state systems

properties of finite R 1 (Fetine.

- Guarantee a property is
true or return a

counterexample Model
Checker

for hardware
verification Yes No

+ Open question: ' N\

applicable to software
specifications?
Notkin (c) 1997, 1998 22

State Transition Graph

+ One way to represent a finite state machine
is as a state transition graph
- Sis a finite set of states
- R is a binary relation that defines the possible
transitions between states in S
- P is a function that assigns atomic propositions
to each state in S
* eg., that a specific process holds a lock
+ Other representations include regular
expressions, etc.

Notkin (c) 1997, 1998 23

Example

+ Three states

+ Transitions as shown so
+ Atomic properties a, b

and ¢ ‘

+ Given a start state, you s2
can consider legal paths ‘
s1

through the state
machine

Notkin (c) 1997, 1998 24

A computation tree

* From a given start
state, you can °
represent all possible
paths with an infinite
computation tree

* Model checking allows
us o answer questions

(-]
(-)

about this tree ° °
| |

structure

Notkin (c) 1997, 1998 25

Mutual exclusion example

+ N1 & N2, non-critical
regions of Process 1 and 2
+ T1& T2, trying regions

+ Cland C2, critical regions
+ AF(C1) in lightly shaded
state?

- Cl always inevitably true?

+ EF(C1 0C2) in dark shaded
state?
- Cland C2 eventually true?

Notkin (c) 1997, 1998 27

Temporal formulae

+ Temporal logics allow us
to say things like
- Does some property hold
true globally?
+ Top figure
- Does some property
inevitably hold true?
+ Bottom figure
- Does some property
potentially hold true?

Notkin (c) 1997, 1998 26

Model checking

+ A model checker takes as input the state
machine description and a temporal logic
formula and
- either returns “true" or

- returns "false" and gives a counterexample

+ a description of state transitions that leads to a
counterexample of the temporal formula

Notkin (c) 1997, 1998 28

How does it work? (in brief)

+ Aniterative algorithm that labels states in the
transition graph with formulae known to be true
+ For aquery Q

- the first iteration marks all subformulae of Q of
length 1

- the second iteration marks them of length 2
- this terminates since the formula is finite

+ The details of the logic indeed matter

- But not at this level of description

Notkin (c) 1997, 1998 29

Example

- Q=T1O AFcl

- If Process 1 is trying to acquire the mutex, then
it is inevitably true it will get it sometime

* Q=—|T1DAFC1

- Rewriting with DeMorgan’s Laws

- First, label all the states where T1, = T1, and

Cl are true

Notkin (c) 1997, 1998 30

Example

+ Next mark all the
states in which AF Clis
true, etc.

- The algorithm tracks
states visited using
depth-first search

- Slight variations for AF,
AG, EF, EG, etc.

+ At termination,

~TI1OAF Clis true

everywhere

Notkin (c) 1997, 1998 31

Symbolic model checking

- State space can be huge (>21%9°) for many

systems

* Use implicit representation

- Data structure to represent transition relation
as a boolean formula

+ Algorithmically manipulate the data

structure to explore the state space

+ Key: efficiency of the data structure

Notkin (c) 1997, 1998 32

Binary decision diagrams
(BDDs)

+ "Folded decision tree” /.\

- Fixed variable order &)’ -

* Many functions have ‘
small BDDs :
- Multiplicationis a +<o>+
notable exception .

+ Can represent é)/\é’)

- State machines
(transition functions) odd patty

- Temporal queries Due to Randy Bryant

Notkin (c) 1997, 1998 33

BDD-based model checking

+ Tterative, fixed-point algorithms that are

quite similar to those in explicit model
checking

* Applying boolean functions to BDDs is

efficient, which makes the underlying
algorithms efficient

+ When the BDDs remain small, that is

- Variable ordering is a key issue

Notkin (c) 1997, 1998 34

BDD-based successes in HW

- IEEE Futurebus+ cache coherence protocol

+ Control protocol for Philips stereo
components

« ISDN User Part Protocol

Notkin (c) 1997, 1998 35

Software model checking

* Finite state software specifications

- Reactive systems (avionics, automotive, etc.)
- Hierarchical state machine specifications
- Statecharts (Harel), RSML (Leveson)

* Not intended to help with proving

consistency of specification and
implementation

Notkin (c) 1997, 1998 36

Why might it fail?

- Software is often specified with infinite
state descriptions
- We'll come back to this later (counterexample
checking)
- Software specifications may be structured
differently from hardware specifications
- Hierarchy
- Representations and algorithms for model
checking may not scale

Notkin (c) 1997, 1998 37

An approach at UW—try it!

- Applied model checking to the specification

of TCAS IT
- Traffic Alert and Collision Avoidance System

+ Inuse on U.S. commercial aircraft
* http://www.faa.gov/and/and600/and620/newtcas.htm

- FAA adopted specification
- Initial desigh and development by Leveson et al.

Notkin (c) 1997, 1998 38

(9 TCAS
]
- Warn pilots of traffic
- Plane to plane, not through ground controller
- On essentially all commercial aircraft
» Issue resolution advisories only

- Vertical resolution only
- Relies on transponder data

B Notkin (c) 1997, 1998 39

TCAS—high-level structure
o]

Other_Aircraft

Own_Aircraft

e Own_Aircraft
— Sensitivity levels, Alt_Layer, Advisory_Status

» Other_Aircraft
— Tracked, Intruder_State, Range_Test, Crossing, Sense
Descend/Climb

Notkin (c) 1997, 1998 41

TCAS specification

* Irvine Safety Group (Leveson et al.)

- Specified in RSML as a research project
+ RSML is in the Statecharts family of hierarchical
state machine description languages

- FAA adopted RSML version as official

+ Specification is about 400 pages long

* This study uses: Version 6.00, March 1993
- Not the current FAA version

Notkin (c) 1997, 1998 40

Using SMV
+ SMV is a BDD-based model checker

+ Tt checks CTL formulas
- A specific temporal logic

Partial TCAS
(SMV)

I

Properties
C

Notkin (c) 1997, 1998 42

Iterative process

- Iterate SMV version of specification
* Clarify and refine temporal formula

* Model environment more precisely

- Refine specification

Notkin (c) 1997, 1998 43

Use of non-determinism

+ Inputs from environment
— Altitude := {1000...8000}

Simplification of functions
— Alt_Rate := 0.25%*(Alt_Baro-ZP)/Delta_t
— Alt_Rate := {-2000...2000}

* Unmodelled parts of specification

- States of Ot her _Ai rcraft treated as non-
determinstic input variables

Notkin (c) 1997, 1998 a4

Translating RSML to SMV

MODULE nai n

On VAR

state: { ON, OFF};
on_event: bool ean;
of f _event: bool ean;

State encoding

* Flatten nested AND
and nested OR states

+ One variable for each
OR state

ASSI GN
init(state) := OFF;
next (state) := case
state = ON &
off of f _event: OFF;
state = OFF &
on_event: ON,
1 : state;
esac;
Notkin (c) 1997, 1998 45
Synchrony hypothesis
* Handling an external event
DEFINE
Stable := lInitiate_Move &
IMove_Finished &
IRod_Updated & !Clock_Event
ASSIGN
next(Move_Finished) := case
Stable : {0,1};
1 1 0;
esac;
...for other external events...
Notkin (c) 1997, 1998 47

- An enumerated type of
the dlternatives
« VAR
S: {A,B,C};
T: {D,E};
U: {F,G};
Notkin (c) 1997, 1998 46
Transitions
VAR RC: {Out, Mid, In};
ASSIGN
T_Out_Mid : Mid; T_Mid_In: In;
T_Mid_Out : Out; T_In_Mid : Mid;
1:RC;
esac;

Notkin (c) 1997, 1998 48

Non-deterministic transitions

+ A machine is deterministic if at most one of
T A B, T_A C, etc. can be true
- Else non-deterministic

+ Can encode non-deterministic transitions
— next(S) := case

Notkin (c) 1997, 1998 49

Checking properties

generated BDDs of over 200MB

+ Initial attempts to check any property

First successful check took 13 hours

- Has been reduced to a few minutes

+ Partitioned BDDs
+ Reordered variables
+ Implemented better search for

counterexamples

Notkin (c) 1997, 1998

50

Property checking

+ Domain independent properties
- Deterministic state transitions
- Function consistency
+ Domain dependent
- Output agreement
- Safety properties
- We used SMV to investigate some of these
properties on TCAS' Omn_Ai rcraf t module

Notkin (c) 1997, 1998 51

Disclaimer

The intent of this work is to evaluate

dated March, 1993. We did not have
access to later versions, so we do not

later versions.

symbolic model checking of state-based
specifications, not to evaluate the TCAS II
specification. Our study used a preliminary
version of the specification, version 6.00,

if the issues identified here are present in

know

Notkin (c) 1997, 1998

52

Deterministic transitions

- Do the same conditions allow for non-
deterministic transitions?

+ Inconsistencies were found earlier by other
methods [Heimdahl and Leveson]
- Identical conditions allowed transitions from

Sensitivity Level 4 to SL 2 or to SL 5

* Our formulae checked for all possible non-

determinism; we found this case, too

‘ Note: Earlier version of TCAS spec ‘

Notkin (c) 1997, 1998 53

V_254a := M5 = TARA| M5 =TAonly | MS=3| M5 =4 |
MS=5] MS=6]| M = 7;

V. 254b ;= ASL =2 | ASL = 3| ASL =4 | ASL =5 |
ASL =6 | ASL = 7;

T 254 := (ASL = 2 & V. 254a) | (ASL = 2 & MB =
(V_254b & LG = 2 & V524a);

V_257a := LG=5| LG=6| LG= 7| LG = none

V257b ;= M5 =TARA| MS=5]] MS=6] M =

V_257c := M5 = TARA| MSs=TAonly | M5 =3 |
MS=5] MM=6| M8 =7,

V. 257d := ASL =5 | ASL = 6 | ASL = 7;

T 257 := (ASL = 5| V_257a | V_257b) |
(ASL = 5 & M5 = TA only) |
(ASL = 5& LG = 2 & V_257¢c) |
(V_257d & LG = 5 & V_257b) |
(V_257d & V_257a & M5 = 5);

Function consistency

* Many functions are
defined in terms of v, if C
cases F = {Vz i f g

A function is i
inconsistent if two
different conditions C; AGI((C & C) |
and C; and be frue (G &C) |
simultaneously (G &G

Notkin (c) 1997, 1998 55

il u T 1k B Tk = L aml

Display_Model_Goal

Tells pilot desired rate of altitude change
+ Checking for consistency gave a
counterexample

— Other_Aircraft reverse from an Increase-
Climb to an Increase-Descend advisory

- After study, this is only permitted in our non-
deterministic modeling of Other_Aircraft

- Modeling a piece of Other_Aircraft s logic
precludes this counterexample

Notkin (c) 1997, 1998 57

Output agreement

* Related outputs should be consistent
- Resolution advisory
eIncrease-Climb, Climb, Descend,
Increase-Descend
—Display_Model_Goal
+ Desired rate of altitude change
+ Between -3000 ft/min and 3000 ft/min

- Presumably, on a climb advisory,
Display_Model_Goal should be positive

Notkin (c) 1997, 1998 58

Output agreement check

+« AG (RA = Climb -> DMG > 0)
- If Resolution Advisory is O i mb, then
Di spl ay_Model _Coal is positive
+ Counterexample was found
—t,: RA = Descend, DMG = -1500
—t,: RA =Increase-Descend, DMG = -2500
—t,: RA =Climb, DMG = -1500

Notkin (c) 1997, 1998 59

Limitations

+ Can't model all of TCAS

- Pushing limits of SMV (more than 200 bit
variables is problematic)

- Need some non-linear arithmetic to model parts
of @ her_Aircraft

+ New result that represents constraints as BDD
variables and uses a constraint solver

* How to pick appropriate formulae to check?

Notkin (c) 1997, 1998 60

10

Whence formulae?

"There have been two pilot reports received
which indicated that TCAS had issued Descend
RA's at approximately 500 feet AGL even
though TCAS is designed to inhibit Descent RAs
at 1,000 feet AGL. All available data from these
encounters are being reviewed to determine the
reason for these RAs."

--TCAS Web site

Notkin (c) 1997, 1998 61

Whence formulae?

+ Jaffe, Leveson et al. developed criteria that

specifications of embedded real-time
systems should satisfy, including:
- All information from sensors should be used
- Behavior before startup, after shutdown and
during off-line processing should be specified
- Every state must have a transition defined for
every possible input (including timeouts)
+ Predicates on the transitions must yield deterministic
behavior

Notkin (c) 1997, 1998 62

More criteria

+ Timing criteria

* Data validity criteria
+ Degradation criteria
+ Feedback criteria

* Reachability criteria

Notkin (c) 1997, 1998 63

What about infinite state?

* Model checking does not apply to infinite

state specifications
- The iterative algorithm will not reach a fixpoint

* Theorem proving applies well to infinite state

specifications, but has generally proved to
be unsatisfactory in practice

* One approach is to abstract infinite state

specifications into finite state ones
- Doing this and preserving properties is hard

Notkin (c) 1997, 1998 64

A middle ground

- Jackson and Damon have found an
interesting middle ground

* Write infinite state specs (in the style of Z)
+ Use "model checking” on all instances of the
specifications up to a certain size

- Report counterexamples, if found

- Success doesn't guarantee that the properties
hold in the specification (beyond the checked
sizes)

Notkin (c) 1997, 1998 65

Nitpick

+ The tool that checks for counterexamples

given a (subset of) Z specification

+ Examples include

- Paragraph style mechanisms
- Telephone switch structures

+ Two variants—explicit state space

enumeration and BDD-based checking

- More recent version using a boolean satisfiability
engine (Walksat)

Notkin (c) 1997, 1998 66

11

Explicit vs. symbolic

* The explicit counterexample checker
identifies isomorphs, does short-circuit
enumeration, etc.

+ The symbolic counterexample checker
translates the relational descriptions into
boolean structures and then uses BDDs

-+ The BDD-based has less consistent behavior,
but is sometimes much faster

Notkin (c) 1997, 1998 67

Model checking wrap up

* The goal of model checking is to allow finite
state descriptions to be analyzed and shown
to have particular desirable properties
- Won't help when you don't want or need finite

state descriptions

- Definitely added value when you do, but it's not
turnkey yet

+ Some other experience by other researchers, too (and

we've worked on an electrical distribution spec, a
research prototype at Boeing)

- Definitely feasible on modest sized systems

Notkin (c) 1997, 1998 68

Formal methods

* We looked at two styles of formal
specification

-Z

- Finite state w/model checking

- Tt is certainly not a silver bullet

+ Tt can in some cases increase clarity
+ It can in some cases support analysis
+ It is still pretty distant from code

Notkin (c) 1997, 1998 69

12

